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20B notes:  Prof. Daniel Neuhauser 

Partially based on notes by Prof. Peter Felker.   

Parts written by Christopher Arntsen and Arunima Coomar. 

IMPORTANT: ABOUT 20% of these notes are “INSERTS”, derivations which 

will not be covered in class but you’ll be expected to study and know 

everything in the notes, including the inserts,  for the exam. 

Course overview: 

This is a course about how molecules behave in aggregate – interact, form 

solutions and phases, and react with useful results (heat and electricity).  Along 

the way we’ll learn a lot of chemistry and physics, and at times gloss over some 

proofs, leaving the details to Chem. 110A (thermodynamics) 

Brief  outline: 

1.   Gases 

2.   Interacting systems (liquids, solids, phases) 

3.   Phases 
4.   Solutions 
5.   Thermodynamics: The 1st law 

6.   Thermodynamics: 2nd law: disorder increases in world.      

7.   Thermodynamics: Free energy – minimum in reactions. 

8.   From free energy to mass reaction law, chemical equilibrium 

9.   Mass reaction law and LeChatelier’s principle 

10. Acids and bases; mass reaction law in acids and bases; titrations.   

11. Electrochemistry 

12. Kinetics 

13. (Time permitting:) Raul’s law, physical properties of solutions,            

colligative properties.  
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Part 1: Units and Ideal-Gases (Gas-law, Kinetics): 

• Units, Avogadro’s number. 

• PV=nRT – experiments, temperature scale. 

• PV=nRT – theoretical proof (kinetic).   

• Maxwell’s velocity distribution 

• Boltzmann factor – application to vibrations. 

PRELUDE (NOT COVERED IN CLASS): Review from 20A 

Units, Avogadro’s numbers and moles 

in practice it is difficult to deal with big # of molecules, so we measure it in 

terms’ of moles.  A “mol” of things means it contains  

Avogadro’s’ #:  NAvogadro = 6.02*1023   

[We call NAvogadro interchangeably NA ] 

(Note that the concept of “mol” is analogous to “dozen”; dozen molecules are 12 

molecules, and a mole of molecules is 6.02*1023 molecules). 

NA was adjusted to be almost exactly the number of hydrogen atoms in one gram 

of hydrogen atoms.  However, we have to be careful when we say that, since 

hydrogen is made of separate individual H atoms only at very high temperatures 

(above, say, 2000-3000 degrees).   

At room temperature, hydrogen is a diatomic molecule H2; each H2 molecule 

weighs twice as much as one individual hydrogen atom, so at room temperature 

a mole of hydrogen molecules (H2) will weigh two grams. 

(A dozen hydrogen molecules weigh twice as much as a dozen hydrogen atoms, 

so a mole of hydrogen molecules weighs twice as much as a mole of hydrogen 

atoms). 

The mass of a hydrogen atom is almost exactly  

Mass(H atom)~ 1gram/ NA   = 1gram/ (6.02*1023) = 1.66*10-24 gram 
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Example: a mole of H2O will weigh about 18gram; proof: 

Mass(O atom) ~ 16 Mass(H atom)  

[ignoring isotopes, and other even smaller effects] 

Mass(H2 molecule) = 2 Mass(H atom) 

So 

 Mass(H2O molecule) = 18 Mass(H atoms) 

So 

 Mass(mole H2O molecules) = 18 Mass (mole H atoms)= 18g 

We therefore say 

 Molecular mass(H2O) = 18gram/mole 

(Exercise – give the mass in gram of a single H2O molecule based on this!) 

A reminder from 20A: Chemists like to change things, so they decided that the 

mass of hydrogen atom will not be used as the basic definition, but rather they 

say that: 

1 Atomic Mass Unit (AMU) = 1/12 * mass of the 12C isotope  

 but those are almost the same, since 

 Mass(H atom) = 1.00794 * Mass (12C)/12 = 1.00794 AMU 

Energy and Units 

Reminder, scientists found that in nature energy (labeled by “E” or at times by 

“U”) is conserved.   

Energy of atoms is made of two parts.  The first is the kinetic energy (K.E.), 

relating to how fast each atom moves (what’s its speed, v) and what’s its mass 

(m), 

  K.E.(one atom)= mv2/2  
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(I won’t prove this equation; you learned it or will learn in the physics series). 

A side note on energy units. 

Note: energy  = (mass)* (speed)2 = mass *distance2 / time2    

so energy is measured in units of (mass* distance2 / time2)    

Energy units reminder: two sets (one called CGS and the other MKS) are 

commonly used; MKS is more prevalent.  The energy units get special name in 

each unit system: 

1 erg = 1 g cm2 / sec2    (CGS units) 

1 J     = 1kg m2 / sec  (MKS units) 

End of side note 

Say that we have “N” atoms (N will be of course NAvog if we have a mole of atoms, 

but we take the general case).  Let’s consider the “j'th atom, i.e., we consider 

either the 1st atom (in which case j=1), or the 2nd (then j=2), or the 3rd, etc. 

 The K.E. of the “j’th atom will be therefore 

 K.E.(jth atom)= mj vj
2/2 

So the total kinetic energy will be the sum over all “j” atoms where j will range 

from “1” (the first atom) to “N” (the Nth atom) will be: 

Kinetic energy for N atom:  K.E. = ½ ∑ ��������,…,
  

(The strange symbol, Σ , means “sum”, it is the capitalized form of the Greek 
letter sigma; we’ll encounter more Greek letters below). 
 

The total energy, E, has, in addition to the kinetic energy, a 2nd part called 

potential energy, defined as: 

Potential energy: energy that can turn to K.E.   
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E.g., when we raise an iron bar up, we increase its potential energy; as we let it 

go, it will fall, and while it falls it acquires kinetic energy and its potential energy 

will decrease,  its total energy will be conserved (will actually slightly decrease, 

due to friction, i.e., transfer of energy from the iron bar to the air molecules ). 

Example for Potential energy and Kinetic Energy—a mass falling;  

 

Densities 

There are several types of densities we will deal with.  Densities in general are 

defined as something/volume. 

The most common type of densities are mass-density and molar density.  

 Mass density is defined as : 

 Mass density = Mass/Volume, and has units of g/cm3 or g/L or kg/L. 

Molar density is: 

 Molar density = # moles/Volume = n/V ;  

So for example the molar density of water =1mol/(18	cm,)	

 

K.E.=0 

Pot.E.=10 J 

Total E=10J 

 

K.E.=3J 

Pot.E.=7 J 

Total E=10J 
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Pressure and Units 
From now on we’ll use MKS units. 

To remind you: from above, energy is in units of Joule (labeled henceforth as J), 

and Energy is Mass*velocity2, i.e., 

 J = kg * m2/s2 

But  

F=Force = Energy/distance�  

So   

 F  will be measured by = J/m = (kg* m2/ s2)/m = kg* m/ s2 

This force unit, J/m, has been given a special name, Newton, labeled as N 

 (don’t confuse this “N” with “N” the number of particles from above!) 

Newton = J/m  

END OF PRELUDE ON UNITS 
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Next: pressure (to be covered in class): 

P=Pressure = Force/Area , and labeling the force as “F” and the area as “A”, 

P = F
A 

   P is measured in its own unit in MKS, which has been given a special name:    

Pascal	 = 	Newtonm� 		

Multiply by m (meter) both numerator and denom.: 

Pascal	 = 	Newton ∗ mm, 			= J
m,	 

 (i.e., PRESSURE = ENERGY/VOLUME!) 

However, 1 Newton is really a weak force in daily life (it is about the force 

exerted by a quarter-pound object – e.g., a small pear – on your hand when you 

hold it so it does not fall) , and a meter squared is a large area, so 1 Pascal is 

actually a very weak pressure. 

Ambient atmospheric pressure, i.e., pressure near sea level, is much higher than 

1 Pascal 

 1 atmosphere ~ 1.02 * 105 Pascal. 

One atmosphere is denoted as P0 

It is a coincidence of nature that 1 Atmosphere is so close to a power of ten (here 

100,000) times Pascal; so to use this fact, scientists introduced another pressure, 

called a bar, defined as 

 1bar = exactly 105 Pascal 

So 

 P0 = 1.02 bar~1bar. 

A secret: since we are a little higher than sea level, the pressure at UCLA is 

actually lower than P0 and is closer to a bar (and fluctuates daily with weather).  

So for me, in this course, we’ll just approximate that 45	" = "	1789 
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and we'll ignore the 1atm vs. 1bar difference  (don’t do it in other courses or labs 

or you will lose points there…) 

Useful: Note that  

 1bar = 100,000 J/m3,  and m3=1000L  (L means Liter), 

 1bar = 100,000J/(1000L)  

 1bar = 100 J/L 

Useful later.  
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The Gas Law , Temperature scale 

This section is only relevant for gases. 

We'll see how experimentally the gas law,  PV=nRT, was derived, where: 

 P: pressure 
 V: volume 
 T: temperature 
 N: number of moles 
 R: constant ("gas constant",  R=8.3 J / (K mol) ) 

Historical route: 

Separate experiments on gases by Charles and Boyle and Avogadro. 

Take an amount of gas put in a piston that can move but is sealed to other gases 

(see picture) so the gas inside cannot leak. 

1nd : If T fixed,  P*V  will be proportional to the amount of material (and will be 

therefore unchanged if the amount of material is unchanged, and T is fixed)     

(e.g., P� P/2 when V� 2*V,  but only when T and amt. of material are fixed!). 

An example is in the picture below.   

We have two balloons at the same temperature (say, 300K) and with the same 

amount of material (say, 2mol).  In one Balloon, V=25L, and the pressure is 2bar; 

in the other, the volume and pressure are different (50L and 1bar), but their 

product is the same as in the 1st balloon (since 25*2=50*1). 

 

Further, if we fix T and P, and double the amount of material, then, the volume 

needs to double (that’s almost obvious!), i.e., in our example: 

V=50L 

P=1bar 

(2mol).   

 

 

V=25L 

P=2ba, 

(2mol) 

Example for 

PV=n*const.  

at fixed T=25
o
C and  

fixed for ideal gases: 

 V doubled, P halved. 
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So:   mathematically we write these observations as: 

P*V=n*function(T) 

 However, so far this “function(T)” could depend on the material; the next 

experiment proves it does not depend on the material, i.e., “function(T)” has 

universal characteristics! 

2nd  experimental observation: for same T, and P, the ratios of the volumes 

between 2 different gases = ratio of the numbers of moles; 

 

 E.g., consider making hydrogen and oxygen gases 

H�O*l& → H�*g& = 	½	O�*g&	 
The outcome of this reaction is twice as many hydrogen moles as oxygen moles  

nH2 = 2 nO2 

V=50L 

P=2ba (4mol) 

 
 

V=25L 

P=2ba, 

(2mol) 

Example for 

PV=n*const.  

at fixed T 

for ideal gases: 

 Double volume and n 

while P and T fixed. 
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The observation is that if we collect the hydrogen in one container and the 

oxygen in the other, and both containers have the same P and T, then 

VH2 = 2VO2       so:   

4?@�A@� = 4?B�AB�  

And we’ll find this for any reaction, i.e., ‘function(T)’  above is universal, i.e., 

4? = AC*D& 
where C*D& is a function of temperature. 

Note on raising volumes without reactions:  

The gas laws tells us that if we were to increase the temperature at a fixed 

pressure, then two gases that have initially the same volume will continue 

having the same volume.   

(Example:, say we have a gas of hydrogen and a gas of bromine, all in 1 bar, and 

that initially, when each is at the same initial temperature T  each occupies  100L  

then if at another temperature, T’,  one gas occupies, say, 160L , the other gas 

will also occupy 160L at that temperature). 

Next Defining the temperature in Kelvin, based on the Gas Law. 

So far we avoided the question of what temperature scale to actually use. An 

example: we intuitively “know” that the temperature of boiling water is higher 

than the temperature of ice-water; but we can label the two as being 100 and 0 

(as in the Celsius scale) or 212 and 32 (as in the Fahrenheit scale), or other 

arbitrary designations.  

Clearly, it will be best to use a temperature definition that is based on a physical 

law, rather than being completely arbitrary.  The simplest way for that is to use 

directly the gas law,  i.e., we define: 

 R T=  PV/n 

R: constant used to match T to more historical definitions.   
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The T that’s defined above is called: T in Kelvin. 

The numerical value of R was adjusted so that:  

 The difference in Kelvin ("K") between boiling point of water and freezing point, 

when measured at the pressure near sea level, will be 100 (i.e., 100K), just like it 

is in Celsius.  

Experimentally:  put a sealed balloon filled with air in boiling water, at P=1bar, 

and find that V is, say, 50.000 L.  When the same balloon is then put into ice 

water, we’ll find that V=36.601 L.   

We find (experimentally!) 

 
( )
( )

boil

Freeze

P V at T  1bar*50.000L
1.36609

 P V at T 1bar*36.601L
= =    �   BOIL BOIL

  
1.36609

  FREEZE FREEZE

nRT T

nRT T
= =  

 This equation is then combined with our desire to have 

BOIL
T -T 100

FREEZE
K=  

To yield: 

BOIL

BOIL

100 T -T 1.36609 T T 0.36609 T

i.e.,

100K
T

0.36609

i.e.,

T 273.16K~273K

and 

T =T +100K=373.16K

FREEZE FREEZE FREEZE FREEZE

FREEZE

FREEZE

FREEZE

K = = − =

=

=

� �

 

Further, we can get R from this: 

Say we were able to determine that in this experiment n=1.61mol (for example, 

we can weigh the air in the balloon somehow and divide by the average 

molecular weight of air, including the ~80% contribution of N2, ~20% O2 , etc.).  

Then: 
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E	 = 4?AD = 	 1bar ∗ 50.00L1.61	mol ∗ 373.16	K = 	0.0831	bar ∗ L
mol	K 	

But recall that we learned that 

1bar * L = 100 J  (where J=Joule), 

 So  

R = 8.3 JK	mol	

You don’t need to memorize this number (I’ll give it to you in the exams), but 

with time you’ll remember it naturally.  
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Room temperature, and R T(room):  

Officially people define, for reference, room temperature as  

T(room) = 25Celisus = 298 K ;              

I’ll round in this course   T(room)~300K 

Note:  RT(room) = 8.3 J/(K mol) * 300K ~2500J/mol 

WORD OF CAUTION ON THE IDEAL GAS LAW,  

PV=nRT is only valid for “ideal” gases, i.e., ones in which the distances are so 

large that the molecules barely meet each other once in a while.  At high 

pressures (e.g., bigger than say, 30bar and definitely for more than100 bar) we 

have to start worrying about corrections to the ideal gas law.   

But for most gases the ideal gas law is extremely accurate at room pressures. 

We’ll study shortly deviations from ideal gas laws and how they teach us about 

the forces that hold the atoms together in solids and liquids. 

IMPORTANT: never apply the ideal gas law to liquids and solids! 
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Physical derivation of the Ideal Gas Law: kinetics 

Overview 

 Now we’ll derive the ideal gas law; our derivation will be kinetic, i.e.,  based on 

the properties of the motion of individual molecules.  We’ll ignore on the 

beigning factors of ~2. 

Imagine a cubical container with a 1 mole of gas.  

Assume very simplistically that: 

  ½the molecules move to the left with a characteristic speed: u,  

Another ½ move to the right with the same speed, u 

(This is a very simplistic assumption, since molecules have a range of speeds; 

further, they also move in different directions, not just left and right.  We’ll 

remedy this assumption later, one by one). 

Further, our goal in this derivation is to be very simplistic, so we will sometimes 

forget about factors of 2 (which will miraculously cancel out in the final relation, 

i.e., our approximate derivation will give the correct result). 

Before we start, several  reminders:  

 (i) the mass density equals  

�8NN	OPAQRS = T?U 

where n is the number of moles, M is the molar mass of the molecules, and V 

is the molar volume.   

(ii) momentum is defined as mass* velocity. 

 (iii) Force is defined as change in momentum per time 

 (iv) kinetic energy is defined as (up to factors of 2) mass*velocity2 
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Now to the pressure calculation:  we imagine a container with unit cross 

sectional area in the left wall (e.g., if we use cgs units, the area will be A=1 cm2, 

etc.); the force on that area will be the pressure. 

4 = V*WA	XAQR	89P8& 
But the force exerted by the molecules on the left walls the same as the force 

exerted on the molecules; the latter is, as mentioned, simply the rate of change 

in momentum of the molecules that hit the wall,  

4 = VW9YP*XAQR	89P8& = 	Yℎ8A[P	QA	�W�PARX�\  

where “\" is a short time;  and since the momentum equals mass*velocity, we 

can write the pressure as    

4
=	 *�8NN	WC	]89RQY^PN	Rℎ8R	ℎQR		_8^^	QA	RQ�P	\& 	∗ *Yℎ8A[P	QA	�P^WYQRS	_ℎPA	�W^PY. ℎQR	_8^^	&\  

Let’s then calculate the term. 

The velocity will change because when a particle hits the left wall it will bounce 

back, so its velocity change will be  (see figure) 

Yℎ8A[P	QA	�PW^YQRS = 2X~X 

where we ignored a factor of 2, as promised. 

 

So we are only left with the need to calculate what’s the mass that hits the wall 

in a short time \. 

initially: velocity = -u 

Finally: u 

WALL 



17 
 

Now we know that in a time \, only particles that are within a distance X\ from 

the wall can hit the wall; particles that are further way simply wont make it in 

time. (See figure) 

 

Figure: Only molecules that are within a distance bc from the wall 

will hit it in time c (molecules in black, that start to the left of the 

imaginary “red line” at a distance of bc	from the wall); molecules 

which are further away (blue in figure) will not hit the wall in time c. 

  

Therefore, the volume from which particles that hit the wall come is its cross-

section area (1) times its length (u\&,	i.e., it will be X\  

Therefore, the mass of particles (within a unit area) that hit the wall will be the 

mass density times the volume from which the particles come. 

i.e.,  

*�8NN	WC	]89RQY^PN	Rℎ8R	ℎQR	RℎP	XAQR − 89P8	_8^^	QA	RQ�P	\& 
= �8NN	OPANQRS ∗ *�W^X�P	C9W�	_ℎQYℎ	RℎP	]89RQY^PN	Rℎ8R	ℎQR	QA	\	899Q�P& 

= T?U ∗ X\ 

 

So collecting it all we get, using the eq. we derived: 

W
a

ll, A
=

1
 

 

distance=uc 
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4
= 	 *�8NN	WC	]89RQY^PN	Rℎ8R	ℎQR	RℎP	_8^^	QA	RQ�P	\& ∗ *Yℎ8A[P	QA	�P^WYQRS	_ℎPA	�W^PY. ℎQR	RℎP	_8^^	&\  

we get that: 

4 = efgh ∗ X\iX\  

 

i.e.,  

4 = T?U X� 

It turns out that this equation has the correct numerical factor, i.e., factors of 2 

that we ignored earlier canceled each other out.  From now on we will not 

ignore any more factors. 

The kinetic energy per mole, jU, is the molar mass (T& times the velocity 

squred, times 3/2, 

jU = 32TX� 

(You recognize the 1/2 as always appearing in kinetic energy; the “3” is because 

u is the velocity in the “x” direction, and we need to add the contribution of the y 

and the z directions.. that gives a 3). 

Merging together the last 2 equations gives 

4?U = 23jU 

(Also note that up to 2/3, this is the same equation we “derived” from unit 

analysis earlier!) 

So if we define the temperature as proportional to the kinetic energy per mole, 

i.e.., define T to be: 



19 
 

2

3
mRT E≡  

Then by plugging the last equation into the one before it, we get the ideal gas 

law,  

PVm=RT! 

(Note that as a bonus, we get from the definition of RT the “result” – really just a 

definition – Em= 3 RT/2 , which we will need later) 

Note: this derivation makes it clear that T cannot be negative, since it is 

proportional to kinetic energy, which is always positive.   

ALSO Note: this is a mathematically involved derivation, but I'll expect you to be 

able to redeliver it! 

Finally, note that Em is NOT THE TOTAL ENERGY, but is instead the kinetic 

energy associated with center of mass motion.  For atoms  that are far from each 

other, there is no other energy, so Em=3RT/2 is the energy of atomic gases (e.g., 

He, Ar, , etc.); for molecules, we have to supplement this energy by 

intermolecular kinetic and potential energy, so  

Molar Energy(molecules)>Em=3RT/2.  
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Maxwell’s Velocity Distribution: 

The derivation above was approximate as it assumed that all molecules have the 

same speed in the x direction (with ½ going left, ½ right).   Typically such 

approximate derivations give results that are accurate within an order of 

magnitude, i.e., have mistakes of order of 0.3 - 3.0.  However, in this case we 

were lucky and even the final factors were correct (so PV=nRT is correct exactly 

for an ideal gas). 

One issue we ignored in our derivation is that molecules do not have a fixed 

speed; if we want to really know what molecules behave like, they have 

distribution of speeds. 

Let’s use “u” to denote the total speed.  This is different from the previous 

section, where u denoted the speed along x; here it denotes the total speed. 

Further, u will be variable, so different molecules (or even the same molecule at 

different times) will have a different u. 

Since u is a continuous variable, we define the fraction of particles  within a 

range between u and u+du, i.e., with speeds around u but within a range du,  

F*X, X = OX& = FRACTION	OF	�W^PY. _QRℎ		X < N]PPO < X = OX 

For example, a gas can have a temperature where, say, 0.03%  of its molecules 

have speeds between 50 and 50.1 m/s; in that case,  

F(50 m/s, 50.1 m/s ) = 0.03% = 0.0003 

Next, note that if du is small, F(u,u+du) is proportional to du: 

F*X, X = OX& ∝ OX 

(where the symbol ∝  means: proportional to). 

E.g., if u is, say, 50m/s, then the number of particles that have speeds between 

say 50 and 50.2 m/s will be about twice as large as the number of particles 

between 50 and 50.1 m/s  
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F e50�N , 50.2�N i ≅ 2 ∗ F e50�N , 50.1�N i 

And in our example it will equal to 2*0.03%, i.e., 0.06%. 

If you are not clear about the fact that V*X, X = OX& will be proportional to OX, 

think of an example from your daily life.  The fraction of students with SAT score 

between 1100 and 1108 is about twice as high as the fraction of students with 

scores between 1100 and 1104; i.e., the fraction of students within a small range 

of scores  is proportional to the size of the range. 

Therefore, we can talk about probability densities, which will be defined as:  

C*X& ≡ F*X, X = OX&OX  

i.e.,	C*X&	is the fraction of molecules per unit speed, i.e., per m/s.  The advantage 

of using “C*X&” rather than V*X, X = OX&, is that  as long as du is not too big, C is 

independent of OX [the size of the range], and depends only on u., so instead of 

depending on two variables (u and du) f depends only on one (u).   

This is similar to the definition of derivatives, for those who know calculus. 

For molecules, C*X& is called: Maxwell distribution.   

It has units of 1/speed, i.e., 1/(m/s)= s/m. 

(in the previous example, where F( 50 m/s, 50.1m/s )=0.0003,  we get  

f(50 m/s)= 0.0003/[0.1m/s ] = 0.003 s/m ) 

Turns out (see Chem. 110B), that for ideal gases f(u) has a general universal 

form, called the Maxwell equation, which equals (don’t be scared!) 

 

r*b& = 1
es� tuv iw/x b

xyz{	|−vbx2Ru} 
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M is the molar mass of the molecule, as we saw earlier.   

We’ll come back later to the most important part, which is the exponential term, exp	e−vbx��ui; it is called the  BOLTZMANN FACTOR. 

 

Maxwell distribution Properties:   

Most prevalent (m.p.) speed: where f(u) peaks.  

 

From calculus (if you know it) 

df/du=0 at um.p. �(after a short derivation) 

u�.�. = �2RTM 	 
 

Important alternative to calculus: deriving the probable distribution 

approximately from unit analysis: 

 

 f(u) 

u 

e¯
High T or light mass 

Low T or high M: u(m.p.) lower. 

X*�. ]. & = *2ED/T&12		

Maxwell ‘s distribution 
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We can find out the important factor  ����   in um.p. by "unit analysis”, also called 

dimensional analysis,  as 
RT

M
 is the only quantity with units of speed that 

we can make out of RT (energy) and M (mass!)   

(since velocity2=Energy/Mass, velocity=square root of (Energy/mass)). 

Note that the dimensional analysis did not give us the √2  factor, but that’s 

typical of dimensional analysis. 

 

Understanding the different parts in the Maxwell distribution. 

The Maxwell distribution looks very scary, but let's see that it makes sense.  I'll 

rewrite it as product of 4 terms 

C*X& = 4
√� 	

1
XU.�.,	 	X

�exp	�−�. j.
RD � 

Where we'll understand the terms by going right to left: 

 

• The 4th term,  exp	e− �.�.�� i, is the Boltzmann factor, which is, as mentioned, 

very prevalent (we'll see it later): K.E.  is the kinetic energy of a mole of 

particles with molar mass M and speed u: 

�. j.= 12TX� 

So the Boltzmann factor discriminates against particles with high energies – 

in this case, high kinetic energies, but later, when we talk about particles also 

with potential energies, it will discriminate against other high energies (total 

energies; or potential energies; depending on the circumstance). 
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• The 3rd part is an interesting part. It actually discriminates against particles 

with low speeds. It turns out it is a geometric factor; which accounts for the 

following: 

The higher the speed, the more possibilities there are to get the same 

speed u from different b�, b�, b�: i.e., if the speed is small, then that can 

happen only if X� , X� and X� are all small; but if the speed is high then there 

are many different combinations – X� can be high, or X� can be high, or bot 

could be intermeidnate, etc. 

 

To see a close analogy, consider what happens when we throw darts at a 

circular board: 

 

    

  

DARTS: Much higher possibility to hit the outer 

rim (unless it is too far out) since it has a much larger area due 

to its larger circumference. 
 

  

y 

X 

R 
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The same argument applies for molecules, except that then we have to 

replace "x" by "vx" , y by " vy",  R by  "u" and in 3D include also vz. 

If space was 2D, the rim analysis tells us that that the geometrical factor 

would have been the "circumference", which in velocity space is  2�u; 

But space is 3D, so the geometrical factor is 4�u2, i.e., the surface area of a 

sphere in 2D 

And in general we can summarize it as : the geometrical factor is up to an 

overall constant ud-1, where d is the dimensionality of our space.   

• The second term in the Boltzmann distribution is the units factor 

 
��h.�.�	 

This term ensures the correct units of f(u); i.e., since f(u)du is a probability, 

i.e., a number with no units, f(u) has to have units of 1/speed.   

Specifically, the geometrical factor has units of (speed)2 (in 3D) so the units-

factor has to be of the form of (1/speed)3, so when multiplied together, we 

will get the correct (1/speed) unit for  f(u) 

• The left most part, 
�
√�, is a numerical factor which ensures that overall 

� C*X&OX = 1�5 , i.e., that the fraction of molecules between 0 and inifitte 

speed is 100%, as it should be.  This constant is the least important to 

remember, and anyway it is not very far from 1 (it is ~2.5) 
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Physical properties of the Maxwell distribution: 

Note: T rises or M lower:  um.p. higher 

Examples: H2 molecules at room temp. 

. .

J
2  8.3 300K

2 J JK mol 2500 50
2g g g

mol

m p

RT
u

M
= = = =

� �

 

But:  

1J	 = 	1kg ∗ 	*m/s)2	
So 

2

. . 3 3

m
kg

J 50 m ms
50 50 1600

g 10 kg s s10
m p

u
− −

 
 
 = = = =  

 Another example: Air.  We don’t have to repeat the calculation.  First, let’s 

approximate air as essentially all N2 since air is 80% N2.   

The mass of N2 is 18 times higher than H2 so we need to divide ump that we got 

for hydrogen by 1/sqrt(18) to get the result for air, at the same (room) 

temperature, i.e.,  

2

. .

2 2 2

. .

( )2 2 1 1600
( )

( ) ( ) ( ) 18

So

( ) ~ 370

m p

m p

M HRT RT m
u Air

M N M N M H s

m
u Air

s

= = =

 

Average speed;   Since f(u) has a significant “tail” at high speeds � uaverage > um.p. 

(by about 15%). 

Analogous to earnings – a few people with really high salary increase the 

average wage (~$50K) above the most likely wage (~$40k).  Similarly, the 
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average speed is higher than the most likely speed, due to the contribution of 

those very few molecules that have very high speeds. 

Other implications of the average speed and the speed distribution: diffusion – 

we’ll see later. 

High energy tail (from Boltzmann Factor) :Explains why atmosphere does not 

contain light particles (no hydrogen or helium).   

Example: 

A particle with speed 11km/s can escape the earth atmosphere and run out to 

space. Let’s estimate the Boltzmann factor, which is the most important part 

determining the probability that a particle can have speeds close to this “escape 

velocity”.  Let’s do it for two different molecules, hydrogen and oxygen.  

Specifically: 

Answer: 

First, note that the temperature high up in the atmosphere, where the particles 

can escape, could be quite high.  Let’s say it is 1500K, although it varies. 

u~11km/s = 11,000 m/s (we converted to MKS units, since we need to use a 

consistent set of units in the calculations. 

(i)  For H2    

exp |−TX�2ED} 

= exp�− 5.55�� �¡¢ e��,555�£ i�¤.,	¥�¡¢	¦ ∗ 1500K §~ exp*−10& 		~		0.001		 
[Note that since a Joule is in MKS units, which use kg and not grams, i.e., 

	J = kg	 ems i
�

 

  so we converted the molecular mass to kg/mol, i.e., wrote 
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T = �W^89	�8NN*¨�& = 0.002 kg
mol	

This conversion from g/mol to kg/mol was essential so we can cancel the 

mass units in the expressions.] 

Since earth exists for so long (more than 4 billion years) molecules have a 

chance to reach, once in a while, the escape speed (11 km/s) and then to run 

away from earth.   

In contrast O2 is heavier so the Boltzmann factor is too small for anything to 

escape.  

 Specifically, raising M by a factor of 16 (from H2 to M2 ) raises (for the same 

speed), the kinetic energy by a factor of 16, so the exp e−f�©�ª�i factor, which was 

before exp(-10), now becomes exp(-160)~ 10-70 , i.e., utterly negligible.   

Therefore, the Boltzmann factor ensures that the probability for an oxygen 

molecule to leave earth it utterly negligible, but hydrogen can leave, so our 

atmosphere has lots of oxygen (and nitrogen) and little helium or hydrogen. 
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Boltzmann Factor: Consequences 

As we mentioned, 
f�©� 	is a kinetic energy, labeled E, so the expoential  term in 

the Maxwell distribution has the form 

exp	|−TX�2RD} = exp �− jED� 

This exponential term is very important in science and got the name “Boltzmann 

Distribution” or “Boltzmann factor”. 

In general, for a quantum mechanical system with different states (which are 

labeled by a subscript j, then: 
4(NR8RP «) = ¬ P­] �− j�ED� 

Where: 
• P stands for “probability”, don’t confuse it with P for pressure.  

• C is an overall constant which will depend on temperature but not on the 
specific energy.  

• j� is the energy of state j  
Note that if we have several states with the same energy, then 

4(j) = ¬ ³(j)P­] �− j
ED� 

Where "N(E)" is the number of states with energy E.   
We encountered something similar to that when we considered the geometrical 
factor, u2, which  essentially counts the number of "available states". 
A useful formulation of the Boltzmann factor which does not have the constant is 
when we divide the probabilities for two different energies, E and E'; then 

4(j′)
4(j) = ¬ ³(j′)P­] e− �¸

ª�i
¬ ³(j)P­] e− �

ª�i = ³(j)
³(j¸) exp |− j¸ − j

ED }   
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i.e., the ratio of the probabilities of be at an energy E vs. and energy E’ is an 
exponential of minus the energy difference scaled by RT, times the ratio of the 
number of states of each energy. 
The Boltzmann factor is prevalent in science!    
Note: If  E >> R T then P(E )<<1   

P(E) is exp(-E/(RT)).  For E=0, P(E) is exp(-0)=1, But when E is higher, P will be 

smaller.   

How much higher?  

 

Well, if E, say, equals RT then P will equal exp(-RT/(RT))=exp(-1)~0.4, i.e., 

significantly less than 1.  So we see that if the temperature is low, then the 

energy at which P starts becoming small will be lower.)

So basically: If an excitation energy > RT, the probability for it is very 

small!

 
 

P(ε) 

ε 

T high 

T low 
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Example for the Boltzmann factor: vibrations of diatoms.   

Just like you learned in 20A that energy levels of electrons are discretized ,  

so are vibrations; 

 i.e., to excite a non-vibrating molecule to vibrate even a little, you need a non-

zero amount of energy, which is  

 j*NQA[^P	�Q798RQWA8^	P­YQR8RQWA& 	= 	ℎ	C	
where f is the vibrational frequency of the diatom, and h is Planck’s  constant 

(h=6.62*10-34  J s) 

Since a molecule can be excited none, once, or twice, etc., the energies of the 

states are (ignoring something called "zero point energy", not relevant here but 

important elsewhere): 

		j = 0, ℎC, 2ℎC, 3ℎC, … 

Further, each state has a different energy, so N(E)=1  

Specific example: O2 at room temperature:  

 C*�Q798RQWA, ¹�& = 	4.7 ∗ 10�,Hz	*an	IR	frequency&  (recall that 

1Hz=1/s) 

 j*1NR	�Q798RQWA, ¹�& = 	ℎ	C	 = 	6.62 ∗ 10»,�	J	s	 ∗ 		4.7 ∗ 10�,	*s»�&	 
	= 	3.1 ∗ 10−20	J	 

 (and using 1= NAVOG /mol = 6.02*1023 /mol)  

ℎ	C = 	3.1	 ∗ 10»�5		J	 ∗ 	6.02 ∗ 10�,mol 		

= 	19 ∗ 10
,J

mol = 	19 kJ
mol	

Also, for room temperature 

ED = 8.3 J
mol	K ∗ 300K~2500 J

mol = 	2.5 kJ
mol :	
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And therefore the probability that oxygen is vibrationally excited to the first 

level, i.e., the probability that its energy is higher than the ground-state by 

 Evib excitation = hf, is:  

4*j = ℎC&4*j = 0) = 	exp*dZC/ED&	
. 	 P­] �d 19kJ/mol	2.5	kJ/mol	� . P­] �d 192.5� . 5 ∗ 10»� 	. 	1/2000	

This is a small number; only 1 in 2000 oxygen molecules is vibrationally excited. 

 

In order to get a significant probability for vibrating, we need to have 

temperatures which are >> 1000K, so that the Boltzmann exponential will be 

much larger.  See the picture above. 

(If you ever saw it – note that we ignored something called "zero point energy", 

it is not essential for this discussion). 
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INSERT (read at home, required material)  

Another example for the Boltzmann factor: 

Barometric pressure dropoff with height 

There are several ways to determine the falloff of the air pressure above earth 

with height; for our purposes, it is interesting to see that we can get it from stat. 

mech. 

The potential energy of a molecule above earth is 

½*Z& . T[̅Z 
Where h is the height, M is the molar mass, and [̅ is the gravitational constant 

([̅ . 9.8 ¿ÀÁÂ¡Ã£�  	. 9.8 ¥� 	�, since Newton = ¥� .) Also, I use a "bar" so we don’t 

confuse [̅ with g for gram ) 

The "state" of the molecule is its height, h; further, it turns up that the N(E) 

factor is constant in this case.  

Therefore, the Boltzmann distribution tells us then that the ratio of the 

probability of having a molecule near a height "h" compared with another 

height, say, "0", is  

4�ÄÅÆ*Z&4�ÄÅÆ*0& = exp |− T[̅*ℎ − 0&ED } = exp �− T[̅ℎED � 

The ratio of probabilities is, quite intuitively, the same as the ratio of molar 

densities at height h vs. sea level, 

A*Z&A*0& = 4�ÄÅÆ*ℎ&4�ÄÅÆ*0& 

; but since the molar density is proportional to the pressure, the equation above 

also is the same as the ratio of pressures; i.e., we can interpret the equation 

above as if "P" is also the pressure, i.e., 
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4�ÄÇÈÈ�ÄÇ*Z&4�ÄÇÈÈ�ÄÇ*0& = A*ℎ&A*0& = 4�ÄÅÆ*ℎ&4�ÄÅÆ*0& = exp �− T[̅ℎED � 

 (this is the only place in the course where it is allowed to confuse "P” for 

probability with "P" for pressure!) 

If you plug in the numbers you see that, for example for oxygen (O2, 

M~32g/mol), when h=2km=2000m, and T=300K (so RT=2500J/mol) then 

4*Z . 2000m&4*0& = exp �− T[̅ℎED � = exp �− ,� �¡¢ ⋅ 9.8 ¥� 	� ⋅ 2000m
�Ê55¥�¡¢

§
= exp �−251 gkg� ~ exp*−0.25& = 0.78 

i.e., at 2km above sea level (about 6600 ft. above sea level, so above Denver but  

below Mexico City), the pressure is about 0.78 atmosphere. 

END OF INSERT 
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Part 2:  Real Gases, Solids, Liquids 

Overview: 

• Gas and Liquid volumes, distances 

• Attraction and repulsions, Z=PV/nRT,  

• Potential energy of interactions.   

• Physical Properties: compressibility, thermal expansion coeff., discussion, 

surface tension 

• Intermolecular forces: Columbic and dipole:  

Ion-dipole, dipole-dipole, induced forces, fluctuation-induced (vdW) forces,  

exchange-repulsion.   

• Boiling points and hydrogen bonds 

Gas Volume 

Gas volumes—practical numbers 

For T(room) and Po , the volume of one mole, labeled molar volume, Vm is: 

  

V� 	. RTP 	. 	 8.3JK	mol 	∗ 	300�100 ¥Ì
	. 25 Lmol 

i.e., One mole of ideal gas occupies 25L at room pressure and temperature. 

Distance between gas molecules--estimate:  

Let’s estimate the distance between each molecule. 

For this, let’s first in our mind (i.e., doing a “thought experiment”) take a mole of 

molecules in a gas, and do a snap shot of all the molecules in that volume at a 

single instant of time.  Then, divide space to imaginary cells, such that each cell 

contains exactly one molecule.  
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Now some of these cells will be very small, as will happen if a molecule happens 

to be close to a few others; a cell could also be big, if the molecule it contains 

happens to be far from the other molecules. 

But the average size of these cells is very simple to calculate – it will be the total 

volume (Vm) divided by the number of atoms, i.e., 

 Vcell = Vm/Navog 

And for room temperature and pressure, where Vm=25L, 

 Vcell = 25L/6*1023 
3 3

20 3

23

25 10 cm
~ 4 10 cm

6 10

−=
�

�
�

  

Further, let’s imagine that the “average” cell is cubic in shape (we could have 

imagined a different shape, but that will not change our conclusions).   

 

Next let’s estimate the average distance between the molecules.  IF they were all 

ordered, then the average distance between each molecule (λ) would have 

equaled the length of the edge of the cube (see picture above to believe me). 

Therefore, the volume of that average single-molecule cell will equal λ3 , so. 

  λ3=Vcell=
20 34 10 cm−

�   (for room temperature and pressure), 

So:  ( )
1/3

20 3 7 8
4 10 cm ~ 3 10 cm=30 10 cm=30 Angstromλ − − −= • •�  

λ

Typical distance:  

 λ  λ  λ  λ ~ 30 Angstrom 
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(recall that 1Angstrom is defined as 10-8 cm)  

 

Liquid volumes:  

Unlike ideal gases, liquid volumes are dependent on the material;  

Also, in general liquids are much denser than gases. 

Let’s see an example: molar volume of liquid water; this example will then allow 

us to estimate the volume of each water molecule. 

We know one mole of liquid water weights 18 g, and its mass density 

(mass/volume) is   

mass density (liquid H2O) = 1g/cm3   

(that is of course not a coincidence but was used to define the gram when the 

meter was adopted by French scientists more than 200 years ago), 

So  

Volume(one mole liquid H2O)  

=(mass of one mole)/ (mass/volume)  

= (mass of one mole)/density 

Now, the molar mass of water, as we saw is 18g/mol;  

so the mass of one mol=18(g/mol)*1mol = 18g, 

And further, the density of water is 1g/cm3, so 

Volume(one mole liquid H2O) = 18g/(1g/cm3) = 18cm3 =18*10-3L 

Compare this number to gases, which at one bar and room temperature have a 

molar volume of 25L! 

i.e., Liquid water is more than 1000 times denser than ideal gases at room 

temperature and pressure! 
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Molecular Volumes 

Now let’s use this to estimate the volume and size of each molecule! 

If we imagine that the molecules of the liquids are little cubes (they aren’t, but 

we are just interested in qualitative calculations), and arranged fully stacked, 

then the volume of a single molecule will be just the volume of the whole liquid  

divided by the number of molecules;  

Taking one mole of water, the volume occupied by one water molecule is:  

 V(one molecule) 

= V(one mole)/ Navogadro  

= 18 cm3 / 6.02*1023  

 =3*10-23 cm3  

If we imagine each volume as being of a cube of length D:  

  V(1 one water molecule ) = D3             

 So: D3 = 3*10-23 cm3  

  D= (3*10-23)1/3 cm 

  D~3.2*10-8 cm~ 3*10-8cm = 3 Angstrom 

Note: in gases the distances between atoms (Í that we calculated earlier) are ~ 

10 times more than in liquids!  

 

  

H2O  H2O  H2O  

�D �  
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Attraction and repulsions 

The ideal gas law. PV=nRT ,  is valid only when λ, the distance between particles,  

is much larger than their diameter, D 

  

Note: : : : λλλλ>>D ���� ideal behavior (molecules rarely “meet” each other). 

This is true for simple molecules at room pressures temperatures, since: 

D~ 3Angstrom, 

and for gases at room T and P0, as we saw earlier:    

λ∼30Angstrom >> D. 

That explains why gases at room pressure are ideal. 

 

But if P is much higher � λ smaller � interactions important. 

Inter-atomic interactions are important not just for higher pressure applications 

but because they teach us about forces between molecules – the same forces that 

hold molecules together in solids and liquids! 

D 

D 

D 

D 

λ  
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Molecules interact with a distance-dependent potential (and therefore a 

distance dependent force). 

A generic potential energy (or briefly just: potential) of interaction between 

different molecules is depicted below.   

The potential is minimum at a distance we call req, because the molecules will 

like to be at that distance if possible; that’s the lowest energy point.   

The value of the potential at req is labeled as PEmin 

If the distance is larger than req, the molecules attract; if the distance is smaller, 

they repel – just like a spring would want to contract if you were to stretch it, 

and to expand if you were to compress it 

  

The most important parameters characterizing the potential ( the equilibrium 

distance and req and the minimum potential, P.E.min ) depend on the type of 

interactions as we’ll see later, but the shape is fairly universal. 

Typically req ranges from below 1 up to 4 angstrom (stronger bonds and smaller 

molecules are associated with shorter equilibrium distances). 

P.E. min ranges from: 

PE(r) 

r 

Distance-dependent Potential 

between two atoms 

 

r
eq

 

PE
mi

Attractions Repulsion 
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 9eV (about 900 kJ/mole) for N2          

to 0.002eV or lower for weakly interacting helium atoms. 

 

In general: 

At far away distances (typically above 2req , i.e., at above 5-8 Angstrom) , the 

particles barely interact. 

What happens at closer distances? Recall that particles will like to get to regions 

with low potential (nature loves “negative energy”, i.e., lowering the potential.) 

So for req<r the particles will like to get together, to lower their distance to req, 

therefore they attract; 

For r<req they strongly repel (particles cannot interpenetrate too much). 

Therefore: if the pressure is increased but not too large (typically tens and 

hundreds of bars), particles get closer to each other, attract each other, and since 

they “like each other”, the volume will fall below the ideal gas law prediction. 

When the pressures are very high (hundreds or thousands of bars and more) 

particles push each other away, so the volume is increased beyond what the 

ideal gas law predicts. 
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Real gases – experiments:  

define: Z = PV/nRT= PVm/RT         (see graph, not to scale). 

For ideal gases, Z=1.  Any deviation 

from 1 indicates that the gas is not 

ideal.   

Z is a function of P, and T; typically it 

is plotted as a function of P at one 

value of T (but remember that Z looks 

different when a different T is used!)     

For real (not ideal) gases: when P 

rises, but is still not very large, the 

distances between the particles are reduced � attractions  between the 

particles are significant � the volume shrinks, so Z<1 

For strongly interacting particles  (e.g., HCl molecules, which interact strongly 

with each other, as we will learn later), the lowering of Z below 1 is a strong 

effect. 

But eventually at very high  P� particles repel each other (they cannot 

interpenetrate), so the distance between them cannot shrink too much; 

therefore, the volume will not decrease much.  Therefore, the true volume will 

be much higher than the ideal gas prediction (Vm, ideal = nRT/P, which is very 

small when P is high since it involves dividing by a high pressure), so 

Z=PVm/(RT) will be much larger than 1  

So: Z<1 � an indication  that attractions dominate 

 Z>1 � repulsion dominate 

 Z=1 for ideal gas 

Note: when Z isn’t close to 1, the ideal gas equation of state is not correct. 

Z=PV/nRT

P

Ar-Ar H-Cl

1

0.5

1.5

1000 bar

T fixed
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Solids, Liquids, gases: physical properties. 

Solids and liquids: packed together, together labeled as “condensed phases” 

Forces: balanced repulsion + attraction.  

We saw: equilibrium distances 2-5 Angstroms;  

Distances in gases we saw ~ 30 Angstroms. 

Compressibility 

κ (kappa) = fractional change in volume per pressure change, when T is fixed. 

Gases: 

In an ideal gas, κ is large 1 

For example if the initial gas pressure is 1bar, and at fixed T we reduce the 

pressure by 1%to 0.99bar, then, since PV will be fixed (PV=nRT which does not 

change), V will increase by about 1% 

So κ for a gas (at P0) = (fractional change of volume)/ (pressure change) ~ 

1%/0.01atm =1/atm.   

i.e., κ(gases) = 1/P = 1/atm (for standard conditions, P=1 atm) 

But for Solids and Liquids 

κ(solid/liq.)~ 10-4/atm, much smaller than for gases;  

Example: in a diving pool, for each 1 meter we lower ourselves, the pressure on 

us rises by about 0.1 bar; but our volume barely changes even when we dive! 

                                                

1 we say ideal gas, but remember that for pressures that are typically encountered in a lab, 
below 10 bar, real gases are essentially ideal, so below we will refer to real gases as if they 
were ideal and just call them all gases; of course, as you saw in the discussion of Z, at high 
pressures the real vs. ideal gases distinction is very important. 
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Reason that κ(solid/liq.) is small : In liquids and solids, the positions are 

generally near the equilibrium distances; we need very large pressures for r to 

decrease significantly from r=req to lower value. 

Thermal expansion  

The thermal expansion coefficient measures the percent change in volume when 

we raise the temperature: 

α (alpha) = fractional change in volume / temperature change 

For gases: α is big, since V is proportional to T;  

? . AED4  

So, if P is fixed, then if we change the temperature by 1% then the volume will 

change by 1%, i.e., a big change. 

But for condensed phases(i.e., solids or liquids)  this isn’t true; α is much 

smaller.   

E.g., when the temperature changes by 3% (9 degrees Celsius, around 16 

Fahrenheit) a car does not change its volume much.   

The thermal expansion coefficient for solids and liquids is about 1/1000 times 

lower than for gases, just like the compressibility. 
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Other Physical properties of materials 

Bulk properties: 

Fluidity and rigidity: degree to which bulk sample retains shape upon 

externally applied force. 

Gases more fluid than liquids; 

Liquids more fluid  than solids. 

 

  

 

Rigidity:  

   

 

Solids: each 

molecule held to 

specific others, 

therefore rigid. Gases: non 

rigid 

Liquids: slide 

past each other 
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Diffusion: 

Diffusion is the process of mixing of different 

substances when brought in contact. 

Diffusion is molecular in origin. 

Diffusion is fast in gases as there is little to 

impede motion. 

Side Note: classic example you must have 

heard about is perfume diffusion (you 

open a perfume bottle in one side of the 

room and smell in the other).   

HOWEVER: A note of heresy:  when you 

plug in the numbers you discover that 

the spread of perfume smell cannot be 

through diffusion – diffusion is too slow beyond a distance of a few cm!  

The spread of perfume smell really has to do with weak air-streams that 

push the molecules around, and not much with diffusion. 

 In Liquids: diffusion slow.  Lack of space impedes motion. 

In solids: diffusion is very slow.  

T-dependence:  

In gases diffusion slows gradually when T rises, since there are more 

molecular collisions which change the direction of motion. 

On the other hand: in liquid as T rises, diffusion is dramatically faster since 

particles can jump to new places with higher energy. (Tat low temperatures they 

are almost “locked” 

 

DIFFUSION OF PARTICLES – 

ATOMIC IN ORIGIN. 

PARTICLE CONTINUIOSLY 

HIT BY OTHER MOLECULES, 

SO HAS “RUGGED” 

TRAJECTORY. 
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Biology relevance: In small living cells (with size below about 1 micron) 

diffusion is a mechanism for transport; in bigger or more developed cells other 

mechanisms (transport along “chains”) dominate. 

Surface Tension: 

Molecules in liquids love to have several neighbors (we’ll learn the details of the 

molecular interactions in a few pages).   

But molecules on the surface of liquids cannot interact with many neighbors (for 

example, in water-air interface, a water molecule on the surface does not have 

molecules above it, except for an occasional air (N2) molecule arriving rarely).   

Therefore � liquids try to minimize 

their liquid-air (or generally liquid-

gas) surface area, to have as few 

molecules on the surface as possible. 

The strength of this “surface tension” 

effect depends on the type of the 

liquid. 

 

Weakly interacting liquids (e.g., He-

Ar, Ar-Ar at very low temperatures, where they are liquids) have weaker surface 

tension, i.e., they “do not mind” having a large surface. 

Note: sometimes (e.g., water near wood) the interactions with another surface 

are actually quite favorable, e.g.., a water molecule likes the surface of some 

other materials even more than it likes other water molecules.  This leads to the 

opposite of surface tension, a phenomena which is called  capillary action:   

Capillary action leads to the rise of liquid in a narrow 

confine (the water climbs to “wet” more of the surface 

area of the wood)� capillary action is responsible for 

delivery of water to and within leaves (water rises 

within the leaves against the force of the gravity). 

 

Figure: Minimization of surface area 

(“surface tension”) causes 

coalescences of liquid drops to 

minimize area; causes liquid drops to 

resist breaking down 
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Intermolecular forces: Columbic and dipole 

Inter means “between different things”.  Intermolecular forces are the forces 

between different molecules; this is the opposite of intramolecular forces, which 

are the forces within a molecule. 

Intermolecular forces control chemical and biological behavior, since they are 

weaker than chemical bonds (i.e., weaker than intramolecular forces, which are 

so strong that bonds are usually fixed; so it is almost paradoxical that the 

strongest bonds are not that important biologically—as they don’t change!). 

Intermolecular forces are mostly electronic (due to attractions between 

different charges), and are caused less by quantum mechanics (QM) (except for 

some aspects of van-der-Waals forces, as we’ll see later).   

Contrast this with the important role that QM plays in covalent bonds. 

Inter- vs. Intra- molecular forces comparison: 

Intermolecular interactions:  typically 1-50 kJ/mol 

vs. Intramolecular forces (covalent, ionic):  200-900 kJ/mol. 

Side note: Contrast this with RT~2.5kJ/mol; 

So we see that the intermolecular interactions are not much larger 

than RT, which is a measure of the thermal energy;  

But RT<< strength of intramolecular forces, so temperature barely 

affects strength of intra molecular bonds.. 

Intermolecular forces: slower fall-off, Intermolecular forces: less directed: 

   

  

  

               

Little energy to rotate 

around molecules 

But :Within a molecule (intra-

): a lot of energy to rotate 

bond 
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Types of interactions: 

Ion-Ion :     

  Na+  ---Cld  

  Ca2+ ---- SO4
2- 

  Cl- --Ca2+--Cld 

  Na+--Nad 

• “Columbic”, i.e., due to attraction between opposite charges 

• Long range 

• Non-directed (does not depend on relative orientation, only on distance, 

unlike covalent interactions) 

• Strong (the same strength as covalent interactions) 

• Present in intra-molecular bonds and inter-mol. bonds ; e.g., Na-Cl 

molecules and Na-Cl crystals. 

Difficult to even decide if intermolecular or intramolecular! 
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Ion-dipole: 

A molecule with a dipole is a molecule where the positive charge and the 

negative charge are offset; for example, water, see picture below. 

For simplicity, we often replace a molecule with a dipole by a single line, called 

the dipole moment, where one side is positive and the other negative.   

 

Take an ion in a solution (i.e., “solvated” in a solution), where the solution 

molecules have dipoles.  A positive ion attracts the negative side of the solvent 

molecule.    

The attraction between the ion and the molecules that have dipole is called “ion-

dipole interaction”. 

Ion-dipole interaction is : 

• Stronger  than dipole-dipole, weaker than ionic. 

• Long range ~ 1/R2 

• Directional (a rotation of the dipole by 180 degrees turns the interaction 

from attractive to repulsive, or vice versa). 

  

O 

δ- 

H 

δ+ 

H 

δ+ 

Cl
-

 O
-
 

H 

δ+ 

H 

δ+ 

Na
+
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Dipole-dipole 

Water-Water, HCl-water, etc. 

 

The dipole-dipole interaction is directed; see picture below.   

 

On the left side we show two parallel dipoles.  The positive charges are closer to 

each other than the positive-negative distance, so repulsion is stronger than 

attraction, and the molecules repel each other. 

On the right side – dipoles in opposite direction – so there is attraction. 

 When the dipoles are on the same line and pointing in the same direction, the 

dipoles will attract. 

   

Dipole-dipole interaction properties: 

• P.E.: long range (1/R3)  but not as long-range ion-ion or ion-dipole 

• Directional 

• Relatively strong: ~ 5-50 kJ/mol   

H
δδδδ+

---Cl
δδδδ- 

 

O 

δ- 

H 

δ+ 

Ag
+H 

δ+ 
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Induced forces 

Several: 

Ion -- induced dipole (see fig.)  

Dipole  -- induced dipole (see fig.) 

 

 

Induced dipole means: Distortion of charge cloud due to other charges. 

Another induced force is: 
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Induced dipole-induced dipole;  (Van-der-Walls potential) 

Imagine, e.g., Ar-Ar.                                 

QM says there are fluctuations, i.e., times when the electrons are not in a 

spherically symmetric shape.  For example, there will be times when the 

fluctuation will look like this (electrons move to right): 

 

Each fluctuation will induce a dipole in the other molecule, e.g.: 

         

 

  Alternately, a fluctuation along the “y” axis in one atom will induce a dipole in 

the –y  direction in the other atom: 

               

 
Ar 

 Ar 

 Ar δ+ δ- 

Fluctuation 

 Ar 

 Ar 

δ+ δ- 
 Ar 

δ+ δ- 

 Ar 

δ

δ- 

 Ar 

δ

δ- 
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Properties of the vdW (van-der-Waals) interaction: 

• Always attractive., so it is not very directional (i.e., even for molecules, the 

interaction  does not depend much on the relative orientation of the 

molecule). Contrast this with the interaction between two molecules with 

permanent dipoles, which will attract or repel each other depending on 

direction. 
•
 Very short-range, 1/R6 

• Since always attractive, adds up.  Can be significant for large surfaces – 

causes two regions with large surface area that are placed near each other 

to stick together.    
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Finally we get from attraction (or mild repulsion) to strong repulsions when 

atoms get too close: 

Exchange Interaction: Repulsive 

Due to Pauli principle – not more than 2 electrons can be in the same orbitals. 

When we bring two molecules together, the orbitals of each atom start 

overlapping the core orbitals of the other atoms;  

There is no space in these core orbitals for more electrons (they are filled up 

already), so, due to the Pauli principle, the electrons from the other atom need to 

be bumped up in energy to high energy orbitals,.   

That increases the energy, and higher energy is less “desirable”, i.e., the potential 

energy increases so that there is repulsion 

 Higher energy � repulsion.. 

Exchange interaction is VERY SHORT RANGE.  It is modeled as if it is a strongly 

increasing function when R is smaller; typically, it is modeled as proportional to  

1/R12 (note that we decrease the distance by a factor of, 1/R12 increases by a 

factor of 212, i.e., by a factor of 4000!). 
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Manifestation of Inter-Molecular forces: Boiling 

Points, Hydrogen bonds. 

As T rises, K.E. (kinetic energy)rises. 

When T rises, the higher K.E. eventually overwhelms the attraction; so the avg. 

molecule has enough K.E. to escape from its neighboring molecules,  

I.e. if the initial material is a liquid then as T rises, eventually the molecules will 

have enough kinetic energy to run away, and then the material “boils”, i.e., 

converts to gas.. 

Therefore:  

Larger attractive forces � need higher K.E. to escape � Boiling T (TB ) higher. 

Examples:  

• The strongest bonds: ionic materials 

TB(NaCl) = 1686 K  ion-ion interactions, very strong). 

• The weakest bonds: small molecules interacting by vdW forces 

TB(N2) ~ 77K,   

TB(He)~4K    

Both are low temperatures since nitrogen and helium interact through very 

weak vdW potentials (i.e., vdW liquids –an abbreviation for liquids interacting 

mainly by vdW forces --- have low boiling temperatures unless the molecules 

are really big).  The boiling temperature is much lower for helium since it has 

much less “fluctuation”, i.e., its electrons are held tightly and are not 

“polarizable”. 

Contrast this with the higher boiling temperatures of some hydrides: 

TB(H2S) ~ 220K,  

 TB(H20)~373K (100 Celsius) :    
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These hydrides have higher boiling point due to: 

 permanent dipole- permanent dipole interaction, and in some cases due to 

H bonds (covalent sharing of H electrons across two bonds; see below). 

Generally: down a column, vdW interactions increase, and therefore the 

boiling point of pure materials usually increase down a column. 

But there are exceptions, mainly due to Hydrogen bonds 

Thus: TB(H2O) > TB(H2S)  (373K vs. 220K)  even though S is lower in the 

periodic table, and in the same column as O (which implies that the van-der-

Waals interactions are stronger in H2S than in H2O).  

Reason: This is because of hydrogen bonds. 

Hydrogen Bonds occur for highly electronegative atoms (F, O N, and somewhat 

in Cl), so in compounds such as: H2O, HF, NH3 .  See below: 

                 

H is partially ionized, so its electron cloud is very small.  Therefore, H can bond 

with a lone pair of a heavy atom in another molecule; see above for HF and 

below for H2O: 

Water has unique properties due to a high # of H bonds, leading to unique 

properties: 

H
δδδδ+      

F
δδδδ- 

 
H

δδδδ+      

F
δδδδ- 
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H-bonds in H2O are responsible for several properties:  

• High TB 

• “Strange” density vs. T behavior (we’ll see later) -- not dense, especially 

ice. 

• Larger dielectric constant (response to electricity and E.M. waves). 

  



59 
 

Part 3: Phases and Phase equilibrium: 

Overview: 

• Phases   

• Phase transitions   

• Gas-liquid isotherms 

• H2O phase diagram 

• The Solid-Liquid boundary 

Samples that are homogenous in chemical comp. and physical state are called 

phases. 

There can be 2 or more phases present at the same time (coexist); e.g., ice-water. 
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Another example: liquid-vapor transition:   

Simplest: closed laundry room (with wet cloths) or closed pool “feeling very 

humid”. 

In experiments: 

• Evacuate flask 

• Introduce liquid that does not fill up volume 

• Monitor P 

 

 

Peq : “ vapor pressure”: (E.g., PH2O(Troom) = 0.035 bar; I.e., in an enclosed pool, 

with 100% humidity, 3.5% of molecules are water.) 

Also note: 

  

Initially 

empty 

Then: 

 Inject liquid 

with syringe 

Later on: some fluid  

spontaneously evaporates,  

Non-zero pressure. 

Syringe 

T 
P

vapor
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Microscopic picture: 

At any time some molecules get through collisions enough E to leave liquid 

Also: gas molecule collide back & trapped in liquid. 

So: Equilibrium results when P=Peq(T) 

 

Phase eq.: dynamic, molecules leave and join;  

In average the number of molecule in liq. and gas is fixed in equilibrium.  

Since:  the rates of  gas-to-liquid conversion and liquid-to-gas conversion will be 

equal in equilibrium, the number of molecules in each phase is unchanged. 

 

Note: 

Our description was for the case that initially the flask contained only liquid (no 

vapor initially), so we schematically write: 

                     H2O(Liq.)�H2O( Liq.). 

If initially there’s no liq., and we instead pump vapor in, then the gas will liquefy: 

                     H2O(Gas)� H2O( Liq.). 
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Finally: what happens if another gas, e.g., air is present? 

Answer: nothing really changes as far as the water vapor and pressures! 

The air pressure simply adds up with the water pressure to give the total 

pressure 

Ptotal= Peq H2O(T) + Pair 

So for example at room temperature, if we have 100% humidity (e.g., water in a 

balloon), then Peq, H2O(T=298K)~ 0.035 P0, so if the total pressure is P0 (sea 

level), then Pair~ 0.965P0. 
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T
freezing

 

 

T

gas 

water 

ice 

P=fixed 

Phase Diagrams     

Simplest way to achieve phase transition: Change T at fixed P 

Take H2O  at fixed P and, say, 200 0C  � pure vapor.    

Now: Reduce T (i.e., remove energy), keeping P fixed�Volume decreases. 

At a particular T labeled “boiling temperature” (100 0C if P=P0) liquid appears. 

 

After liq. start appearing 

then (only if P remains 

fixed!) as we remove 

energy, T will be fixed 

until last drop of vapor 

liquefies. 

After cooling to about 0 

Celsius, solid appears, 

resulting at a 2nd phase 

transition, liq.� solid. 

Note: Reason for bubbles. 

If external P is fixed, and T is raised to Tboiling or above 

 (e.g., for water, 100 Celsius for P=1bar, 80 Celsius for P=0.5bar, etc.),  

then, at that T, Pvapor(T)=Pexternal.   

At that point, as we continue heating,  liq. spontaneously turns at local “hot 

spots” to have slightly higher temperature, so Pvapor>Pexternal at those points so 

vapor is formed and pushes away the air around it (“boiling”). 

Note: If we have a fixed volume and slowly raise T (so P is raised at the same 

time) no boiling will happen! The pressure of the vapor will simply rise. 
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Another way to achieve phase-transition: change P at a fixed T. 

Fix T,   and P  

At P=Peq(T) condensation; above Peq(T), vapor turns to liquid. 

(At very high pressure: liquid solidifies.) 

 

Another way to look at phase transitions: 

Gas Liquid Isotherms: (i.e., lines of constant temperature:) 

 

Compression at const. T.  will be different if T<TC , or T>Tc. .   

(For H2O, for example, Tc=374celsius=647K, and Pc=220 P0).   

If T<Tc,  gas liquefies at a T-dependent Pressure (P=Peq(T)) ; volume changes 

then from gas volume to liq. volume as both coexist.    P will be fixed for a whole 

volume range (from volume when pure gas to volume where pure liquid). 

 

  

 

  

T<T
C

 

V 

T=T
C

 

T>T
C

 

P 

P vs. V isotherms for liquid and vapor 

Coexistence: along horizontal line 

Above T
C,

  the compression is continuous 
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This is what happens to water at room pressure P0 at 100 Celsius; then, as we 

lower the volume it will change, for one mole, from about 31L (idea gas molar 

volume for temperature of 100 Celsius), to about 0.02Liter for pure liquid, all  

the while P being kept at one bar.  

But for  T>Tc :  g� liq. continuously without a phase change when T (and 

therefore thermal energy) is high enough to overcome binding. 

Note: we use g (gas) and v (vapor) interchangeably!!! 
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Phase diagrams in "3D" (pressure, volume, temperature): 

 

Note how the 2D diagrams we discussed before are much more transparent in 

this 3D picture – they are projections of this graph.  
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Phase Diagrams for H2O:  (taken from gi.alska.edu) 

 

In this figure: 

m.p. = normal meting point: T(s�l) at 1atm  (273K) 

b.p. = normal boiling point: T(l�v) at 1atm, 373K (100 celsius) 

t.p. = triple point; P,T at which l, v, s coexist  

        (for H2O:   0.001Celsius, 0.006 bar) 

Tc, Pc: above which there are no l/v phase transitions, just gradual transition; 

called “supercritical region;  

In the supercritical region it isn’t possible to uniquely say “liq.” or “vap.” . 

 

(Note that At high pressures,2000 bar and afovee,  other (more compressed)  

solid phases appear, different from the “usual” ice). 
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Phase diagrams: the S/L boundary 

Water and few other substances: V(solid)>V(liq.)  

 (E.g., water bottle crack in freezer as water�ice). 

For these substance, as P increases, substances prefer to be more liquid like 

(lower V)� so at the same pressure liquid preferred. 

Therefore, for water & few others:  

 

(This effect is very weak however! Need 

huge P increases to change Tmelting by 

1K!) 

For most substances, the opposite 

behavior, since usually: 

                   V(solid)  <V(liquid),  

so 

P ↑     Tmelting ↓   (most substances) 

(again, a weak effect). 

The special behavior of water is called: 

“Anomalous” dependence of the S/L boundary on pressure.  

 It is due to hydrogen bonds, due to which ice has a big volume:  

 

P     ,       T
melting

(H
2
O) H2O, 

 few other 

substances 

Most 

substances 
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Part 4: Solutions 

Topics: 

• Mole fractions, molarity, molality 

• Molality.    

• Macroscopic nature of dissolved species.  

• Solution reaction stoichiometry 

Solution is : A  “homogenous system with 2 or more substances” (usually liquids 

or gases) 

Composition measures: 

Mole fraction of a substance “i” 

ÐÑ .	 AÑAÒÅÒ  

Sum of the mole fractions is 1: 

ÓÐÑ .	Ó AÑAÒÅÒÑÑ
. 1AÒÅÒ 	ÓAÑ . AÒÅÒAÒÅÒ	Ñ

. 1	
 

ÓÐÑ .	Ñ
1 

(e.g., salty water could be 5% salt and 95% water, together 100%). 

Other measures beyond mole fraction: 

Molarity:   

�W^89QRS . �¡¢À£	¡Ô	£¡¢ÕÂÀÌÖÂÀ×£	¡Ô	£¡¢ØÀÃÂ  (mol/L) 

Measure: M = (definition):    mol/L. 
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Example:  

0.2 mole of NaOH in 20 Liter of H2O:  molarity = 0.2 mol/20L = 0.01 M 

 

Another measure is:   Molality: 

�W^8^QRS . �¡¢À£	¡Ô	£¡¢ÕÂÀ¦ 	¡Ô	£¡¢ØÀÃÂ   (mol/Kg) 

Molarity will change with T if V changes; Molality won’t change with T, so it is 

easier to use. 

INSERT (as always, required): Different composition measures can be 

related:   

E.g., take the example of a binary solution: 

ÐÙÐÚ .
ÛÜÛÝÞÝÛßÛÝÞÝ

. AÙAÚ 

i.e., (since XA + XB = 1) 

ÐÙ1 − ÐÙ = AÙAÚ  

So, if B is solvent (e.g., water) and A is solute, then, we define  

Molality ≡ 
ÛÜUàÈÈ*Ú& 

. AÙAÚ ∗ 	�W^. �8NN*á& 

. �UÅâ.UàÈÈ*Ú& ÛÜÛß = (using the Eq. above:) 

Molality		 . 1�W^. �8NN*á& Ðã1 − XA 

END OF INSERT 
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Macroscopic Nature of Dissolved Species 

Dissociation of a species (the “solute”) in a solution (i.e., in a “solvent”), is caused 

by combination of 3 effects 

1. Solute-solute bonds break (loss of attraction, not favorable) 

2. New I.M. bonds form between solute and solvent (gain of attraction, 

favorable) 

3. There is much more “disorder”, which increases the possibilities for 

dissociating (favorable); we’ll study this later. 

Dissolved species appear in solution in several forms: 

• Intact solvation (e.g., acetone, CH3COCH3)    

which dissociates like this: 

 

 

 

(In this example: solvation using dipole-dipole interactions and H bonds.  ) 
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Break completely: e.g., NaCl.     

(Here: solvation due to ion-dipole interaction) 

 

 

Mixture: 

Other solutes (weak detergents) exist in solution as mix of intact molecules 

and ions.; 

E.g.,: acetic acid  

	¬¨,¬¨¹¹¨*N& → 

¬¨,¬¹¹¨¨*8å& ↔ ¬¨,¬¹¹»*8å. & + 	¨ç*8å. & 

 

H



73 
 

                       

 
 

  

C 

O 

CH
3
 

O H 

C 

O 

CH
3
 

O - 
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INSERT: Solutions rxn. Stoichiometry (not covered in class, but 

you will need to know this!) 

Vast majority of chem. rxns. happen in solution. 

Need to convert stoichiometry of rxns. to eqns. for concentrations rxns. 

Schematically, 3 steps are needed: 

• Concentrations of reactants � Volumes and Molar quantities 

• Volumes and Molar quantities � # moles of products 

• # moles of products � concentrations of reactants 

Example: 

2Br»*aq. & + 	Cl�*aq. & → 2Cl»*aq. & + 	Br�*aq. & 

Question:  Say we have 75mL of 0.08M solution of NaBr. (M means: mol/L) 

1) What’s the Volume  of 0.03M Cl2 solution that’s needed to react completely 

with Br» ? 

2)  What’s the conc. of Cl» in resulting solution. 

Answer: 

First: note that  NaBr essentially breaks completely to Na+,  Br- 

We know the Volume � get  # of moles of reactants 

# moles Br» = Vol.(L) * conc.(M) = 0.075L * 0.08 M   

=6 ∗ 10»,	�W^ [Remember: M = mol/L]. 

To learn from this about the products, we’ll use: 

RXN. Stoichiometry:   

1mol. Cl2 reacts with 2 mol of Br- �  3 ∗ 10»,	�W^ of Cl2  reacts with 6 ∗ 10»,	�W^  of Br- 

So:  The answer to (1), i.e., the volume of the Cl2 necessary to react with Br--: 
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?*Cl�	NW^XRQWA& . #�W^
YWAY. eUÅâg i = 	3 ∗ 10»,	�W^3 ∗ 10»�	�W^/é		 . 0.1é = êëëìí 

Note that when mixing 75mL of 0.08 M NaBr with 100mL of 0.03 M Cl2 , final 

volume is about 175mL (not exactly, since molecules in solution rearrange to 

have smaller or higher volume, but we’ll approximate that the rearrangement 

effect is small and does not change the total volume appreciably). 

So assuming rxn. goes completely to products (recalling that for every Cl2 mole 

we produce 2 moles of Cl» , so 3*10-3 mol of Cl2 will give 6*10-3 moles of the ion): 

¬WAY. WC	¬^» . #�W^	WC	¬^ d?W^ . 	6 ∗ 10»,	�W^0.175é		 . 3.4 ∗ 10»� �W^é = 0.034	T 

i.e., 

îïð»ñ . ë. ëwòv 

END OF INSERT  
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Parts 5-7: Thermodynamics 

Overall Aim in chemistry:  

• What reacts? 

• How far reactions goes? 

• T, P effects on rxn. 

• Energy liberated or absorbed. 

• How to optimize rxn. 

Along the way, study lots of physics (engines, efficiency, energies, etc.) 

Part 5: The first law.   

Overview: 

• Reversible, irrev. processes, energy   

• Work and Heat 

• First law 

• q, w and U in specific cases 

• Enthalpy     

• Heat capacity  
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Reversible, irrev. processes, energy 

Definitions: 

System: part we care about.  Depends on what goal is. 

Example: Bomb calorimeter. Device to measure energy release in rxn. from the 

rise in the water’s T.. 

 

System can be: 

Gas in “bomb”; 

or:  Gas in “bomb” + water. 

The description will change depending on what we define as system! 

Some definitions: 

Extensive properties:  Proportional to system size.. 

Intensive properties: Independent of system size  (T,P, Vm = V/n).  

Thermodynamic state:  Macroscopic condition in which P,T,V are well defined. 

Equilibrium:  Thermodynamic state where nothing changes. 

Eqn. of state:   a relation between  P,V,T  

Note: PV=nRT  is an eqn. of state but it only applies for rarefied (“ideal”) gases. 

Never apply PV=nRT for liquids or solids! It is not true for them! 
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For example: for liquids, e.g., water, when P rises and T is fixed, V barely 

decreases! While for gases, when P rises and T is fixed, V shrinks! 

Reversible processes: a type of transition between states which proceeds 

through continuous series of thermodynamic states, and can be reversed at any 

stage 

Irreversible: Otherwise. 

EXAMPLE:  Start piston at P1, V1, T1, and n;   End at P2,V2,T2, and same n.  (P2>P1, 

V2<V1) 

If the transition between 1 and 2 is through gradual slow increase of pressure 

and compression of the volume, then the transition is reversible; 

But if the transition happens by placing a large mass on top of the piston and 

suddenly letting it go, then the process will be irreversible (the piston will 

compress and expand back and forth until eventually it will settle down at the 

new volume); i.e., throughout, P may not even be defined, only at the end.  
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Work and Heat,  1st Law, path dependent (q, w) vs. path 

independent quantities. Work as area. 

There are two different types of energy transfer. 

Heat: E transfer by thermal contact 

Work: Ordered transfer (mechanical pushing or electron current). 

 

Heat example: 

Throw an iron bar with a hot T (Tiron) to water at a colder temp., Twater; there will 

be a transfer of thermal energy from the hotter object (the bar) to the colder one 

(water) and the eventual systems will be iron+water at a temperature Tf which 

is in between Tiron  and Twater. 

This energy transfer is called “heat”, denoted by q, and has energy units. 
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Work derivation and example 

First and foremost we’ll consider mechanical work (“pushing”) (electrical work 

will be considered much later, in the context of batteries).   

Work= energy transfer.  (units: J) 

Work derivation: We’ll derive the machnical work in a piston (piston pushed or 

expands) 

Small amount of work will be denoted as  dw (as in calculus, “d” denotes small).   

Recall that change in energy = force*distance 

O_ . dV ∗ Oó 

 (the negative sign in –F is there since work is done by the piston on the 

environment, i.e., when the piston expands and dz>0, the piston’s gas, which 

pushed to expand the gas, lost energy, so dw<0).   

Recall that 

V . 4Ç�Ò	ã 

where A is cross sectional area of piston.  

So: 

O_ . d4Ç�Òã	Oó 

But (see figure!) 

ã ∗ Oó . O? . �W^X�P	YZ8A[P 

So: 

O_ . dV	Oó . d4Ç�Òã	Oó 

which implies: 

O_ . d4Ç�ÒO? 
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We derived dw=-Pext dV  for a specific geometry, but this is a general equation 

for the mechanical energy for any compression or expansion (i.e., valid for 

general shapes!) 

Note: 

As mentioned, dw<0  if dV>0  � if piston expands, it loses energy since it does 

work on surrounding. 

Relevant pressure – always the external.  E.g., if there is no external pressure, 

and the piston expands, it does not lose any energy.  (Similar to weight lifting if 

the weight you lift is very light – you won’t spend any energy then!) 

For reversible process: simplification; Pext has to be almost equal to P (as 

otherwise piston will expand or compress quickly and not reversibly), so: 

	Reverisble	processes ∶ 	O_ . d4O? 

INTEGRAL FORM:  õö÷ø÷öùúûð÷ . d�üýþ 

So far: the “differential” form of the work.  What happens if we take a finite, long 

path?  See picture. 

Then: each column’s area is hieght*base, i.e., 

P*dV, i.e., -dw; 

So the sum of the areas is 

_ . NX�*O_& . �O_ . d�4O? 

i.e.,  

d_ . �4O? . 89P8	XAOP9	R98«PYRW9S	QC	4, ?	XNPO	RW	YZ898YRP9QóP	QR. 
  

V 

P 

 

 

    

 

 
  

1 

2 
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DIGRESSION ON CALCULUS (not covered in class, but required). 

We need to calculate summation over small changes; for example, the amount of 

work spent in a process is 

dω ω=∑  

Where the sum is over all the steps, i.e., we expand (or compress) from the 

initial to the final volume, the expansion is done in little steps, in each step the 

work is –PdV (where P is the pressure at each step), and add that up. 

If you learned calculus, you know that this operation of summing over the 

contribution of many small steps is called an integral, and is denoted by a 

stretched-S (i.e., a stretched Sum): 

 
final volume 2

initial volume 1

d dω ω ω= =∫ ∫  

where we denote by “2” and “1”  the final and initial states. 

The two integrals you need to know are: 

2

2 1
1

dx x x= −∫  

(This is obvious – the sum of volume changes is the difference between the final 

and initial volume), and 

2
2

1
1

ln
dx x

x x

 
=  

 
∫ . 

(If you never saw this, accept it till you study calculus).   Note that we use here 

ln, i.e., logarithm in base “e”, where e=2.7…. 

Finally, if there’s a constant we can take it out of the integral, e.g., 

2 2

1 1
R dx R dx=∫ ∫  

 END OF DIGRESSION, BACK TO THERMODYANMICS. 
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The derivation so far leads to the first law, which is nothing more than a 

statement that energy is conserved, i.e., any energy transfer can be decomposed 

into a heat part and a work part: 

First law: 

∆½ . å + _ 

Where: 

• ∆½: energy change of system 

• q: heat involved in process 

• w: work involved in process 

To conclude: change in energy is due to heat plus work. 

However, we have to carefully understand what each term corrspondes to, see 

next page. 
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Note: 

No matter what’s the intermediate step, & whether process is reversible or not,  

Δ½ . ∆½*D�, ?�, 4� → D�, ?�, 4�& . ½*D�, ?�, 4�& d ½*D�, ?�, 4�& 

is the same and depends only on initial and final states, not on process in 

between. (Here we assume n is fixed, this can be generalized to cases where n 

changes). 

U is called: state function as it depends only on current state (T,V,P and n), and 

not on the history. 

But q, w are history dependent. I.e., Diff paths will yield:  same ∆U, diff. q, w  

See picture—area under blue curve, i.e., -work, is different from under red 

curve! 

åÙ ≠ åÚ 

�Ù ≠ �Ú 

Δ½ . åÙ + �Ù . åÚ + �Ú 

Note: because energy is a state function, the accumulated change dU is denoted 

as Δ½;  

The accumulated q is denoted as qA or qB depending on the path taken (or qc if 

another path, C, is taken, etc.); therefore, there is no such thing as  

 

since q,w are path dependent. 

 

  

Δq Δw 

V 

P 
 

1 

2 

 
Route A 

Route B 
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q and w in specific cases; enthalpy. 

Usually it is a pain to measure w; we usually want to find out how much q is, and 

furthermore, we want to express q somehow as relating to state functions. 

We learned now that this is not possible in the general case, as q is path 

dependent. 

However, there are specific cases when we can do it. 

Assume in the following that there is only mechanical work, i.e., no electrical 

current so no electrical work. 

Then, the simplest case is : 

Fixed Volume: 

Then, 

�� .	d4O? . 0		*if	V	is	fixed, so	dV . 0& 

So: 

O½ . Oå + O� . Oå d 4O? . Oå	*for	V	fixed& 

i.e., denoting q by a subscript V to emphasize that we talk about processes where 

the volume is fixed throughout, 

O½ . Oåg 		*if	V	fixed	through	process& 

So we can relate the energy and the heat for a fixed volume processes, i.e., 

reaction in a closed rigid flask. 

Two notes: 

Only valid if V fixed throughout processes;  

it is not enough that V( initial) and V(final) are the same. 

However: Most reactions take place at fixed P, not fixed V; so need a new 

quantity: 
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Enthalpy:  

For convenience (we’ll see shortly why) we define a new function, which we 

label enthalpy: 

¨ . ½ + 4? 

This is a general definition. It is especially useful and important however, for one 

type of processes, where P is fixed throughout the whole process. 

Formally, 

O¨ . O½ + O*4?& 

If the pressure if fixed, and P=Pext for simplicity (i.e., as in reversible processes), 

then 

O¨ . O½ + 4O? 

(This is because P is constant through the process! ) 

On the other hand,  the 1st law gives: 

O½ . Oå + O� . Oå d 4O? 

So therefore: 

VW9	CQ­PO	]9PNNX9P:	O¨ . O½ + 4O? . Oå d 4O? + 4O? . Oå 

i.e., for a process where the pressure is fixed throughout (so q is labeled by 

subscript p): 

O¨ . Oå�			*for	fixed	P	process	only!& 

And if we accumulate over many changes, the change in enthalpy will be related 

to the heat given/taken: 

∆¨ . å�			*for	fixed	P	process	only!& 

Therefore, we don’t have to worry about measuring pressures and volume if we 

do a process at fixed pressure; we can measure the enthalpy change directly 
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from the amount of heat input into/from the system, which is usually an easy 

task.   

Conversely, enthalpy is a state function, which means it can be tabulated, so we 

can calculate amounts of heat given/taken from the system by using tabulated 

enthalpy differences; but this is only true if the pressure is fixed! 

Since in real life we do experiments in labs, where usually the pressure is fixed 

(at 1atm or similar value), enthalpy is very useful. 

Finally, some definitions for later.  For a fixed P process: 

∆¨ < 0 → 		 å� < 0		*heat	released	by	system	at	fixed	P	process	if	enthalpy	decreases& 

Such ∆¨ < 0 processes are called exothermic  (since heat is released – “exo” 

means to output in this context).   

And conversely there are endothermic processes where heat is absorbed: 

∆¨ > 0 → 		 å� > 0		 	
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Heat Capacities, relations between them: 

Heat capacity is amount of heat over temperature change: 

¬ ≡ å∆D 

so 

å . ¬∆D 

To be more precise, we need to consider small changes, i.e., 

¬ ≡ OåOD 

C depends on:  

• System (phase, identity) 

• Nature of process: e.g., 

 

Constant P: 

¬� ≡ å�∆D 

Constant V 

¬g ≡ åg∆D 

 

(Other possibilities exist, but we’ll usually consider only const. P or V for heat 

capacities.) 

Note: if P is fixed and we raise T, then in 99% of the cases V expands 

(an  exception – water between 0 Celsius and 4 Celsius slightly shrinks) 
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But ignoring this exception, then, if  V does expand when T rises, like in 99% of 

the cases, then work is done in this expansion – so more heat is needed to 

expand at fixed pressure than at fixed volume; 

This is because  in the fixed pressure case,  some of the input heat goes to doing 

work on the environment, rather than just raising the temperature.  In the fixed 

volume case all the heat goes into raising the temperature and none goes to 

work.   

Therefore, qP will be higher (for the same	∆D& than the case that no work is done 

(when C was fixed) and therefore: 

SO: almost always, for the same ∆D, qP > qV. 

I.e., almost always ¬�>¬g 

 

Some equations: 

Molar heat capacities 

¬�U . ¬��  

¬gU . ¬g�  

Expressing heat capacities in terms of state-functions: Cv is related to qv, and qv 

related to U:  

¬g . OågOD . O½OD  

And 

¬� . Oå�OD . O¨OD  
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Actual relations between heat capacities  

• For solids and liquids very little work will happen when the temperature 

rises (since the total volume is very small, and therefore the volume 

change is even smaller) so: 

 

There will be very little difference between qP  and qV  for 

solids/liquids. 

And therefore:  

ïü is almost equal to (very slightly larger usually from) ïþ for 

solids/liquids. 

• Gases:  

Note that for ideal gases: 

¨ . ½ + 4? . ½ + AED	*QOP8^	[8NPN	WA^S& 

So (we fudge the math. a little, but that’s OK): 

¬� d ¬g . O¨OD d O½OD . O*¨ d ½&OD . OAEDOD . AE 

i.e., for ideal gases only   

¬� . ¬g + AE			*ideal	gases	only‼!!& 
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Qualitative considerations on the heat capacities for ideal gases, 

and examples: 

An interesting fact (no proof here:) Each degree of freedom that’s “active” 

contributes R/2 to ïþì 

Note on “active” degree-of-freedom: we learned when we talked about the 

Boltzmann factor that if there is a degree of freedom such that its excitation 

energy is very high compared with RT, then it will be in the ground state, i.e., will 

not be excited, and will therefore not contribute to heat-capactity 

Examples: 

Monatomic ideal gas: can move in x, y, z directions� 3 degrees of freedom �  

Cvm (He, etc.)= 3R/2 

Diatomic ideal gas like O2 around T(room): in addition to center-of-mass moving 

in the x, y, z direction, the diatomic “rod” can rotate in 2 directions (but cannot 

vibrate unless T is very high) � 5 degrees of freedom 

Cvm (O2,etc.)= 5R/2    10K<T<1000K   

Note:  

• below ~10K rotations not excited;  

• above 1000K vibrations need to be included as thy get excited; specifically, 

at room temperature O2 does not vibrate, and it needs very high 

temperatures (higher than 1000K) to vibrate.  But at high temperatures 

(more than say 1500K) it will vibrate freely, so its CVm will be higher than 

5R/2. 

Therefore: 

For monatomic gas (He, etc.):   

 
3 5

,     
2 2

Vm Pm

R R
C C= =  
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For O2 and similar: 

5 7
,     

2 2
Vm Pm

R R
C C= =  

Note that the heat capacity changes (increases) as we go to bigger molecule 

(more degrees of freedom), but the relation CP=CV+nR is valid for any (ideal) gas 

(proof : 110A) 

 

Detailed discussion of this figure. 

Note that the heat capacity of oxygen is 3R/2 at very low temperatures, where the 

only motions are of the center of mass (rotations cannot be done since they require 

energy and there is not enough energy at low temperatures) 

At a large range between very low temperatures and very high temperatures, 

10K<T<1000K the fixed-volume heat capacity (CVm) is 5R/2, since to the 3R/2 

from the center of mass motion we add 2 more degrees of freedom associated 

with rotations perpendicular to the diatomic axis,  

I.e., if the diatom is in the z direction, there will be rotations around the x and 

around the y directions; rotations around the z axis do not contribute since they 

don’t involve motion of nuclei.   

C
Pm

 

C
Vm
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Each degree of freedom gives R/2 to CVm, so altogether we have: 

¬gf . 3E2 	+ 	2 ∗ E2 . 5E2 	
At very high temperatures when the vibrational degrees of freedom contribute, 

CVm becomes even higher (7R/2, and then even higher). 

At every temperature, CPm=CVm+R for ideal gases, as we will not prove (but will 

use). 

Solids and liquids heat capacity-repeat 

As mentioned, for solids and liquids the Cp=Cv + nR relation is not true; instead: 

 
P V

C C≅  for solids, liquids. 

The reason is that the volume of solids and liquids is very small, and not 

changeable easily, so very little work can be done on solids and liquids.   

The properties of solids and liquids – including volume and entropy, as we'll see 

below --  are mostly determined by the temperature. Thus, we get that in some 

respects they are analogous to ideal-gases, their extreme opposite, since in ideal 

gases the energy depend solely on temperature. 

However,  the analogy cannot be pushed too far, since in ideal gases the volume 

depends on pressure, and for solids and liquids (within the same phase) it 

usually hardly changes with pressure. 
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Reversible processes in i.g. (ideal gases): isothermal expansion 

and adiabatic expansion 

Useful to demonstrate laws and importance in thermodynamics. 

Say we do a reversible isothermal expansion of ideal gases: State 1� state 2. 

(Isothermal expansion (or compression) means that T is fixed, while P and V 

vary.) 

Τhen, ∆U=0 (since T is fixed and we know that for ideal gases, U is only a 

function of T). 

Also: 

2

1

2

1

d

PdV

ω ω

ω

=

= −

∫

∫
 

where P is dependent on the volume as P=nRT/V (true only for ideal gases!) 

2

1

nRT
dV

V
ω

 
= −  

 
∫  

Since nRT is fixed in isothermal expansions , take it of the integral: 

 

(We used � 
�� . ln eg©g�i ). 

What about q? well, recall thT 

2

1

2

1

ln

dV
nRT

V

V
nRT

V

ω

ω

= −

 
= −  

 

∫
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2

1

And for isothermal expansion, U=0, so

0

ln

q U

q

V
q nRT

V

ω

ω ω

= ∆ −

∆

= − = −

 
=  

 

 

Example: see figure. 

 

In this figure example:  w=-nRT ^A eÊ5��Ê�i  

                                             = -(1mol*8.3J/(K mol)*300K) * ln(2) 

                                          = -2500 J *0.693 = -1730J 

 

q = ∆U -w = 0-(-1730J) = 1730J 
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Ostensible problem with isothermal expansion: 

How come we input heat, and the temperature does not rise? 

Answer: 

Imagine a runner that continuously eats and drinks while she runs – she 

continuously converts the food and drink to energy used in running, so her body 

weight does not change. 

Same here: the work that is done by the gas is compensated by the heat given to 

the gas, so the energy does not change (and therefore the temperature can stay 

fixed). 
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Adiabatic expansion 

The next type of expansion is adiabatic, where, while the gas expands, work is 

done but it is not compensated by heat, i.e., no heat is given. 

It can be proven (Chem. 110A): 

P V
γ−∝  

where 

P

V

C

C
γ =  

Examples:  

5

3 5 52He,Ne,Ar:       ,               = 1.66
32 2 3

2

P

V P

V

R
C

C R C R
C

R

γ= = → = = =  

2 2

7

5 7 72O ,N :       ,               = 1.4
52 2 5

2

P

V P

V

R
C

C R C R
C

R

γ= = → = = =  

Example: 

• Take Air (essentially N2),  V(Initial)=6L,  P(initial)=4bar,  T(initial)=300K  

(by the way: what’s n? use the gas law to calculate!) 

Then either 

• Expand isothermally to 12L 

Or 

• Expand adiabatically to 12L 

1st Question: what’s the final pressure and temperature in both cases? 
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Answer: 

• Isothermal expansion:  

T=fixed � T(final)=T(initial)=300K 

  P(final): since P=nRT/V, and T did not change while V doubled �  

 Therefore, P was halved, i.e., P(final)=4bar/2= 2bar 

• Adiabatic expansion: 

Fast way of getting the result: V doubled (increases by a factor of 2); so P, 

which is proportional to V γ− , changes by a factor of  2 γ− , i.e.,  

                               P(final) = P(initial)* 2 γ− = 4bar * 1.42− = 1.52 bar. 

What about T? Since  

D . 4?AE , 
  

and since V doubled and P decreases from 4bar to 1.52 bar, then   

  

 
( ) ( ) ( ) 1.52 12 1.52 12

0.76
( ) ( ) ( ) 4 6 4 6

T final P final V final bar L

T initial P initial V initial bar L
= = • = • =  

 i.e., T(final)=T(initial)*0.76=300K*0.76=228K. 

 

2nd question: How much work was done in the adiabatic expansion? 

Answer: 

The answer deserves a separate section: 
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Calculating work in adiabatic expansion. 

We could have used 

 w PdV= −∫   

But that will be a difficult integral.  Instead, use: 

 q Uw U∆ − = ∆=   

where we noticed that in adiabatic expansion q=0.  So all we need is the change 

in U, the internal energy. 

Here comes a non-trivial point: for ideal gases (and only for ideal gases), as 

we consider, the energy depends only on temperature.  Therefore, if we 

change the temperature in the adiabatic process, we can calculate the 

energy change by considering ANY OTHER process where the temperature 

changed by the same amount (even if the final volume and pressure are 

different). 

The simplest such 2nd process is a fixed volume process with the same 

temperature change; In other words, since 

 dU=CVdT 

for fixed volume process, then we know that dU=CVdT here, even though V is not 

fixed!  

(Note that I am only talking about dU; dq and dw will be different in each of 

these processes -- - in one, dq=0 (adiabatic); in the other, dV=0 so dw=0 and 

dq=dU; but the energy change is the same in both processes, even though the 

final states are different – because the final temperature are the same in both!) 

For the fixed volume case:  

 V V VmU T TC dT C C n∆ = ∆= = ∆∫  
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And therefore in our case (where the volume isn’t fixed, but T changes by the 

same amount!) we get the same energy change, i.e.,  

(ideal gas,Vnot necess. fixed) VmC nU T∆ = ∆  

and we know each of the terms: 

 

228 300 72

/ ( ) (when calculated for the initial conditions, as n does not vary)

4 6 24

8.3  300
 mol

5 / 2 =2.5*(8.3  J/(K mol)) =20.7 J/(K mol)    (for air at reasonable T's)Vm

f iT T K K K

n PV RT

bar L
n

J

T

K

C R

K

=

− =∆ = − = −

= =

•
= =

00J
0.96

2500( / )
mol

J mol
=

  

We can calculate now 

J
20.7 *0.96 mol*(-72K)=-1430J

K mol
VmC nU T∆ = ∆ =

 

So in this adiabatic expansion, 1.43kJ of work was done by the system.
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Comparing adiabatic and isothermal expansion of ideal gases: 

 

With increasing volume, P falls: 

• fastest for adiabatic monatomic expansion,  

• slower for adiabatic expansion of diatoms, 

• even slower for adiabatic expansion of triatoms,  etc.,  

• and slowest  for isothermal expansion. 

Reason: monatomic species (He, Ne, Ar., etc.) don’t have a lot of energy stored in 

them (only in the translational motion); so when they expand and do work, they 

lose, percentage wise, a lot of their energy, so their temperature falls a lot 

(energy is a function of T) and therefore the pressure falls a lot. (The pressure is 

P=nRT/V, and here both T falls a lot and 1/V decreases as V increases, so 

together P will fall off very quickly as a function of V; specifically, it will fall as 

1/V1.66 .) 

Diatomics have some energy in rotations, so the loss of energy through work 

does not change their energy so much; they do lose energy sop their T falls, but 
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not as much as monatomic species. So their P will not fall as much as for 

monoatoms. 

Similar reasoning explains that the bigger the molecules of an ideal gas, the 

more they have energy stored in them, and therefore the less they will be 

affected by the work done through the expansion, and therefore, their T will not 

be so affected so their P will not fall so much. 

At the extreme is isothermal expansion, now of all species (whether He, O2, or of 

any other ideal gas).  Here, T does not fall (the energy done by work is 

replenished) so their P falls only because P=nRT/V and V increases. 
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Tabulated Enthalpy 

We need to define an enthalpy or energy scale, where one of them is zero.  

Physicists have a general definition but it is very complicated to use in practice, 

so we revert to the practical definition of chemists.   

In practice, of course, it rarely matters since we are generally interested in 

enthalpy differences (i.e., in the amount of heat spent in a reaction at constant 

pressure) 

So, as a prelude to the practical definition of enthalpy, we need “standard states” 

of each species: 

We define  

A standard state: 1atm, specific T=298K=25 OC.: 

For gases: we assume an ideal gas behavior. 

For dissolved specifies: the definition used is an annoying one. We assume that 

the species is at a 1M (1 mol/Liter)  solution, but not in its real state; instead, 

extrapolate from a very low concentration to what the behavior would be at 1M. 

Next, we decide that the enthalpy of each element at the standard state, in its 

most stable form at the standard state, is assigned to be zero. 

We label an enthalpy defined according to this scale as “enthalpy of formation”, 

Hf. 

For example, 

0

2

0

(O , ,298 ,P )=0

( , ,298 ,P )=0

f

f

H gas K

H C graphite K
 

Note that: 

0( , ,298 ,P )>0
f

H C diamond K
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Enthalpy of formation of molecules is then defined as the enthalpy of reaction  to 

make the molecules from their atomic ingredients in their stable form. 

For example: 

2 2 2 2

1 kJ
( O) ( ) ( ) ;   300 2858

2 mol
f RXN

H H H H g O g H O T K
 

≡ ∆ + → = = − 
 

 

This relates to: 

Hess’s Law. 

Graphically:   

 

i.e., 

 

Hess law is general.  It means that if we want an enthalpy difference, we can use 

an intermediate (in our case “B”). 

Let’s apply Hess’s law denoting the elements in their stable atomic state as “A”; 

Then the first term on the left is the formation enthalpy of C, and so is the first 

term on the right, i.e.,  

( ) ( ) ( )f f rxnH C H B H B C= + ∆ →

 
Another example:   
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( ) ( ) ( )f fH A B C H A B D H D C→ + = → + + ∆ →

 
And in general:

  
( ) ( ) ( ),

( ) ( ) ( ) ( ),

.

f f

f f f

H B C H B H C

H B C D H B H C H D

etc

∆ → = − +

∆ → + = − + +  

Realistic examples: given a table of energy of formations, then how do we 

calculate, for room temperature: 

2 2

1
(2 ) ?

2
H NO NO N∆ → + =  

Answer 

2 2 2 2

2

2 2 2

1 1
(2 ) 2 ( ) ( ) ( )

2 2

i.e. (since  ( ) 0 )

1
(2 ) 2 ( ) ( )

2

                                     2(90.4 kJ/mol) (33.1 kJ/mol) =-147.7 (kJ/mol)

f f f

f

f f

H NO NO N H NO H NO H N

H N

H NO NO N H NO H NO

∆ → + = − + +

=

∆ → + = − +

= − +
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Part 6: Spontaneity, entropy and 2nd law 

The understanding of the 2nd law requires a lot of concepts with which you 

are at best barely familiar.  So we will try to exemplify and relate the 

concepts; but beware that this is a very difficult part, because it is so 

qualitative and because these are new concepts. 

The order of this chapter is: 

• Direction of time in nature is well defined 

• Entropy is a measure of disorder; 2nd  law: the universe’s entropy rises. 

• Thermodynamics definition of entropy changes  �� . OåÄÇ�/D 

• Examples:   

o ideal gas expansion (isothermal, isobaric);  

o temperature change of any substance (including solids and liquids) 

at fixed pressure (isobaric) or volume,  

o Phase change 

• Stat. Mech. Definition of entropy: 
ÈÒàÒ.UÇ��. = �Úln	*#	WC	NR8RPN& 

• Entropy tabulation; qualitative understating of how the entropy changes 

in chemical reactions. 

Direction of time 

1st law allows for processes which conserve energy but “don’t make sense”, 

 E.g., take a physical processes, like a cup falling and breaking; 

The “reverse movie” of this processes, which is broken pieces of the cup coming 

together spontaneously and becoming one cup, isn’t feasible physically. 

 Therefore, it isn’t enough to just consider energy when we talk about processes, 

we need a law beyond the 1st law. 

This is where the 2nd law comes. 

It states, essentially, that systems evolve towards equilibrium. (More precise 

def.—later). 
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Let’s first exemplify on several processes which always occur in a given 

direction in time (i.e., their reverse never occurs): 

• Open a balloon at high P; gas always expands out and P is reduced, never 

back. 

• Two systems initially at different temperatures, TA and TB, when we bring 

them in contact, will always reach a temperature Tf which equals in both  

• A little of NaCl (table salt, Sodium chloride) in water will always 

dissociate. 

So: nature is directional in time.   

Entropy: measure of disorder; and 2nd law. 

So the 2nd law of thermodynamics is: 

The Entropy of the world (i.e., the disorder in the world), never decreases; 

more precisely: entropy increases if there are irreversible processes and 

stays constant for reversible processes. 

This is a “law” i.e., something we stipulate and don’t prove, but we can justify it 

using some examples based on statistics.  If you take a course in statistical 

mechanics, you will be able to prove and expand much on the concepts we 

introduce. 

Thermodynamic entropy 

It turns out (no proof) that we can write the change of entropy of a given system 

as 

                 thermodynamics definition
dq

dS
T

=  

where dq is the amount of heat if the process is reversible (we’ll review this and 

define more precisely later). 

Clarification on entropy: 
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• First, the 2nd law talks about the entropy of the universe (that never 

decreases).  The entropy of a system can decrease, if the entropy of the 

surroundings increases.  For example, we can cool water (and thereby 

decrease their entropy), but when we do it, the entropy of the 

surroundings must increase correspondingly, so that the change of 

entropy of everything together (the universe) will not decrease. 

So: dS can be >0 or <0 or =0,  as long as: 

SURROUNDING WORLD 0dS dS dS ≥+ =  

• Next, consider qualitatively the 1/T in the relation between entropy and 

heat, dS=dq/T. 

Think of dq as “applied mess”, and of dS as “resulting disorder” 

Then we learn that if the temperature is high, the effect of the mess on the 

disorder is small (since it is divided by 1/T, and T is high);  

But when T is low, a small dq will affect the entropy strongly, as 1/T is large 

You know this from daily life: if your dorm room is clean (equivalent to low 

T), then a little mess (dq) will make it look quite messy (increase S 

significantly); 

But if your dorm room is already messy (high T), then making it a little 

messier (dq) won't have much of an effect (since dq/T will be small, as 1/T is 

small). 

• Finally, the entropy change is strictly not dq/T, but  

dS=dqrev/T 

This means that to calculate an entropy change we must take a reversible path 

connecting the initial and final states. 

And another thing it tells us: it won’t matter which path we actually take for 

entropy changes! 
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Graphically:. 

. 

 

åÙ ≠ åÚ ., 

 but ΔS(route A)=	ΔS(route B) 

You’ll see an example in a H.W. problem later. 
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Examples for entropy changes, and entropy tabulation. 

• Expansion of an ideal gas at constant temperature: 

dq
dS

T
=

 

Isothermal expansion is a very simple case, since 1/T is fixed during the 

expansion.  If we start at a volume V0 and end at volume V then (recalling that 

q(isothermal expansion)=nRTln(V/V0), as proved): 

0
0

0

1
(isothermal) ln

            ln

V
T

V

qdq nRT V
S dq

T T T T V

V
nR

V

 
∆ = = = =  

 

 
=  

 

∫ ∫

 

So as V increases, the entropy increases; when the volume doubles, the entropy 

increase by nRln[2].  The reason is that as we increase the volume, each particle 

has more space to roam through. 

For future reference, let’s write isothermal expansion in terms of pressures, and 

not volumes (they carry the same info for ideal gas).  We know that P=nRT/V, so 

 4? . 45?5 → gg� . ���   , so 

 �
 . AE ln e��� i = −AE ln e���i 

Where we’re using 

 ln eàÆi = ln*8& − ln*7& = −*ln*7& − ln*8&& = − ln eÆài	 
So to conclude: 


*D, 4& . 
*D, 45& + �
 . 
*D, 45& d AE ln � 445� 
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Important note: this formula is valid regardless of how the actual expansion 

went;  

For example, say we consider the expaple we considered earlier, of a gas 

expanding into vacuum (e.g., b puncturing a hole in an initially full container 

where the gas can expand into an empty container, see picture 

, 

Even then the entropy will increase in the same way sicne we cant use the actual 

path in this stage (with its dq=0)  

Instead we’ll have to use a reserible path, and the simplest in this case is  

reversible isothermal path (see 3rd frame in picture) 

 

 

      V
0
     V-V

0
 

Example: entropy calculation for a gas expanding into an empty container will 

not be calculated through actual path (where dq=0,  2
nd

 frame) but by following 

a reversible path, e.g., the isothermal one for this case. (3
rd

  frame) 
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• Expansion at fixed volume: analogous to the fixed P case; same derivation, 

replace the P subscript by V, get: 

2 2
2

1 1
1

lnV

V V V

dq TdT
S C C

T T T

 
∆ = = =  

 
∫ ∫  

• Similarly Expansion of any substance (solid, liquid, gas) at fixed 

pressure: 

2

1

ln
P

T
S C

T

 
∆ =  

 
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• INSERT: Reading Example: (not lectured on) for the 2nd law: We bring 

together in a room two identical  pieces of iron, the first  (left one) initially 

at 300K and the second (right one) at 310K.  

Once they reach equilibrium, then from conservation of energy the 

T(final)=305K = average of two initial temperature. (We can show this 

rigorously, but we don’t have time; but this makes sense) 

We can prove that the entropy increases! 

1

1

2

2

1 2

305
ln ln 0

310

305
ln ln 0

300

305 305
ln ln 0.00027 0

300 310

f

P P

f

P P

P P

T
S C C

T

T
S C C

T

S S C C

   
∆ = = <   

  

   
∆ = = >   

  

    
∆ + ∆ = + = >    

    
�

 

This goes in line with what we know -- the final process has more entropy than 

the initial, just like the 2nd law says!  (the final-initial entropy difference is tiny, 

but that’s enough to ensure that the system will settle there). 

END OF INSERT 
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• Phase change: 

We learned that, since a phase change takes place at a constant P: 

(phase  change)= Hq ∆  

Further, dS=dq/T, and since T is also fixed in a phase change, 

phase change

(phase change)
(phase change)=

H
S

T

∆
∆  

Example. 

 Freezing (called “fusion” by chemists/physicists): 

 Ice->water: 

 

kJ
6.0 ,     T =273K  

mol

6000J
Jmol~ ~ 22

273K K mol

fusion fusion

fusion
fusion

fusion

H

H
S

T

∆ =

∆
→ ∆ =

 

 

  



115 
 

H.W. problem  exemplifying that two different paths give the same entropy: 

We have a piston of 2 mol, containing He. 

The initial point is “1” : T=300K, V=50L, P=1bar.  (Verify that PV=nRT!) 

The final point is “2”:  T=300K, V=100L, P=0.5bar. 

Consider then the following two paths (see figure). 

Path “A” is isothermal --- i.e., we keep T fixed and just increase the volume from 

50L to 100L and the pressure decreases from 1bar to 0.5bar. 

Path “B+C” is a two-stage path:  

In part (B) of this path, P is fixed at 1bar, V increases from 50L to 100L (and 

therefore T rises, to 600K).;  

In part (C) of this path V is fixed at 100L and P decreases from 1bar to 0.5bar (so 

T decreases from 600K to 300K). 

 

QUESTION:  Calculate ∆S(part A), and ∆S  for part B+C, and prove that they are 

the same.   

Note: Remember that we calculated ∆S for each of the processes you encounter 

here: isothermal expansion, expansion at const. pressure and expansion at const. 
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volume.  All you have to do is add up these contributions we previously 

discussed, and prove that the entropy change in stage A equals the sum of the 

two changes in step B. 
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Interpreting entropy from a statistical-mechanics (stat. mech.) 

perspective. 

Here we’ll introduce a whole different definition of entropy, coming from stat. 

mech., whereby the entropy has the following meaning, which ostensibly has 

nothing to do with thermodynamics: 

S(stat.mech.)= kB ln(D) 

where we introduced “Boltzmann’s constant”, 

�Ú ≡ E³Ù�Å�à
ÄÅ  

and where “D” is the number of states the system can go through. (Everybody 

else uses W and not D as the symbol for the number of states, but I am worried 

that you’ll think it is related to work – it does not – so I use D instead) 

This definition of S(stat.mech.) may sound incomprehensible, but let’s exemplify.  

Our example will give us a numerical result, which will be shown to match the 

thermodynamic entropy. 

Let’s take a gas of temperature T and volume V, and Pressure P, on a left 

container; and an empty container (of 

equal volume) on the right;  

Now open the valve so molecules can 

also go to an initially-empty container on 

the right.  

The pressure halved, but the 

temperature is unchanged (if this is an 

ideal gas), and the only thing each 

molecule feels differently is, 

essentially, that it can now be in twice 

as big a volume. 

Let’s now calculate what will be the 
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increase in the stat. mech. entropy, and verify that it will be exactly what 

thermodynamics predicts – so thermodynamics and stat. mech. match (at least 

for this case – for a general proof see 110B). 

Take a single molecule; its velocity, position within the sphere, internal 

vibration, etc. are all things that do not change when the molecule can share its 

time between the spheres.  So we won’t considered them (we are interested in 

changes in the number of states, which will lead to entropy difference, much 

more than we care about the total number of states, so we’ll only consider the 

new feature, being on the left or right). 

So: the new “state” (really “label”) each molecule can be in is only whether it is 

left (L) or right (R). 

So we can label this “extra” molecular label or state as L or R, and the number of 

states for a single molecule is 2. 

Now consider 2 molecules; we have LL (two molecules on left),    LR, RL, and RR.  

Overall 4 states (4=22) 

Now 3 molecules: there are 23=8 possibilities: LLL,  LLR,  LRL,  LRR, RLL, RLR, 

RRL, RRR 

And in general for N molecules, D=2N possibilities. 

So if we have “n” moles, they contain N=n*NAvog molecules; so the change in 

entropy will be: 

 S(stat.mech))=kBln(2N), 

and using  

 ln(xy)=yln(x) 

we get 

 S(stat.mech.)= kBN ln(2), 

and since  

 kB *N= (R/NAvog)*(n NAvog)=n R 
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we get 

 S(stat.mech.)= nR ln(2). 

Now this is really not the total stat. mech. entropy, just the change when we 

expanded the gas, so we should add a “Delta”, i.e., 

 ∆∆∆∆S(stat.mech.)= nR ln(2).  

Next let’s compare it to the  thermodynamics prediction; in thermodynamics, 

when a gas is isothermally expanded:  

 ∆∆∆∆S(thermodynamics)= nR ln(Vfinal/Vinitial)   (look at the formulae we 

derived earlier) i.e., here, when the volume is doubled (and the temperature 

unchanged): 

 ∆∆∆∆S(thermodynamics)= nR ln(2V/V)= nR ln(2)  = ∆∆∆∆S(stat.mech.) !! 

So the two formulations agree, at least for this case. 

END OF STAT. MECH., BACK TO THERMODYNAMICS 
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Entropy tabulation and qualitative consideration: 

From tables we can determine 0
S∆ , change in entropy upon reaction. 

Example: 

2 2 2( ) 2 ( ) 2 ( )N g O g NO g+ →  

Each species contributes to the entropy, with a coefficient that’s the same as in 

the reaction, but reactants get a minus  

(as ∆S is figuratively products-reactants) 

0 0 0 0
2 2 2( ) 2 ( ) 2 ( )m m mS S N S O S NO∆ = − − +  

Where the 0 superscript indicates we calculate at 1 bar. 

From tables we find that: 

0 J J J J
191 2 205 2 240 121

K mol K mol K mol K mol
S∆ = − − • + • = −  

 

SIDE_NOTE:  Note that the entropy is reduced in this reaction 

Figuratively, we can understand the entropy reduction, since this reaction 

reduces the number of molecules (3 molecules become 2) so there is less 

disorder as there are less molecules to roam around.  

There are of course complications in reality, but this is a reasonable qualitative 

explanation for the entropy reduction. 

END OF SIDE NOTE 
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Part 7: Gibbs Free Energy 

 

Summary: 

i. Clausius relation: fixed T Δ
����������� . d ��  and q≤q(rev.)=TΔ
. 

ii. Gibbs free energy G=H-TS;  

Proof that at fixed P and T, and no electrical work	Δ� ≤ 0, and 

implications 

iii. 	Predicting transition temperatures *
o

o

H
T

S

∆
=

∆
 

iv. (dG/dT)P fixed = -S    

v.  G vs. T diagram at fixed P, stable phase at T,P: lowest G. 

vi. Incorporating electrical work Δ� ≤ �Çâ  at fixed, T, P 

 

 

Overview: 

We learned that we can see if a process is spontaneous or is reversible according 

to the change of entropy in the world: 

(world) 0 spontaneous (irreversible)

(world) 0 reversible

(world) 0 forbidden

S

S

S

∆ > →

∆ = →

∆ < →

 

But it is inconvenient to talk about the change of entropy of the whole world.  

Luckily, we can define a new quantity, the Gibbs free energy: 

G H TS= −  

Such that in the crucial case of reactions at fixed T and P (e.g., bench 

experiments in a lab),  G will give us the same information as S(world) will 

(although with a reverse of signs), i.e., 
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FOR FIXED P, T (and an assumption we’ll relax later: no electrical work): 

 

0 spontaneous (irreversible)

0 reversible

0 forbidden

G

G

G

∆ < →

∆ = →

∆ > →

 

Let’s prove. 

7.i) Reversible and irreversible for the environment, Clausius 

relation 

For simplicity, in all the discussion below, the pressure is fixed and the 

temperature is fixed. 

First, let’s refine our understating of what reversible and irreversible mean as 

far as system and as far as surroundings;. 

Imagine, e.g., a little balloon containing hydrogen and oxygen and placed in a 

pool of fixed temperature  

Then, have the hydrogen react with the oxygen to produce water (e.g., maybe 

put there a metal that will help catalyze the reaction).  As far as the system is 

concerned, this is definitely an irreversible process – we cannot do a small 

change to make from water back again H and O.  (We could put a lot of electricity 

to do that, but that’s not a small change). 

However, since this is all done in a balloon “immersed” in a pool of fixed 

temperature, then, as far as the surroundings are concerned, all that happened 

was that the materials in the balloon gave away to the surroundings some heat, 

which barely affected the surroundings (maybe very slightly raised the 

temperature of the surrounding water). 

So: while in the system the process is irreversible, as far as the surrounding all 

processes look reversible! 

So, if we label the heat given in a process as q, this heat is taken from the 

surrounding, so we can say that –q was given to the surrounding  
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(e.g., 10J given to the system is -10J given to the surroundings). 

Then: 

( .)
q H

S surr
T T

∆
∆ = − = −  

where the 2nd equality is since we consider fixed pressures. 

(Note that we don’t have this rule for the system: if the process is irreversible, 

( .)   for irreversible processes)
q

S sys
T

∆ ≠
 

Possible values of the heat. 

There is a very interesting point “buried” in the derivation above. 

This point is called the “Clausius rule”. 

The point is that  

   

0	 ≤ ∆
*_W9^O& . ∆
 + ∆
*NX99& . 	∆
	– åD . å*9P�. &D – åD					
where the last equality is since we consider a fixed T processes. 

So we get: 

0 ≤q(rev.)-q 
i.e., 

å ≤ å*9P�. & *Clausius rule&Clausius rule&Clausius rule&Clausius rule&    
or equivalently, since ∆S=q*rev.&/T, 

å ≤  D ∆
 
I.e., for any process, reversible or not, the amount of heat input to the system is limited to be less than the amount of heat which will be input in a reversible process. 
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INSERT  ExampleExampleExampleExample    for Clausius rule for Clausius rule for Clausius rule for Clausius rule ****required, required, required, required, not covered in class&not covered in class&not covered in class&not covered in class&::::    
Say we’re at 300K and we start at state I *e.g., a liquid phase of a compound,  or a gas at a given volume, or anything else&; and we do a process *expansion, melting, reaction, or something else& that changes the system to a different state, II, with S higher by 4J/K, i.e., ∆S=4J/K. 
Assume the process is such that the surroundings are at constant temperature; for example, they could be a very large water container into which we “drop” the system. 
Question: Now let’s pose the hypothetical question: is it possible to do that 

same process with  (a) q=0; or (b) q=900J; or (c) q=1200J; or (d) q=1500J; and in 

every case, will the process be reversible, irreversible, or impossible, and why. 

Answer:  

(a) q=0 : that means the process was adiabatic.  It was irreversible, since 

the entropy of the surroundings did not change (they did not give heat), 

while the systems’ entropy increases, so the world entropy increases, 

i.e., the process is irreversible.  An example we discussed is a rapid 

adiabatic expansion of a gas without doing work, e.g., when we rupture 

the separation between a container full of gas and an initially empty 

(“vacuum”) 2nd container, so the gas expands irreversibly from the 

initial container to the total final volume (encompassing both 

containers). 

(b) q=900J.  In that case, the surroundings gave away q, (i.e., “got –q” heat) 

and since as far as the surroundings this looks reversible, the surr. 

entropy change is –q/T, i.e.,  

∆S(surr.)= -q/T.-900J/300K = -3J/K 
                  So  
  ∆S*world&= ∆S+∆S*surr.&= 4J/K  + *-3J/K& = 1 J/K  > 0 

So the process is possible but again irreversible,  since the entropy of the world increases. 
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(c) q=1200J � ∆S(surr.)= -q/T=-1200J/300K = -4J/K 

So 
 ∆S*world&= 4 J/K  - 4J/K = 0 
So the process is reversible *as it does not change the entropy of the world, so in principle we could reverse it& 

(d) Finally, the most interesting part: 

 q=1500J � ∆S*surr.&= -q/T=-1500J/300K = -5J/K 
So 
 ∆S*world&= 4 J/K  - 5 J/K = -J/K 
So the process is impossible.  
The reason is it impossible is that when we inject heat into the system we reduce the entropy of the surroundings, and we cannot reduce it by more than 4 J/K, i.e., q needs to be smaller than q*rev.& 

ENENENENDDDD OF IN OF IN OF IN OF INSSSSERT EXAMPLE ON CLAERT EXAMPLE ON CLAERT EXAMPLE ON CLAERT EXAMPLE ON CLAUSUSUSUSIIIIUSUSUSUS R R R RUUUULELELELE    
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7.ii) NOW BACK TO DERIVING THE FREE ENERGY AND 

IMPLICATIONS 

Using the equations above, we get (because we assume that the initial and final 

state are at the same temperature and pressure – which is always fixed here, and 

the surroundings are at the fixed T and P): 

First, assume that there is no electrical work (we’ll relax this later). Since 

the pressure is fixed, 

 

( )

( ) ( .)

Rearrange to give:

( )

H
S world S S surr S

T

H T S
S world

T

∆
∆ = ∆ + ∆ = ∆ −

∆ − ∆
∆ = −

 

Now at fixed temperature, a change in G is  

 ( ) ( )G H TS H TS H T S∆ = ∆ − = ∆ − ∆ = ∆ − ∆  

(where the 2nd equality is since T is fixed), so that (only at fixed T and P): 

 ( )              (if T,P are fixed)
G

S world
T

∆
∆ = −  

Note: on the left we have a “world” quantity, hard to find;  

   on the right a system quantity, G∆ , much easier to find. 

Since the entropy of the world never decreases, -∆G never becomes negative, i.e.: 

0    (if T,P are fixed G never decreases!)G∆ ≤  

Very convenient way to know if a process is spontaneous, reversible or 

forbidden – since G is a system’s quantity!  We don’t have to worry anymore (as 

long as we consider processes at fixed T and P) about “world” quantities, only 

system quantities! 

Example 
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C6H6(l) � C6H6(g),  1atm, 298K. 

At 298K, 1atm (we’ll use a 0 superscript, i.e., an umlaut, to denote a quantity 

calculated for 1 bar), you can calculate from the information at the appendix of 

the book that the reaction enthalpy and entropy is: 

( )0
6 6 6 6( ) ( ) 33.9

mol

kJ
H H C H l C H g∆ = ∆ → =  

0 J kJ
96.4 0.0964

K mol K mol
S∆ = =  

Therefore: 

0 0 0 kJ kJ kJ
33.9 298K 0.0964 5.17 0

mol K mol mol
G H T S∆ = ∆ − ∆ = − • = >  

Therefore, at room temperature and pressure, G 0o∆ > , so the reactant side is 

favored, i.e., benzene is a liquid at room temperature and pressure (as we 

know!) 
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7.iii) Predicting transition temperature 

Let’s say we know at a given temperature what 0 0
,H S∆ ∆ are.  We can 

approximate that they usually don’t change much with temperature (we could 

find their exact temperature dependence, from what we know already, based on 

the heat capacities, but usually this change with T is relatively small so it can be 

ignored in many cases).   

Then, we can predict the transition temperature, T*, where the reactants and 

products are both allowed, since then ( *) 0G T∆ = : 

 

So: 

*
o

o

H
T

S

∆
=

∆
 

(Of course, this expression predicts that transition never happens if ,
o o

H S∆ ∆

don’t have the same sign). 

In the Benzene example: 
33.9 kJ/mol

* 353K=80 
0.0964 kJ/mol

o

o

H
T C

S

∆
= = = °

∆
. 

True value: 80.1 C°  – excellent agreement! (actually, that’s a little of a 

coincidence, usually the agreement is not as good as in this case). 

  

0 ( *) *o oG T H T S= ∆ = ∆ − ∆
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7.iv) Derivative of G 

Recall that we define G=H-TS.  We see that if H and S are constant as a function 

of T, then  

������ 	!"zy� 	. 	d#.	
(we inserted the “P fixed”, since this equation needs to be evaluated for fixed 

pressure.).  This equaiotn was calculated fr H and S which don’t change with T 

(and P fixed); however, it turns out it is a general relation, valid even if we 

don’t approximate H and T as constant. (Proof: 110A). 

Therefore, this gives a very nice graphic interpretation of G: its slope w.r.t. T at 

any T (at fixed pressure of course) is the negative of the entropy. 

Example: 

For example consider a “reaction” A(liq)�A(gas).  Consider it at 1 bar: 

∆G0=Gf 
0(A gas,T)- Gf 

0(A liq,T) 

And recall 

∆S0=Sm 
0(A gas,T)- Sm 

0(A liq,T) 

-∆∆∆∆S0 will be the slope of ∆∆∆∆G0 w.r.t. temperature! 

G vs. T diagram  

At the region of T where Gl
0 is lower than 

Gs
0 and Gg

0 , the system is liquid, and 

analogously for gas and solid. 
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7.v) G AND BATTERIES: 

 ∆G also tells you something very important: how much electrical energy you can 

get out of a reaction (or needs to make a reaction happen).  Recall that without 

electrical work, we derived that  

�� � 0	*D, 4	YWANR. , AW	P^PYR9QY8^	_W9�& 

It turns out (a few lines derivation, see 110A if you take that course), that when 

we allow electrical work input or output, then  

�� � O_*P^PY. &				*D, 4	YWANR. & 

Integrate, get 

 $% � w(elec.) (const. T and P only) 

EXAMPLES:   

Left: G(final) is higher than G(initial) by 5kJ/mol; this means that 

 �G = 5 kJ/mol, we need to inject at least 5kJ of electrical energy to enable one 

mole to react. Without electrical energy, this reaction won’t happen.   

Right: G(final) lower than G(initial) by 3kJ/mol – we could use this G difference  

to get 3kJ of electrical work from this reaction (for one mole). If reaction is 

allowed to happen without extracting the electrical energy, this 3kJ/mol will be 

“wasted”, i.e., turn to extra heat.  
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Part 8: Chemical Equilibrium and law of mass action. 

 

Summary: Getting reactions from &% . ë	ú'	÷(búðúûöúbì  using a proof that 

&% . &%) + tuð'*, 
ë . &%) + tuð'+ 

i. Deriving G for an ideal gas:   

�U*D, 4& . �U5 *D& + ED � 445�  

and mentioning the analogy for solutions: 

�U,Ù*îãñ, D& . �U,Ù5 + ED^A |îãñ1T} 

i. Reactions and deriving Q 

ii. Evolution of Q to K=Qeq 

iii. The mass reaction law K and Kc 

iv. Properties of K – derived from Kc 
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Law of mass action and Q. 

We will derive two major relations in this chapter, which are essentially (once 

we understand the meaning of the symbols Q and K) the law of mass action: 

∆∆∆∆G = ∆∆∆∆G0 + RT ln(Q) 

0000 = ∆∆∆∆G0 + RT ln(K) 

The book starts from law of mass action; instead, we will derive it.  The 

approach we’ll take is to derive a relation between Pj’s in a reaction and ∆∆∆∆G  

and use it to get relations about what happens on the way to and in 

equilibrium. 

The key will be to realize that ∆∆∆∆G=0 in equilibrium, and use it, as well as the 

relations between G of a substance and that same substance in a “standard 

state”, to get the densities in equilibrium.   

(8.ii)  G for ideal gas: pressure dependence 

We first need the dependence of the molar Gibbs free energy, Gm on 

pressure or density, at a fixed temperature. 

Three possibilities: 

• Solids and liquids: G essentially independent of pressure (at least for our 

purposes here), so �U,Ù ≅ �U,Ù5 *D&, where 0 refers to calculation at 1bar, m 

denotes molar, and A is a superscript 

• Vapors (gases): at a fixed T, G depends on pressure since the entropy 

depends on the pressure. Recall that for an isothermal expansion of an ideal 

gas, we proved that (see middle of Part 6): 


U*D, 4& . 
U5 *D& d E ln � 445� 
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• Further, the energy of an ideal gas is independent of pressure at fixed T , and 

since H=U(T)+PV= U(T)+nRT the enthalpy is also independent of pressure, 

i.e., H=H(T) for an ideal gas (and we often label it with a 1bar superscript, as 

H=H0(T), even though it is the same at other pressures). 

 

 Taken together we get for G of an ideal gas 

�U*D, 4& . ,¨5*D& d D
U*D, 4&- . |¨5*D& d D �
U5 *D& d E ln � 445��}  

i.e., 

�U*D, 4& . �U5 *D& + ED � 445� 								*ideal	gas	only!& 

where: 

�U5 *D& ≡ �U*D, 45& . *¨5*D& d D
U5 &			 
• Solutions: Finally, consider solutions, i.e., a  species “A” in a solution, with a 

concentration [A] (for me concentration means molar density, and will be  

measured usually in mol/Liter).  The Gibbs free energy is dependent on the 

concentration, and can be related to a reference concentration (1 M = 

1mol/L)  as: 

�U,Ù*îãñ, D& . �U,Ù5 + ED^A |îãñ1T}				*solutions, approximate& 

where the zeroth-order Gibbs free energy is now defined NOT with respect to 

pressure (the solution’s internal properties do not depend much on external 

pressure) but with respect to the reference density, 

 �U,Ù5 . �U,Ù*1T, D&. 
Note that the dependence on concentration looks almost the same as the 

dependence on pressure of a gas (here the concentration of the solute is 

analogous to the pressure of the gas, and the reference concentration, 1M = 

1mol/Liter, is analogous to the reference pressure 1bar.  This relation is no 

coincidence, as we will see later in Section 12 on Raul’s law. 
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(8.iii) Reactions and deriving Q 

Now that we have the dependence of G, let’s put it together.  

For simplicity, consider a “generic” reaction (actual examples follow later): 

3ã*[& + 2á*N& → ãá*[& + ã�á*8å. & 

And consider a fixed T (all quantities depend on T, we’ll often hide this 

dependence in the derivation to avoid excessive writing). 

We know that 

Δ� . �U*ãá*[&& + �U,ã�á*8å. &- − 3�U,ã*[&- − 2�U*á*N&& 

Of these terms:  

• the G of the gases (A, AB) depend on ln of the pressure, e.g.,  

�U*ãá& . �UÅ *ãá& + ED ln �4ÙÚ4Å � 

• and for the solution (A2B) G depends on  ln of the density, 

�U,ã�á*NW^. &- = �UÅ *ã�á& + ED ln |îã�á*8å. &ñ1M } 

• While the Gm of the solid is independent of pressure 

�U,á*N&- . �UÅ *á*N&& 

so we get 

�� . �UÅ *ãá& + ED ln �4ÙÚ4Å � + �UÅ *ã�á& + ED ln |îã�á*8å. &ñ1M }
− 3 ��U5 *ã& + ED ln �4Ù45�� − 2�UÅ *á& 

So collecting the G0 terms, we get (very important for the rest of the course!) 

�� . ��5 + ED ln. 
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Where  

��5 . �UÅ *ãá& + �UÅ *ã�á& d 3�U5 *ã& d 2�UÅ *á& 
and we defined the reaction quotient, which is here defined as 

ln. = ln �4ÙÚ4Å � + ln |îã�á*8å. &ñ1M } − 3 ln �4Ù45� 

To develop the ln terms further, recall that  

ln e87i = ln*8& − ln*7& 

	8 ln*7& = ln*7à& 

d8 ln*7& = ln � 17à� 

So 

ln. = ln �eîÙ©Úñ�f i e�Üß
�� i

e�Ü
��i, §	 

i.e., here 

. . eîÙ©Úñ�f i e�Üß�� i
e�Ü��i, 	 

Note: the solid does not enter into Q, since its density does not change (and 

therefore its Gibbs free energy does not change. 

The same considerations apply to any other reaction; for example, in the 

reaction 3NO(g)� NO2(g)+N2O(g), then the same relation (�� . ��5 + ED ln.& 

applies, where now 
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2 2

3

NO N O

o o

NO
o

P P

P P
Q

P

P

  
  
  =

 
 
   

Another important thing to note about Q is that it is defined always, even if the 

reaction did not reach equilibrium; i.e., if we inject NO to a container which is 

initially empty, then initially Q will be zero (as N2O and NO2 are initially zero) 

but as time passes some NO2 and some NO2 will be made, so Q will grow, until 

there is equilibrium, and then Q does not change anymore (since the pressures 

of NO, NO2 and N2O will not change anymore).  More on this later (we first need 

to understand the equilibrium case) 

(8.iv) Evolution of Q to K=Qeq. 

At the end of the reaction �� . 0, i.e., we reach equilibrium. 

The value of Q at equilibrium, is a very special quantity, which we call  

� ≡ .*På. & 

K  has no relation to K used for Kelvin! Just an unfortunate coincidence of 

using the same symbol to denote several different things! (Just like we use 

P for probability and pressure…)   

Since �� . 0	at equilibrium, 

0 . ��*På. & = ��5 + EDln*.*På. & 

i.e., 

 

0 . ��Å + ED	 ln � 

So  
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� . exp|d��5
ED } 

We’ll spend the next few lessons discussing K; but before we do that, let’s 

conclude with the more general quantity, Q (recall: K is the equilibrium 

value of Q). 

Q yields $% and therefore the electric work needed or extractable from the 

reaction.    

For a general reaction, 

 Reactants �� products 

Depending on the initial condition, if we have too much products or too much 

reactants, Q will be larger or smaller than its final value, K (i.e., the 

equilibrium value): 

If Q is too small initially, then the reaction will shift to the right, i.e., 

products will be made;   

Q(t)<K ���� products rise. 

If Q is too large initially, then the reaction will shift to the left, reactants 

will be made at the expense of the products.  

Q(t)>K ���� reactants rise, products lost. 

Q can have any value from 0 to infinity.  As the graph shows, Q will evolve in 

time until it reaches the equilibrium. value, K (which is Temperature-

dependent). 

We reemphasize that Q is 

related to the amount 

of electric work, d&%,	 
that can be extracted 

from the reaction: 
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0

/

ln  

From def. of K, get:

- ln ln

So:

ln( / )

Divide by RT and expontentiate:

G RT

G G RT Q

RT K RT Q

RT Q K

Q
e

G

K

G

∆

∆ = ∆ +

∆

∆

= +

=

=

 

Note that at late times, when equilibrium is established so Q=K, the overall 

difference in Gibbs free energy, G∆ , vanishes, so no more electrical work can be 

extracted.  

Of course, the change of Q in time does not affect the value of 0
G∆ which refers to 

what happens when products and reactants are at 1 bar, so it ( 0
G∆ ) does not 

change in time. 

From now one we’ll mostly concentrate on equilibrium (i.e., on K(T)) , mention 

Q sporadically, until we get to electrochemistry (batteries) where Q determines 

the potential in the battery. 

(8.v) The mass reaction law, K and KC 

In the remainder of the chapter we will relate K to the mass reaction law as 

presented in the book.  Further, we will get some properties of K.  The next 

section, LeChatelier's principle, will allow us to learn how to use K in specific 

examples to predict the equilibrium, changes in it, and the reason for the 

direction of the change. 

Relating to the mass action law. 

Take for concreteness the reaction we considered earlier,  

3ã*[& + 2á*N& → ãá*[& + ã�á*NW^. & 
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and assume it is in equilibrium.  Further, we will not write the “eq” subscript, 

but you need to remember that all quantities (pressures, densities) that 

we consider in this example are only predicted at equilibrium. 

We have 

exp |−��5ED } = �*D& = eîÙ©Úñ�f i e�Üß�� i
e�Ü��i, 				*AW_	8^^	9PCP9	RW	PåXQ^Q79QX�!& 	 

Now, we could write this in in a form that involves all the densities, and only the 

dentists (not pressures), or all products and reactants.  That will be called the 

mass reaction law; however, it is really not as useful as the equation above, but 

since the book covers it we will do that to. 

Specifically, first convert the pressures of the gases to densities (since îãñ . ÛÜg , PRY. &	 4Ù . EDîãñ,			4ÙÚ . EDîãáñ 
			�*D& . eîÙ©Úñ�f i e�Üß�� i

e�Ü��i, . 11T �4Å
ED�

� îã�áñîãáñîãñ,  

i.e., 

îã�áñîãáñîãñ, . �*D& ∗ 1T ∗ �ED4Å�
�

 

Further, [B(s)] is independent of pressure and only depends on temperature, so 

we can multiply the eq. above for K by its density (with the appropriate power), 

i.e., multiply by 		 �îÚ*È&ñ©,  yielding 

		îã�áñîãáñîãñ,îáñ� . �/*D& 

where we called the right-hand side the concentration (c) form of the 

equilibrium constant, KC(T):  
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�/*D& . 1îá*N&ñ� ∗ 1T ∗ �ED4Å�
� ∗ �*D& 

The nice thing about �/*D& in the emphasized equation (in blue) is that it is 

looks very symmetrical; it has all the densities, and each density is multiplied or 

divided and is to the power of its stoichiometric coefficient.   

Obviously, we can have such an equation for any reaction, i.e., for a general 

reaction  

8ã + 7á + Y¬	 ↔ ­Ð + S0 + ó1 

We can write 

�/*D& . îÐñ�î0ñ�î1ñ�îãñàîáñÆî¬ñ�  

regardless if the compounds are gases, liquids, etc., and can relate Kc to K and 

therefore to ��. This also makes it easier to derive some properties.  However, 

you should remember that �� is related to K , not to Kc 

(8.vi) Properties of K – derived from Kc 

We will use Kc here, but these properties also apply to K 

 Consider the reaction 

aA+bB xX⇔  

With 

[ ]
( )

[ ] [ ]

x

c a b

X
K T

A B
=

 

• Reverse reaction – invert K  

Now consider the reverse reaction  

xX aA+bB⇔  
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By construction (since the meaning of reactants and products was reversed): 

,
[ ] [ ]

( )
[ ]

a b

c reverse x

A B
K T

X
=

 

So:  ,
1

( )
( )

c reverse
c

K T
K T

=

 

And similarly if we use K, and not Kc  

 

1
( )

( )
reverseK T

K T
=

 

• When we add 2 reactions, the K’s multiply: 

This is obvious from � . exp e− 23Þ
ª� i:		 The ��Å add, so their exponentials 

multiply. 

Example:   

ã + á → 2¬					*1& 

¬ → 34													*2& 

We can add the 2nd reaction (once we multiply it by 2 in this case!) to the first; 

symbolically, in this example:  

*1& + 2 ∗ *2& . *3&. 
and specifically  

ã + á + 2¬ → 64 + 2¬									*3& 
i.e., 

ã + á → 64																											*3& 

But when we add reactions, the ��Å add (with the correct coefficients), i.e., 
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Δ�,5 . Δ��Å + 2Δ��5 

So 

�, . exp |−��,5ED } = exp |−Δ��Å + 2Δ��5ED } = exp |−Δ��ÅED } exp52 ∗ |−Δ��5ED }6 

i.e., 

+w . +ê*+x&x 
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Part 9: Solving for reactions and LeChatelier’s 

principle 

 

Summary 

i. LeChatelier’s principle: system rearranges to mitigate change 

ii. Example: 3NO � � NO2+N2O reactions, given initial pressures: 

a. Determine K (at desired T),  Pick any v, Determine initial n’s R 

Relate n for each species with “x”, amount of reaction 

 For each “x”, from the n’s get the P; find the “x” such that the combination on P 

gives “Q” that fits K. 

iii. Then, shrink V �  

All P’s rise, Q bigger, system away from equilibrium; trace system till it 

re-equilibrates �  

As we’ll see Ptot slightly reduced, in accordance with LeChatelier’s 

principle. 

iv. T-dependence of chemical reactions:  K decreases when T rises for 

exothermic reaction,  explaining how it comes from: 

0 0

exp exp
H S

K
RT R

   ∆ ∆
= −      

     
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LeChatelier's principle: a general principle, mostly (but not 

always!) obeyed: 

Says: 

When a system is in equilibrium, and we change some condition, then the 

system “fights back” a little, i.e., rearranges itself to somewhat mitigate the effect 

of the change of external conditions;  

In short: 

Systems act to mitigate change. 

Simple example: 

Consider a reaction room temperature, 

ã → 2á 

With K=1 at this temperature.  Say we reach equilibrium with  PTOT=0.75*P0; 

(a) What’s PA, PB 

(b) Now we change the external conditions, i.e., reduce the total volume.   

The system rearranges, as we’ll see.   At the new equilibrium the total 

pressure is doubled PTOT
  = 1.5P0; what’s PA final , PB final, and what’s the 

relation to LeChatelier’s principle 

Answer (we’ll use units where P0=1 and therefore drop the P0 symbol): 

(a) 

4Ú�4Ù . � . 1			so:	 
				0.75 = 4ÒÅÒ = 4Ù + 4Ú = 4Ú�� + 4Ú = 4Ú� + 4Ú 

The solution to this 2nd order equation is 4Ú . 0.5, 4Ù = 0.25, Q. P.,	twice as 

much B as A. 

(b)  Now Ptot is higher, so 
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1.5 = 4Ú789:;� + 4Ú789:; .			A	simple	2nd	order	equation, with	solution:	 
4Ú789:; . d1 + √1 + 4 ∗ 1.5	2 . 0.82 

4Ù<ÑÛàâ . 1.5 − 4Ú = 0.68 

Note that now the ratio of B to A is much less than 2 (0.82/0.68=1.2!).  The 

reason is LeChatelier’s principle:  the system tries to act to mitigate the 

pressure increase; it can do so by converting some of the B into A, as each 

time 2B converts to become a single A, the number of molecules is reduced 

by 1, therefore relieving some of the increased pressure. 

Details of the pressure mitigation 

You may ask: where is the pressure mitigation? We started with 0.75 bar, and 

ended with 1.5 bar?  What was mitigated? 

To answer, realize that we only considered what happened at the end, i.e., at 

the initial equilibrium and the final equilibrium. 

Let me give you the details on what happened, without showing you how I got 

this numbers (you’ll see how to do it in a realistic example, in an insert that 

follows).  See also figure in the next page or two! 

Imagine that we reduced the volume extremely fast, before the system had time 

to “act”, i.e., so fast that no reactions happen while we reduced. 

Turns out that for our problem, the volume was reduced by a factor of 2.18, i.e., 

the final volume is about 46% of the initial volume. 

Then, the individual pressures jump.   

We know that P=nRT/V, and, since AÙ, AÚ had no time to change, PV is fixed, the 

volume reduction by a factor of 2.18 caused a pressure increase of 2.18, so:  

4Ù*just	after	push	& . 2.18 ∗ 4Ù*before	push& = 2.18 ∗ 0.25789 = 0.545	 
4Ú*just	after	push	& . 2.18 ∗ 4Ú*before	push& = 2.18 ∗ 0.5789 = 1.09	So 
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ü=)=*>?@A	B!AyC	{?@D& . ë.EòE + ê. ëF = ê.GwE	 
However, when that happens, A and B are no more in equoilibreium, since 

. . 4Ú�4Ù . 1.09�0.545 > 1 

i.e., Q will not equal K (which is 1). 

Then, what the system, needs to do to rereacxh equilibrium is to shift some 

products towards reactants; that will cause of course a net reduction in the 

number of moles here, since 2 moles of B make, when they are consumed, 

only one mole of A! 

Let’s then denote the eventual increase in PA –(from its after-push value, 0.545) 

as “y”; i.e., 

4Ù	<ÑÛàâ . 0.545 + S 

then, the pressure decrease in B from the aft-erpush value will be twice as much 

(with the opposite sign): 

 

P
tot

 

time 

Time where piston 
compressed to 46% 
of initial volume 

 

0.75 

1.63 

1.5 

LeChatelier’s principle: mitigation  

of pressure from post-push value (1.64) 

to final pressure (1.5) 
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4Ú789:; . 1.09 − 2S 

So then we need to solve: 

1 . � . 4Ú<ÑÛàâ�
4Ù<ÑÛàâ .

*1.09 − 2S&�0.545 + S . 
The solution is, as you can verify  

S~0.135, 
so 

4Ù789:;~0.68,			4Ú789:;~0.82, 
as we derivd in the beginning. 

 

So to conclude: 

• We started with Ptot =0.75, with the system at equilibrium. 

 

• Compressed very quickly reducing the volume by a factor of 2.18 (i.e., 

reducing the total volume to about 46% of its initial value), yileding 

Ptot=1.635; that took the system away from equilibrium. 

 

• Then the system rearranges, 2B converts back to A, causing reduction in the 

pressure, so Ptot is reduced back to 1.5; this last part is the LeChateliere’s 

principle regime – the system fought back a little, and, within the new total 

volume (46% of the initial volume), it reached a new equilibrium where the 

rise in pressure (from Ptot=0.75 to 1.635 ) is somewhat mitigated, so the final 

total pressure is Ptot=1.5 

I.e., 

P: 0.75����1.64���� (LeChatelier’s) 1.5. 
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INSERT: Comprehensive reliastic example (will teach us about reactions in 

general). VERY LONG! NOT COVERED IN CLASS, BUT YOU NEED TO KNOW IT 

Take the reaction (all gases) 

3NO�� N2O+NO2 

at room temperature.   

Assume that we do the experiment at 800K, and inject NO and NO2 so that 

• the initial pressure of NO is  0.4 bar; 

• and the initial pressure of NO2 is  1.6 bar; 

• and there’s no N2O initially 

 Then: 

a) Calculate K(T=800K)  (don’t get confused between K used for reactions and K 

as Kelvin). 

b) Calculate the pressures of NO, NO2, N2O in equilibrium, if the total pressure is 

kept constant at the same value as it is initially (i.e., Ptot = 2 bar) 

c) The next stage will be to increase SUDDENLY the total pressure from 2bar to 

4bar and then keep the volume fixed (i.e., shrink the total volume by a factor of 

2) calculate the pressures at the new equilibrium (i.e., the equilibrium at the 

reduced volume).  You’ll see that the new equilibrium is shifted toward s the 

products, and this will help to somewhat mitigate the pressure increase 

(i.e., the total pressure increased from 2bar to 4bar and is then slightly 

reduced). 

Answer: 

The solution is quite lengthy; we’ll skip over some details. 

Schematically:  

First determine K; 

Then initial pressures (P’s) � initial density (n’s) � vary the density �     

determine the pressures and Q � till Q =K. 
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In detail:  

(i) First: determining K 

K=exp(-∆Go/RT); 

The initial temperature is not room temperature; we don’t  have   ∆Go at that 

temperature tabulated. 

So to calculate, we’ll have to use 

∆Go = ∆Ho - T∆So 

We’ll approximate (good enough): 

( ) ( )

( ) ( )

0

0

∆ ∆

∆ ∆S

o
room

o
room

H T H T

S T T

≅

≅
 

so In our case: at room temp., from the table at the end of the book (rounding to 

1 significant digit after the period): 

 

( )

( )

2 2

2 2

, , ,

, , ,

kJ
 –  3 155.4

mol

J kJ
 –  3 172.1 0.1721

K mol K mol

o
room f NO f N O f NO

o
room m NO m N O m NO

H T H H H

S T S S S

= + = −

= + = − = −

 

Where in the last part we converted the entropy so it is in kJ/ (mol K), making it 

easier to add –TS to H (i.e., ensuring that energy is always in the same unit, kJ). 

Next: 

 0 kJ
) 800(800 ) ( ( ) 1

l
7.7

mo

o o
room roomG K H T SK T∆ ≅ ∆ ∆ ≅ −− •  

so 

 

Also, a useful fact for below is that E ∗ 800� =6.64 kJ/mol (verify!), so 
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	�*D . 800�& = exp �− ��ÅE ∗ 800�	� . exp �	17.7 �¥�¡¢6.64 �¥�¡¢
§ = P�.HI = 14.4 

(ii) SECOND PART: Determining the pressures, assuming P(total)=2bar 

The initial pressures are:  (for simplicity we often don’t include the “i" or 

“initial;” subscript, but all our results in this subsection are for the initial 

pressures and densities). 

We need P�n, i.e., the discussion and intermediate formulas should really be 

in terms of mole numbers, not pressure.   

We know P V= nRT, so, initially: 

A
B . ?ÑED4
B 

A
B© . ?ÑED4
B©  

The problem is that we don’t know the initial volume; in essence, we can take 

any value of the initial volume, and that will give us a corresponding number 

of moles.   

Let's take, e.g., Vi=20.75 L (we could have taken any other value, this turns 

out to be convenient in the manipulations below). Then:   

     Using, 1P0*L=100J=0.1kJ, we get 

A
B . ?ÑED4
B . 20.75L ∗ 1.6	P¡6.64	kJ/mol = 5 P¡LkJ mol = 0.5mol 
As 4
B© . 0.25 ∗ 4
B,			we	get		A
B© . 0.25 ∗ A
B = 0.125	mol 
(iii) Next, what will happen after the compounds react?   

Well, we know the reaction is  

3NO(g) �� N2O+NO2 
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That means that when 1 mol of NO2 is made, then 1 mol of N2O will be made, and 

3 moles of NO will be consumed; so if an "x" amount of moles is made in the 

reaction, then the number of moles of each species will be (we don’t write it 

explicitly, but all the densities are in “mol”) 

A
B . 	A
B*Q& d 3­ . 0.5 − 3­	 
A
B© . 	A
B©*Q& + ­ . 0.125 + ­ 

A
©B . 	A
©B*Q& + ­ . ­ 

And, as useful for the future: 

AÒÅÒ . A
B + A
B© + A
©B . 0.625 − ­ 

The allowed values of x are those that lead to non-negative number of moles for 

each of the species, i.e., in this case  

0 ≤ ­ ≤ 0.53 = 0.1666	 
(Note that if initially we had all product species, i.e., if N2O was also present, then 

"x" could have also been negative). 

What's the value of x? 

For this we need to go back from densities to pressures.   

We are told what's the final pressure, Ptot=2bar, not the final volume; so we use: 

4
B . A
BAÒÅÒ 4ÒÅÒ .
0.5 − 3­0.625 − ­ ∗ 2 

Note we calculate all pressures henceforth in units of P0, so we omit the P0 

symbol, i.e., Ptot=2, and  

4
B© . 0.125 + ­0.625 − ­ ∗ 2											4
©B . ­0.625 − ­ ∗ 2 

Now that we have the pressures, we can write Q: 
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2 2

3

NO N O

NO

P P
Q

P
=  

We could have copied the values of the P's in terms of x and inserted them into 

Q, to get a monstrous looking expression that depends only on x, but instead it is 

much better to prepare a table that will give us, for progressively better guesses 

for x, the values of the pressures and Q.  Here's the table (using excel or your 

calculator): 

x (between 
0 and 

0.1666) 

4
B4Å .	 
2 0.5 − 3­0.625 − ­ 

4
B©4Å =	 
2 0.125 + ­0.625 − ­ 

4
©B4Å =	 
2 ­0.625 − ­ 

2 2

3

o o

NO

NO N

o

O
P P

PQ
P

P

P=
 
 
 

 

K 

0.0 1.60 0.40 0.00 0.00 14.40 

0.08 0.95 0.75 0.29 0.25 14.40 

0.12 0.55 0.97 0.48 2.71 14.40 

0.14 0.33 1.09 0.58 17.57 14.40 

0.13 0.44 1.03 0.53 6.16 14.40 

0.135 0.39 1.06 0.55 10.03 14.40 

0.138 0.35 1.08 0.57 13.89 14.40 

0.139 0.34 1.09 0.57 15.60 14.40 

0.1385 0.35 1.08 0.57 14.71 14.40 

0.1383 0.35 1.08 0.57 14.38 14.40 

Note what we have done: we started with a random value of x (0.08, midway 

within the allowed range), then adjusted it up or down till Q essentially equals K.  

So the final prediction is that when Ptot=2bar, then at equilibrium the pressures 

of NO, NO2 and N2O are, are, respectively,, 0.35 bar, 1.08 bar and 0.57 bar. 

By the way, what’s the final volume at this stage? Can use any of the species to 

calculate, e.g., NO; 

A
B . 0.5 − 3 ∗ ­<ÑÛàâ = 0.5 − 3 ∗ 0.1383 = 0.0851 
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?ÇÛ
ÈÒà�Ç	ÑÑ . EDA
B4
B . 6640 Jmol ∗ 0.0851	mol0.35	P¡ . 1615 JP¡ . 16.15	L 

Of course, we’ll get the same answer if we were to put in the pressure and 

number of moles of the other species. Note by way how the final volume in 

stage (ii) is smaller than the initial volume we started with (20.75 L); this is 

because the reactions reduces here the number of moles, so the same total 

pressure is obtained with a smaller volume to accommodate the smaller total 

number of moles.  

Next part: 

(iv) Recall Question (c) from a few pages ago: what happens when we 

shrink the resulting system in part ii so that the pressure suddenly 

rises from 2bar to 4bar, and then keep the volume fixed. 

When we quickly double the pressure, before any reactions happened (it may be 

very difficult in practice to do it so quickly, but let’s assume we can shrink it very 

fast), then V is shrank by a factor of 2, from  Vendof ii = 16.14L    to     Viii= 8.08L 

   Then, we need to do a similar table to the one we had before, except that now 

we know the volume, not the total pressure.  So therefore we use:  

ED?ÑÑÑ .
6640 J

UÅâ8.08é = 8.21 45�W^		 
So:    

4
B . ED?ÑÑÑ A
B . 8.21 ⋅ *0.5 − 3­& ⋅ 45 

And similarly: 

		4
B© . ED?ÑÑÑ A
B© . 8.21 ⋅ *0.125 + ­& ⋅ 4Å , 
										4
©B . ED?ÑÑÑ A
©B . 8.21 ⋅ ­ ⋅ 4Å 
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4ÒÅÒ . ED?ÑÑÑ AÒÅÒ . 8.21 ⋅ *0.625 − ­& ⋅ 4Å , 
Let's insert into a table (that now includes the number of moles for each 

species). Each line is associated with a different value of x; we iterate till 

convergence, as before.   

An important point: notice that initially, even though the number of moles did 

not change,  Q will be different from K (i.e., its value will be 7.20 while before it 

was close to 14.4), since the volume changed after we reached equilibrium, and 

therefore the pressure changed. 

  
mole numbers (in mols) Pressures (all in bars) 

      

        

x 

(between 

0 and 

0.1666) 

n(NO) = 

0.5-3*x 

n(NO2) 

=0.125+x n(N2O)=x 

p(NO) =     

8.21 

n(NO) 

p(NO2) =     

8.21 

n(NO2) 

p(N2O) =        

8.21 

n(N2O) Ptot Q K 

0.1383 0.0851 0.2633 0.1383 0.70 2.16 1.14 4.00 7.20 14.40 

0.1500 0.0500 0.2750 0.1500 0.41 2.26 1.23 3.90 40.19 14.40 

0.1450 0.0650 0.2700 0.1450 0.53 2.22 1.19 3.94 17.36 14.40 

0.1420 0.0740 0.2670 0.1420 0.61 2.19 1.17 3.97 11.40 14.40 

0.1430 0.0710 0.2680 0.1430 0.58 2.20 1.17 3.96 13.04 14.40 

0.1437 0.0689 0.2687 0.1437 0.57 2.21 1.18 3.95 14.38 14.40 

 

Note an important point: we get that now that the volume is halved, than in 

order to reach equilibrium x needs to be increased, i.e., some more NO 

needs to be consumed.  This results in a reduction of the total number of 

moles, s 

 ntot =0.625-x (see before) changed from    

ntot = 0.625-0.1383=0.487 mol initially (at the beginning of stage iii)   

to 

             ntot = 0.625-0.1437=0.481 mol finally (at the end of stage iii),  

i.e., a 0.0054 mol decrease (about 1.1% decrease).  

Put differently: LeChatelier’s principle worked: 



156 
 

• After stage (ii) the total pressure was 2bar 

• Then, at the beginning of stage (iii), volume reduction temporarily increased 

the total pressure to 4bar 

• The gases then rearranged by removing reactants and making products,  

(3NO � NO2+N2O) since that reduces the total number of moles, thereby 

slightly relieving the pressure, i.e., reducing Ptot to 3.95bar. 

Graphical summary: 

  

END OF COMPREHENSIVE EXAMPLE INSERT! 
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LeChatelier’s principle for the T-dependence of 

K(T). 

Prologue: for pressure LeChatelier's principle implied that a reacting system 

fights back a pressure increase by rearranging products or reactants to decrease 

the change,  

Similarly, for a raise of Temperature a similar phenomenon occurs, as we will 

show now – the system rearranges (shifts towards products or reactants) in a 

way that will "absorb" some of the extra energies. 

In detail: First, recall some definitions. 

Reactions with ∆∆∆∆H0<0 are called exothermic;  the reaction releases heat.  (H 

of reactants higher than that of product). 

∆∆∆∆H0>0 are called endothermic;  the reaction absorb heat from surrounding.  

Let’s see the temperature dependence of K and how it relates to LeChatelier’s 

principle. 

 
0 0 0 0 0

exp exp exp
G H RT S H S

K
RT RT RT R

     ∆ ∆ − ∆ ∆ ∆
= − = − = − +          

     
 

Which we’ll write as 

0 0

exp exp
H S

K
RT R

   ∆ ∆
= −      

   
 

Now usually, as mentioned, ∆H0 and ∆S0 don’t change much with temperature, 

so the T-dependence of K is due to the 1/T term in 
0

exp
H

RT

 ∆
−  
 

. 
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For an exothermic reaction, ∆H0<0 – Thus, at low temperatures (where 1/T is 

very large) 
0

H

RT

∆
−  is very positive,  

but when T is larger, 1/T is smaller, so 
0

H

RT

∆
− is less positive; 

In short, for exothermic reactions lnK (and therefore K) decreases with T.  

Let’s understand it in terms of LeChatelier’s principle. 

For an exothermic reaction, when we raise the temperature, the system wants to 

fight this change;  

The way to do it is to move products back into reactants, since reactants store 

energy in them, i.e.,  

By moving products back to reactant the system : 

• reduces the kinetic energy (and therefore reduce the temperature) and 

• convert it to the potential energy stored by the reactant. 

Qualitatively, imagine that we consider 

some exothermic reaction, which is at 

equilibrium at room temperature; raise 

the temperature  VERY QUICKLY (before 

the system has time to react and change 

the number of products and reactant) 

In); and then let it evolve;   

What LeChatelier’s principle tells you is 

that the system will then shift so more products to reactants (reduce # of 

products, raise # of reactant' moles), as this will cause the "absorption" of 

kinetic energy.   
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Practical calculation of K at different temperatures: 

From:      

0 0

exp exp
H S

K
RT R

   ∆ ∆
= −      

   
 

we get: 

ln �*D& = −�¨ÅED + �
ÅE  

Again, approximate that �¨Å	and �
Å are both T-independent. 

 

We apply this equation at two different temperatures we get 

ln �*D�& = −�¨ÅED� + �
ÅE  

ln �*D�& = −�¨ÅED� + �
ÅE  

Subtracting gives 

			ln �*D�& − ^A�*D�& 	. d �¨Å
ED� d ��¨Å

ED� � . d�¨Å
E � 1D� d 1D�� 

Therefore, from the rate at one temp. and from �¨Å ,	the amount of heat given 

or taken in the reaction, we can find the rate at other temperature. 
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Part 10:  Acids and Bases  

 

Contents: 

i) Definitions – acids and bases donate/accept protons; Lewis 

definitions; Kw, pH and  pKa 

ii) Densities when pH is known:  Determining neutral/ionic densities of 

an acid, [HA] and îã»ñ from pH.   

Indicators. 

iii) Determining î¨çñ	when we throw into a solution acids/bases.  

Buffers. 

iv) Determining an unknown amount of an acid: Titrations. 

 

 

NOTE: THROUGOUT THIS CHAPTER WE’LL ALWAYS REFER TO MOLAR 

DENSITIES [A] IN MOLES PER LITER, M, AND WE OFTEN WON’T DESIGNATE 

THE UNIT M.   

i) Definitions – acids and bases. 

Define: 

 Acid: (Bronsted-Lowry) – Proton Donor 

 Base (Bronsted-Lowry) – Proton Acceptor 

Dissolution in Water: 

2 3( .) ( ) ( ) ( .)

( )        (base)         (conjugate      conjugate 

                                       acid)               base)

HA aq H O l H O aq A aq

acid

+ −+ ⇔ +
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Equivalently we write:  ( .) ( .) ( .)HA aq H aq A aq
+ −⇔ +  

Similarly, we write a generic base equation: 

 2( .) ( ) ( .) ( .)

base         acid          conj. acid     conj. base

B aq H O l BH aq OH aq
+ −+ ⇔ +

 

More generally:   
  +                          +          

acid      base        base conj.toA        acid conj. to B

HA B A BH
− +⇔

 

Note that we don’t need to have a water solution at all, as in the reaction 

 3 4( ) ( ) ( )HCl g NH g NH Cl s+ ⇔  

Since the latter is essentially a ³¨�ç 	+ ¬^»	 solid; i.e., this reaction shifts ¨ç 

from HCl to ³¨�ç 

Protons and protonated water: 

Note that a proton in water will always get water around it.  

2 3

Notation equivalence:  

O O +A

means the same as:

+   

HA H H

HA H A

+ −

+ −

+ ⇔

⇔

 

¨,¹ç(aq.)  or ¨ç (aq.)  are equivalent ways of denoting proton solvated in 

water, so we can use 3[ ] [ ]H O H
+ +=  interchangeably.  
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Lewis acids and Bases 

The Bronsted-Lowrey definition (acid is proton donor, base acceptor) is pretty 

broad;  

but the Lewis def. is even more inclusive: 

 Acid: an electron pair acceptor 

 Base: an electron pair donor  

We can see how the Lewis definition includes the Bronsted-Lowrey definition 

i.e., a proton donor (HA) can be viewed as accepting an electron pair (when it 

becomes ã»&;  

i.e., before dissociation(when the acid was in the form of HA, or formally H:A), A 

was attached to a proton and had no free electron pair; now, after releasing the 

H+, the remaining ã»	 is in the form 

  :A, 

 i.e., it has a free electron pair) 

 

(The arrows mean movement of an electron). 
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Acid examples: 

 Water:       

 

 

Note: most are oxyacids (release H bonded to O).  

ü
∝
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Base examples: 

• Water :  (i.e., water is amphoteric – both base and acid). 

• Sodium and potassium hydroxides, etc. NaOH    (OH ),      KOH−  

Note:  

• In NaOH we release OHd which in water combines with H+ to produce H2O 

� End result is: release of OHd is equivalent to being an acceptor of H+ i.e., a base. 
• Ammonia: ,       other amines:   : 

Lone pair facilitates proton acceptance 

 

Acid anhydrides and Base anhydrides. 

Note: some substances do not appear to be acids or bases by themselves, but 

when dissolved in water form acidic or basic solutions because of subsequent 

reactions.  These are called anhydrides.   Example: 

 

2 2 3 3

2
2

acid (accepts OH ):                 CO ( ) +  2H O( )      HCO ( .)  +   H O ( .)

base (causes release of OH )  CaO(s)  +     H O( )           Ca ( .)   2OH ( .)

g l aq aq

l aq aq

− − +

− + −

⇔

⇔ +
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Acid strength: refers to species ability to donate proton to water: 

2 3( .) ( ) ( .) ( .)HA aq H O l H O aq A aq
+ −+ ⇔ +  

And since it is impossible to designate whether a proton is free (H+) or bound to 

water molecule (H3O+), we can rewrite the equation above simply as 

( .) ( .) ( .)HA aq H aq A aq
+ −⇔ +  

Def.:    

 
[ ][ ]

(acid dissoc. const.)=
[ ]

A

H A
K K

HA

+ −

≡
 

KA >> 1    �   HA is a strong acid. 

KA << 1    �   HA is a weak acid. 

Strong acids: equilibrium in highlighted equation lies to the right �When an 

acid HA (initially of concentration [HA]0 ) is poured into water almost all of it 

dissociates, i.e., îK»ñ ≅ îLKñë. 

Weak acids:  equi. is often (some exceptions) far left, îK»ñ ≪ îLKñë but this 

depends on 0[HA]  

Convenient characterization of strength of acid is pKa, 

 10log ( )a apK K= −  

(Note: acids and bases are the only time in this course where we refer to log10, as 

in other places we use ln, i.e., log in base e). 

Examples: 

 

7

5

10 7    (strong acid)

10 5       (weak acid)

a a

a a

K pK

K pK
−

= → = −

= → =
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Clearly a species with a more positive pKa will be a weaker acid as its Ka is 

lower. 

Base Strength 

Species ability to snatch proton from water to form OHd(aq.) 

 

2 ( ) ( .) ( .) ( .)

[ ][ ]

[ ]

  

b

H O l B aq OH aq BH aq

OH BH
K K

B

− +

− +

+ ⇔ +

≡ =

 

And of course: 

10log ( )b bpK K= −  

Note: 

1:  bK >> strong base, many OHd produced, little îBñ left. 
1:  bK << weak base, most [B] remains. 

  



167 
 

 

Acid Strength: factors that influence 

 

Acid strength of [HA] is determined by 

• Strength of covalent bond if there is one  

HF              HCl                 HBr                    HI 

(Acid strength grows down the halogens column -- weaker bond) 

 

• Solution stabilization of Ad 

 

3 3

3 3 3 3

vs.

( ) ( )

CH OH CH O H

CH COH CH CO H

− +

− +

→ +

→ +

 

The latter ion is harder to stabilize in H2O due to bulky CH3 groups, so  

3 3( )CH COH  is a weaker acid. 
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KW 

 Water: acts as acid and base, i.e.,  

 

2

2 2 3

( ) ( .) ( .)

(  written as ( ) ( ) ( .) ( .))

[ ][ ]      W

H O l H aq OH aq

sometimes H O l H O l H O aq OH aq

K H OH

+ −

+ −

+ −

⇔ +

+ ⇔ +

=

 

Kw(T) : water dissociation constant.   

In any aq. solution at equi.,  ( ) [ ][ ] WK T H OH
+ −=   is constant, i.e., independent 

of everything else except T. 

 [word of caution – if the solution stops being aqueous solution, i.e., if it is, say, 

less than ~ 70% water, the product can change; but we won’t discuss such 

situations] 

The most important KW is for T=250C:  Kw(298K)= 10-14    

(not exactly, but very close to this round number; also, KW has units of 

M=mol/Liter, so it is really 10-14M2, but we often don’t carry the M units around). 

Since in pure water the positive and negative ions have the same conc., than in 

pure water: 7
[ ] [ ] 10 MH O H

+ − −= =  

An aq. solution with [ ] [ ]H OH
+ −=  is called neutral solution. 

Acidic aq. solution has [ ] [ ]H OH
+ −>  

Basic aq. solution has: [ ] [ ]H OH
+ −<  
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Note that the fact that [ ][ ]WK H OH
+ −=  allows to connect: 

• KA for acid HA and  

•  KB for the conj. base, Ad 

Method:   Since 

( .) ( .) ( .)

[ ][ ]

[ ]
a

HA aq H aq A aq

H A
K

HA

+ −

+ −

⇔ +

=
 

and 

2

2

         ( .) ( ) ( .) ( .)

( . .,    ( .) ( ) ( .) ( .),        where )

[ ][ ]

[ ]
b

A aq H O l HA aq OH aq

i e B aq H O l HB aq OH aq B A

HA OH
K

A

− −

+ − −

−

−

+ ⇔ +

+ ⇔ + =

=

 

It follows that: 

[ ][ ][ ][ ]
[ ][ ]

[ ][ ]
a b W

H A HA OH
K K H OH K

HA A

+ − −
+ −

−
= = =

 

The product on the right is just our good old KW !    I.e., 

W
b

a

K
K

K
=  

I.e., if Ka is known ���� find Kb  for conj. basis. 
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PH scale: 

Acidity quantified by def. of “pH” or “power of hydrogen ion”: 

10log [ ]pH H
+≡ −  

At 25 Celsius:   

7

7

7

Neutral:    [H ] 10 7

acidic:       [H ] 10 7

basic:        [H ] 10 7

M pH

M pH

M pH

+ −

+ −

+ −

= → =

> → <

< → >
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(10.ii) The relation between pH and pKa and acid ionic/neutral 

densities, and LeChatelier’s principle. 

Much of what we discuss below relies on the simple reaction equilibrium 

equation: 

[ ][ ]

[ ]

So:

[ ] [ ]

[ ]

a

a

HA H A

H A
K

HA

H HA

K A

−+

+ −

+

−

⇔ +

=

=

 

I.e.,  the ratio of neutral to ionic form of any acid equals to the ratio of the 

proton concentration and Ka. 

 

We can convert it to an equation in terms of pH by taking the logarithm  of each 

side in the equation: 

10 10

10 10 10

[ ] [ ]
log log

[ ]

[ ]
log log [ ] log

[ ]

a

a

HA H

KA

HA
H K

A

+

−

−
+

=

= −

 

i.e., we get the Henderson-Hasselbalch equation 

log�5 |î¨ãñîã»ñ} = −pH + pKN 

APPLYING THESE RELATIONS: Mathematically, these equations can give the 

concentration as a function of pH as following.   When we throw a fixed amount, 

[HA]0 , into water, it breaks as follows: 

[HA]+[Ad]=[HA]0 
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Therefore, combine with the eqs. above to get: 

0 0[ ] [ ] [ ][ ] [ ]
1

[ ] [ ] [ ]a

HA A HAH HA

K A A A

−+

− − −

−
= = = −

 

And therefore: 

îã»ñ . î¨ãñ51 + î¨çñ/�à . î¨ãñ51 + 10��:»�@  

The solution is presented,  as a function of pH, in the figure below. 

 

 

 

Note that when pH is less than, say, pKa-1  the acid is has mostly [HA] with very 

little îA»ñ; the opposite for a more basic solution with pH being pKa+1 or 

higher, where the solution is mostly ioni;  

This is in line with 	log�5 eî@ÙñîÙOñi . dpH + pKN, as we derived in the 

previous page; if the LHS is small then -1 (i.e., pKa less then pH-1) then 

there’s very little [HA], etc. 
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Side note: LeChatelier’s principle  

Note that the 10
[ ]

log
[ ]

a

HA
pK pH

A
−

= −   equation is according to LeChatelier’s 

principle: if the equilibrium is shifted so that the solution is more acidic (H+ 

increases e.g., if another acid is poured in), then the solution will “fight” this 

change by decreasing îã»ñ,	 i.e., shifting some of the protons so that they 

react with îã»ñ	 and make HA.  So the more acidic the environment (the 

lower the pH), the more neutral the acid; and if the environment is less 

acidic, than the acid will ionize. 

 

• Indicators: 

 From the graph above we see how to determine pH:  

Throw in an acid a known pKa that absorbs in different colors in the neutral 

[HA] and ionic [ã»ñ forms; if the color is mostly of [HA], then pH>pKa, and 

vice versa.  If we throw several indicators, each with a different pH, we can 

nail the pH fairly accurately – this is how litmus paper works.  
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(10.iii) Finding proton densities in acidic or basic solutions  

In the previous section we found out the acidic densities when the proton 

densities are known.  Here we go one step further and discuss cases when we 

don’t know the final proton densities, but wish to calculate them from known 

initial conditions. 

A complication in acids/basis is that even for a single acid, [HA], 2 things are 

unknown: 

 x  = amt. of [HA] that dissociates. 

 y = degree of water dissociation into H+ and [OHd]. 

E.g., put an acid [HA] into water.  [HA] dissociates; the amount of [A-], which we 

label as “x”, is exactly the same as the amount by which [HA] is reduced from its 

initial value: 

[HA] = [HA]0 – x                   [Ad]=x 

and the amount of protons is the sum of the protons from the dissociation of the 

acid (x) and the amount from the dissociation of the water (y): 

[H+]  =  x + y                    [OHdñ.y       
Note again: the source for the H+ is both the acid and the water! 
The equilibrium constant eq. is: 

0

[ ][ ] ( )

[ ] [ ]
A

H A x y x
K

HA HA x

+ − +
= =

−
 

And: 
[ ][ ] ( ) WH OH x y y K

+ − = + =  These equations *2 equations for two unknowns, x and y& need to be solved in practice. 
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Simplification: Strong acids: 

Simplification: in strong acids, since there’s “a lot” of [H+], then [OHd] is almost 

zero (since the product of these two ions is fixed, i.e., is Kw ).   

Therefore,  y (i.e., [OHd] )  is almost zero, so we can neglect it relative to x, (i.e., 

we can’t assume that y is zero, but we can assume that x+y equals x) .  So we'll 

find x first, then y later. 

Example: HCl at room temp. where Kcl=107;  let’s say that the initial conc. of 

[HCl] is 2 (i.e., 2M, i.e., 2mol/L, the unit we are always using)  

So:                                                 
1410 ( ) ~     i.e.,

~

W

W

K y x y yx

K xy

−= = +
 

And similarly: 

2

7

2

[ ][ ] ( )
~

[ ] 2 2

Since  large (~10 ), 

         and the numerator above (x ) cannot be too large, 

         Then  1/(2-x) must be large, i.e., 2-x is small 

           so x~2 (not ex

Cl

Cl

H Cl x x y x
K

HCl x x

K

+ − +
= =

− −

=

14 14
15

actly, but close to it),

10 10
            and  =5 10 .

2
y

x

− −
−≅ ≅ �

 

So to conclude: 

15

7

7

[ ] 2 ,    [ ] 2 ,    [OH ] 5 10

[ ][ ] (2 )(2 )
[ ] 4 10

10Cl

H M Cl M M

H Cl M M
HCl M

K M

+ − − −

+ −
−

= = = •

= = = •
. 

Key point: for all practical purposes, strong acids dissociate completely. 

Strong bases: completely analogous.                 
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Neutralization:  

Say we have solution of strong acid + strong base. 

Assume strong acid dissociates completely to  H A+ −+  

And B similarly dissociates: 2H O B HB OH
+ −+ ⇔ +  

Physically we know what will happen: the OHd and H+ will neutralize each 

other, and the one which has a higher conc. will prevail.   

I.e., let’s denote by 0[ ] [ ]H HA
+ =

0 the max. conc. of protons (or [H3O+ñ) just due 

to dissociations of the acid and similarly define [OHd]0 =[B]0 ; this is before 

neutralization of the [OHd] and [H+]. 

Then, if [H+]0 > [OHd]0  , then almost all the î¹¨»ñ is neutralized by reactions 

with protons, so we can: 

         *  find the remaining [H+],  

        *   and from that we find the small number of î¹¨»ñ remaining: 

 

0 0

14

[ ] [ ] [ ]

[ ]            (so [ ][ ] 10 )
[ ]

W

H H OH

K
OH H OH

H

+ + −

− + − −
+

≅ −

= =  

and opposite to this if [H+]0 < [OHd]0  . 

EXAMPLE: 

1M HCl + 0.4 M NaOH 

[H+]0 = 1M,       [OHd]0=0.4M � 

[H+] = 1M-0.4M=0.6M, 

[OHd]=(10-14 M2 / 0.6M) = 1.6*10-14 M 
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Weak acids: 

Mathematical solution has to be done explicitly then.   

But if pH<5,   [H+] >> [OHd], so we can apply similar techniques, i.e., we can 

assume that the water isn’t ionized (i.e., in our language, y<<x).  (I.e., since the 

[OH-] concentration is small, it means that very little [OH-] was produced from 

water, i.e., the water was not ionized, the H+ concentration is almost all due to 

the acid.) 
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Polyprotic acids:  (poly- a lot;  protic – proton): 

Acids which can lose more than one proton  

 

 4
2 3 3 1

 2  11
3 3 2

              K 1.2*10

              K 4*10

H CO H HCO

HCO H CO

+ − −

− + − −

→ + =

→ + =
 

Note that in the first reaction,  
3HCO

− has the role of a base (conjugate base), 

and in the 2nd reaction it is an acid. 

 

Question:  

Say that we pour into water 0.034M H2CO3, which then reacts via the reactions 

above; 

what’s the concentration of the resulting  
3   HCO

− and  2  
3  CO

− as a function of 

PH?  

Answer: 

There are 2 ways to answer this.    

First, almost blindly following the mathematics.  This is done in the book.  

Second, a graphical solution. 

We know that compound will shed its H when pH starts very low and then 

increases past pK1.  At a much higher pH, around pK2 the singly ionized 

form sheds the 2nd hydrogen.  Since pK2 and pK1 are far away, pK2  (here 

pK1~3.8;  pK2~10.5 ) the polyprotic acids change of distribution as a 

function of proton concentration can be viewed as two separate processes. 
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From this diagram we can “read off” the concentrations as a function of PH. 

Clearly, from the figure we can ignore the fact that this is a polyprotic acid; i.e., 

what happens near PH~PK1 is not influenced by the second reaction, and vice 

versa. 

EXAMPLE 

We are given that pH=pK2-0.5.  What’s the concentration of the 3 form of A? 

Answer. 

First: 

]�� .	d log�5*4 ∗ 10»��& . 	10.4 

So: 

]¨ . 10.397 − 0.5 . 9.9 

 We can find the concentration by assuming that only [HA»] and [A�»] have 

appreciable densities (as pH is far from pK1 ), i.e., that the original acid is in the 

form of the ionized species.  

I.e., just like we derived from the Henderson Hasselach equation before the blue-

highshed equations for the density which were derived about 8 pages ago, we 

get here similarly (with HA- replacing A,  and A�» replacing A-),  that  

î¨ã»ñ . î¨�ãñ51 + 10��©»�@ . î¨�ãñ51 + 105.Ê~0.24	î �̈ãñ5 
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(You can just read this, approximately, from the graph above). 

What about the concentrations of the other species then? Well, the fully-ionized 

form is  îã�»ñ~îH�Añ5 − î¨ã»ñ~0.76î¨�ãñ5 

Finally, the neutral form, which we know will be present only in very small 

quantities, can be obtained from pK1, i.e., we apply a Henderson-Hasselblach 

equation: 

2
10 1

[ ]
log

[ ]

H A
pK pH

HA
−

= −

 

but  

]�� . d log�5*1.2 ∗ 10»�& = 3.9 

So 

log�5 |î¨�ãñî¨ã»ñ} = ]�� − ]¨ = 3.9 − 9.9 = −6 

and therefore 

î¨�ãñ . 10»Hî¨ã»ñ . 2.4 ∗ 10»I	î¨�ãñ5 

And it is indeed very small as we knew! 
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Buffers: Best understood by example: 

Without buffers, a little bit of acid can change the acidity wildly. 

For example, take 1L of  water, neutral – so  pH=7.  Then, take a small amount, 

0.01 mole, of a strong acid added to the water� density is 0.01 m/L = 0.01 M,  

pH=-log10(0.01)= 2 � Very acidic (high proton concentration).   

Can we find a way to have a weaker acidity, which will be less dependent on 

what else happens? 

The first key is to invoke the  equation as we had before, that says that for any 

acid: 

[ ]
[ ]

[ ]
a

HA
H K

A

+
−

=  

So if we can find an acid HA such that [ ],  [ ]HA A
−

 can be made to be both 

appreciable, then [ ]H
+  won’t change much, and will be very close to Ka 

(i.e., pH will be close to pKa).  

Another way to see it is to remember that: 

10
[ ]

log
[ ]

a

HA
pK pH

A
−

= −

 

So if  
î@ÙñîÙOñ is not large nor small (say is between 0.1 and 10), its logarithm will not 

be a very big number, and therefore pH will be close to pKa.

 
The way to assure that 

î@ÙñîÙOñ is not too large or small is:  

• Put in a specific amount of weak acid, HA with weak base [ ]A
−  as conjugate., 

and: 

• At the same time add a source of the conjugate. 
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Let’s exemplify (most likely will only be briefly covered in class, but as you 

know by now, you need to know this for the exam!):  add a weak acid 

HCOOH, and also add a source, NaCOOH, for its conjugate basis, ¬¹¹¨». 

E.g., add to 1 Liter of water, 0.2 mol of HCOOH, and 0.1 mol of NaCOOH. 

We know that NaCOOH easily dissociates: 

 NaHCOO Na HCOO+ −→ +  

So there's an appreciable amount of the weak acid (because it does not 

dissociate much), and the conjugate is also appreciable (because it came from a 

source that easily dissociates.).   

Let’s put numbers in a table (all in M), ignoring the dissociation of water 

  [HCOOH] [H++++ññññ  (i.e.,[ H3O++++ññññ) [HCOOdddd] 

Before dissoc. of 

acid 0.2 0 0.1     (from Na+ + + + + HCOO−−−−) 

Due to acid 

dissoc. -y y y 

Total 0.2-y y 0.1+y 

The table above is known as “Initial, Change, Equilibrium” – i.e., "ICE" table. 

Now we know that  

4[ ][ ]
1.77 10

[ ]
a

H HCOO
K

HCOOH

+ −
−= = •  

So: 

4(0.1 )
1.77 10

0.2
a

y y
K

y

−+
= = •

−  

We can solve this eq. exactly; more simply, we guess that y will be small 

compared with 0.1 or 0.2, so the previous eq. becomes approximately  
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4

4 4

(0.1)
~ 1.77 10

0.2

So

~ 2 2 1.77 10 3.54 10

a

a

y
K

y K

−

− −

= •

• = • • = •
 

Note that our assumption on y being small relative to 0.1 or 0.2  is consistent (y 

is small indeed!). 

Since y is small, essentially 0.2 moles of  HCOOH and 0.1 moles of its conjugate 

remain (see the table), and the PH is –log10(y)= –log10(3.54*10-4)=3.45 

 

Now let’s see the power of this “buffer”. 

Add: 0.01 mole HCl, which essentially completely dissociates to 0.01 mole of H+ 

+0.01 mole  Cld  . 
Most of this extra H+ will combine with the HCOO− ; so the acidic ion/neutral concentration will be 

îHCOO− ñ ~0.1-0.01=0.09 
îHCOOHñ ~ 0.2 +0.01 ~ 0.21 

So we replace in the peach-color equation above, 0.2 by 0.21 and 0.1 by 0.09  
4 4

10

4
10 10

I.e.,

0.21
[ ] 1.77 10 4.15 10

0.09

And when we take -log  of both sides, we get:

log [ ] log (4.15 10 ) 3.38

H

pH H

+ − −

+ −

= • • = •

= − = − • =

 
I.e., the acidity barely changes!  *changed from pH=3.45 to 3.38 only!& 
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10.iv) Final acids/bases subpart: TITRATIONS 

The goal in titrations is: find the unknown concentration of an acid or base 

(called “analyte”) in a solution with a known volume. 

The idea is simple: add the opposite (i.e., base to acid or vice versa); what we 

add is called a “titrant”. 

 Titrations involve the addition of a titrant to a solution of analyte containing an 

unknown amount of acid or base (i.e., the concentration of the acid is unknown). 

The volume of the analyte (the acid or base in the solution) is known, but its 

concentration is not known.  In titration we find this unknown analyte 

concentration by adding to it a known volume of a  different solution (the 

titrant) with a known concentration; essentially, if the analyte is acidic we add to 

it a base titrant and vice versa (not exactly accurate, since a given compound can 

be viewed as both acidic and basic, but it is good enough for our purposes). 

The key is that there will be a concentration (the equivalence point) where 

the actual amounts (moles) of the analyte and titrant will match; at that 

point, the ions (H+ and OH-) from the analyte and titrant will almost 

exactly match, so the pH of the solution will change to be close to neutral. 

The pH change will signify that the amount of moles of the titrant added 

will be the same (or close to ) the amount of initial analyte.   

The amounts of H+  initially present (or added) is often called "acid equivalent"; 

a base equivalent is the amount of OH- in moles for a basic solution.   

This stoichiometric point, to be discussed later in this section, is the point at 

which the number of moles of titrant added is equal to the # of moles of analyte 

in the solution, i.e., the acid and base equivalents will match (for polyprotic acids 

see below);   

Strong Acid-Strong Base Titrations 

Mixing acids with bases, or bases with acids, the ions react thusly: 
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 H+ (aq) + OH- (aq) �  H2O (l) 

Example: add increasing amounts of 0.1M NaOH to a 50.0mL solution of 0.1M 

HCl: 

 HCl (aq) + NaOH (aq) � NaCl (aq) + H2O (l) 

The “titrant” is the NaOH, with known concentration.   

The initial solution (which we want to study) is the HCl.  This reaction will result 

in the following pH curve: 

 

The reason for this curve is simple: initially the strong acid leads to a very acidic 

pH (low pH).   

When we add the strong base, then the ¹¨» "cancels" some of the ¨ç, (i.e., 

reacts with it to form water) but as long as the amount of the ¹¨» added is not 

too big, the solution will be very acidic.   

But once we add enough titrant (close to 50ml or above in this example) then 

very little H+ remains. 

Note that with the addition of strong acids to strong bases and vice versa, the 

equivalence point occurs at pH=7.   I.e., when the amount of the strong base and 

acid match, the solution will be neutral so pH=7. 
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Based on the pH of the titrant, the volume of the titrant added, and the volume of 

the analyte, one can determine the desired unknown, i.e., the concentration of 

the analyte.  See HW for examples 

  

Strong Acid-Weak Base and Weak Acid-Strong Base Titrations 

We can also apply the concept of titrations to determine the pH of solutions of 

weak bases by titrating with a strong acid and the pH of solutions of weak acid 

using a strong base. The titration curve for the titration of a weak base with a 

strong acid is shown below. 

 

Note that the stoichiometric point does not occur at pH=7, but the pH still 

changes most sharply near it (though not as sharply as with a strong acid and 

strong base).  

The reason is clear:  
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When we throw in, say, 0.05 moles of a strong base HA to an analyte contains 

0.05 moles of a weak base HA, then first, before the ions combine, essentially all 

the strong acid will be ionized, i.e., we will produce initially 0.05 moles of H+; 

  

But NOT all the weak base will dissociate, so we will have less than 0.05 moles of ¹¨» say only 0.04999 moles of the weak base dissociated. 

The resulting 0.04999 moles OH- and 0.050 moles of H+ will combine and as a 

result we will have a non-zero amount  (0.00001 moles) of H+ and a much 

smaller amount of OH- (determined from Kw/(concentration of H+)). 

So therefore, at the equilibrium point for a strong base and a weak acid, where 

the same number of moles of acids and basis were thrown in, the solution will 

have a non-neutral pH (in our case 10-5 moles).  

We won’t review the opposite (strong base with weak acid), but it is obviously 

analogous. 
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INSERT (NOT COVERED IN CLASS, BUT IS REQUIRED KNOWELDGE) 

Polyprotic Acid Titrations 

Polyprotic acid titrations are those that involve acids with several hydrogen 

atoms, e.g. H3PO4. They proceed the same way as monoprotic acid titrations, but 

there is a stoichiometric point for each proton. Consider the titration of H3PO4. 

The titration of this substance consists of three subsequent reactions, occurring 

in the order listed: 

 H3PO4 (aq) + OH- (aq) � H2PO4
- (aq) + H2O (l) [1] 

 H2PO4
- (aq) + OH- (aq) � HPO4

2- (aq) + H2O (l) [2] 

 HPO4
2- (aq) + OH- (aq) � PO4

3- (aq) + H2O (l) [3] 

The titration curve is below (the OH- equivalents are here the amount of base 

added relative to the number of moles of the initial acid): 

 

Reaction [1] corresponds to the first region in the titration above (from 0 to 1 

equivalents).  Notice that this region has a well-defined buffer region as well as 

an equivalence point. The pKa of this region corresponds to the pKa of reaction 

[1].  
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When we add enough base (more than the amount of acid originally present) 

then the polyprotic acid will turn from neutral to the first ionic form (in this 

case, H2PO4
d ); that's the region beyond Equiv. point 1. 

When we add even more base (beyond twice the initial amount of acid present, 

i.e., Equiv. point 2), then the polyprotic acid will shed an additional hydrogen'; 

Also, note that reactions [2] and [3] also have buffer regions and equivalence 

points. The equivalence point of reaction [3] is less well defined because the pKa 

is so close to that of water.  

END OF INSERT 
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PRECIPITATION 

(i) Solid/pure liqu. Reactants: possibility of consuming all reactants 

So far we only discussed acid/base reactions where reactants (at least some) are 

dissolved. 

These are equivalents of reactions with gases where there are gases on both 

side. 

Now we’ll tackle cases where the reactants are all solid (liquid too if the liquid is 

not part of the aqueous solution, but that’s a rarity). 

Example: Calcium hydroxide, a base. 

Ca*OH&�	*N& → Ca�ç + 2*OH»& 

� . îCa�çñîOH»ñ�   (if there’s equilibrium with Ca*OH&�	*N& existing!) 

Note that we did not divide by 1M=1 mol/L, for simplicity; and, more 

importantly the concentration of the solid does not appear in the equation 

for K (since the Gibbs free energy does not depend on concentration for the 

solid). So unlike the previous discussions in this section, where the equality 

means equality, here, it just means IF THERE’S EQUILIBRIUM BETWEEN 

REACTANTS and products, such that the REACTANTNS EXIST AT 

EQUILBRIUM the LHS and RHS will equal 

Turns out that at room temperature, for this reaction, 

�/à . 5.5 ∗ 10»H 

(practice question: what’s Δ�5 then?) 

Now, take a specific case – throw in 0.01M amount of [Ca*OH&�ñ – e.g., throw in 

10 moles to 1000 liter, etc. 
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Even if all the reactants are consumed, i.e., from 0.01 Moles CaOH2 we make  

0.01M  ¬8�ç,  0.02M ¹¨» 

(Two hydroxide ions for each calcium ion), then still the RHS of the highlighted 

eq. will be  

îCa�çñîOH»ñ� = 0.01 ∗ *0.02&� = 4 ∗ 10»H < �/à! 
So since the density product is lower than K, we won’t have an equilibrium 

where reactants coexist – so all the Ca(OH)2 will be consumed.   

In our earlier language, we’ll say that the Gm for the product side is lowered than 

the Gm for the reactant side (solid calcium hydroxide), so Ca(OH)2 will be 

consumed; but since this reactant is not in solution, as we consume the reactant 

its Gm will not change.   

Contrast this with HCl � H+  + Cl-, for example – as we consume HCl its 

concentration changes so its (the HCl’s)  Gm chances (is lowered), so eventually 

we’ll reach equilibrium (Δ� . 0& where all reactants and products coexist. 

(ii) Precipitating the solid compounds 

If we increase the concentration of one of the products (in our case say OH-by 

changing pH), then eventually the density product (îCa�çñîOH»ñ�   ) can reach 

KCa.  Let’s calculate the threshold concentration of OH- required in this case to 

make the first little piece of solid. 

î¬8�çñî¹¨»ñ� . �/à →	 
î¹¨»ñ . � �/àî¬8�çñ . �5.5 ∗ 10»H0.01 = 0.023 

Note several things: 

• This threshold conc. is HIGHER than 0.02, the conc. of OH- obtained when 

all the 0.01 M Ca(OH2) is released to the solution – so without another 
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source of hydroxide (another base) the calcium will not precipitate and 

remain wholly in the ionic form. 

•  I used 0.01 for the concentration of Ca2+ in the eq. above  The reason is 

that we consider the case that almost all the calcium hydroxide is 

dissolved, and ask what will be the concentration where just a tiny bit is 

calcium is precipitated , so the ionic liquid form will still have almost the 

same concentration as if none precipitated.  Of course, if the conc. of OH- 

was raised even further, then the conc. of the calcium ion will decrease, 

and more solid calcium hydroxide will precipitate. 

• We are treating things like precipitation as if they will immediately occur 

when they are thermodynamically favored.  In reality we can have 

supersaturated solutions – we’ll discuss these later 

Let’s relate the threshold conc. of OH- for precipitation to pH: 

î¹¨»ñ . 0.023 → ]¹¨ = − log�5 0.023 = 1.64 → 

]¨ . �_ d ]¹¨ . 14 d 1.64 = 12.36 

So for pH above 12.36 the calcium hydroxide will precipitate. (Just like 

Lechatelier’s principle says, think about it!) 

(iii) Selective precipitation. 

 We throw in 0.05 Mole of Mg(OH)2, which is less soluble 

T[*¹¨&� → T[�ç + 2¹¨» 

Kf� = 1.1 ∗ 10»��, 
i.e., if there’s equilibrium (i.e., if there’s solid Mg(OH)2) then 

1.1 ∗ 10»�� = �f� = îT[�çñî¹¨»ñ� 

Repeating the steps in the Ca(OH)2 example, we see that selective precipitation 
will occur when 
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î¹¨»ñ . � �f�îT[�çñ . �1.1 ∗ 10»��0.05 = 1.5 ∗ 10»Ê 

So 

pOH = log�5*1.5 ∗ 10»Ê& = 4.82 → pH = 9.18 

We therefore see that selective precipitation, i.e., precipitation of Mg(OH)2 but 
not of Ca(OH)2 ,occurs between pH of 9.18 and 12.36. 

So:  

• below pH of 9.18 – both metal ions (T[�ç	, ¬8�ç& are in the solution; 

• between 9.18 and 12.36, T[�ç precipitatres, i.e., is in equilibrium with the 

solid Mg(OH)2; as pOH is raised from 9.18 gradually, the concentration of 

the T[�ç is decreased.  For example, just before the point where the 

Calcium hydroxide starts precipitating, at pH-12.36, the concentration of 

the Mg2+ ion will be tiny: 

îMg�çñ . K� îOH»ñ� = 1.1 ∗ 10»��*0.023&� 			*8R	]¨ . 12.36, _ℎP9P	î¹¨»ñ . 0.023& 

îMg�çñ = 2.08 ∗ 10»¤M = 21nM 

• for pH>12.36, even the calcium will precipitate. 

 

, 
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Part 11: Electrochemistry 

Overview: 

11.i Oxidation-Reduction (redox) reactions: Reactions that involve the 

exchange of electrons between atoms, compounds, and molecules. 

11.ii  Half reactions.   

Appendix (required) Balancing half-reactions 

11.iii Galvanic cells and batteries 

11.iv Half-cell potentials; the Faraday equation 

11.v Potentials; relation between free energies and potentials. 

(11.i) Oxidation and reactions 

• Oxidation: the loss of electrons in a redox reaction.  (Think of H2O – the 

hydrogens lose "part" of their electrons to the oxygen – so the hyrodgens 

are oxidized) .   Oxidizing agent: species in a redox reaction that is 

reduced. 

• Reduction: the gain of electrons (or reduction of charge) in a redox 

reaction (so in H2O the oxygen is reduced).  Reducing agent: species in a 

redox reaction that is oxidized. 

Oxidation and reduction always occur together, as electrons cannot be created 

nor destroyed. 

To monitor redox reactions, we can use the oxidation number: the effective 

charge on a compound or atom.  

• Oxidation results in an increase in oxidation number (i.e., making it more 

positive); e.g., in Na2O the oxidation number of Na will be +1.    

•  Reduction results in a decrease in oxidation number. (E.g., in Na2O it will 

be -2, i.e., decrease from 0). 
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(11.ii) Half Reactions 

To properly describe a redox reaction, one must balance both the atoms and the 

charge, i.e. the charge on both side of the equation must be equal. For example, 

consider the net ionic equation for the oxidation of copper metal to copper(II) 

ions by silver ions: 

 Cu(s) ,  Ag+(aq) � Cu2+(aq) ,  Ag(s)   (CHARGE STILL UNBALANCED!) 

While the atoms are balanced, notice that the left side of the equation has a 

charge of +1, and the right side has a charge of +2. To balance the charges, write: 

 Cu(s) + 2 Ag+(aq) � Cu2+(aq) + 2 Ag(s) 

To make balancing redox reactions easier, we can write half reactions: the 

oxidation or reduction part alone. For the above reaction: 

 Cu(s) � Cu2+(aq) + 2 e- 

 Ag+(aq) + e- � Ag(s) 

Now, balance the electrons by multiplying the reduction half reaction by 2 and 

removing electrons.  

Note that the half reactions are not just a mathematical trick; in batteries, as 

we'll show later, they actually occur separately (one part of the battery has one 

half-reaction, the other part has the other half reaction). 

For more complicated reactions involving H's and O's, use the following insert.  
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INSERT: Rules to balance Redox equation:  (not covered in 

lecture but I'll expect you to know them for the exam!) 

1. Identify the species being oxidized and the species being reduced from the 

changes in their oxidation numbers.  Write the skeletal (unbalanced) 

equations for the oxidation and reduction half reactions. 

2. Balance all elements in the half reactions except O and H. 

3. Find the change in the Oxidation numbers of the species, and account for it 

by adding electrons to the reactant or product side as the case may be. 

4.  Balance charge 

• In acidic solution, balance charge  by using H+ 

• In basic solution, balance charge by using OH- 

5.  Then balance the amount of hydrogens on both side of each half reaction 

by using H2O 

6. Multiply all species in either one or both of half reactions by factors that 

result in equal numbers of electrons in the two half reactions, and then add the 

two equations and include physical states.   

7. Finally, simplify the appearance of the equation by cancelling species that 

appear on both sides of the arrow and check to make sure the charges as well as 

the numbers of atoms balance. 

Example: 

��Pò» +LxQ → v'xç + QPòx» 

1) First break the reaction to two reactions that take place in 2 half-cells 

��Pò» → v'xç 

LxQ → QPòx» 

2) Balance the element that undergoes the change in oxidation state on 

either side of the equation:   In this reaction, there is no need to do so, as 
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the number of species are already equal. But it may not be the case always, 

as we saw in the Ag Cu example above. 

 

3) Find the change in the Oxidation Number of the species, and account for it 

by adding electrons to the reactant or product side as the case may be. 

+7                           +2   
2

4
− +→+ -5eMnO Mn  

(each oxygen's formal charge is -2, so the initial manganese must be formally, 

at +7 so that together we have +7+4*(-2)=-1, as the overall charge of the 

manganese oxide is -1).  Similarly: 

     -2                     +6 

 LxQ													 → QPòx» + R÷» 

4) Now comes the charge balancing step. Find the total charge on each side of 

the equation and account for it using: 

H+ in acidic condition and 

OH- in basic condition   

2
4 5    8   He

−− +++ →+MnO Mn
 

(before the 8H+ were added to the eq. above, the left hand side had charge 

-6, the right +2) 

And similarly:  LxQ													 → QPòx» + 8P» + êëLç 

5) Add H2O to balance the # of hydrogens on either side:   

       4 2
25 48e HMnO Mn H O

− +− ++ + +→
 ¨�
 + 4¨�¹		 → 
¹��» + 8P» + 10¨ç 

 

If you’ve done parts 1 to 5 correctly, all oxygens should balance out. 
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6) Now just multiply by factors to make the # of electrons in the two half 

cells equal, add the two half-=reactions up,  write the final equation…and 

you’re done! 

4 2
25 8 4e HMnO Mn H O

− +− ++ + +→
        X8  

 ¨�
 + 4¨�¹		 → 
¹��» + 8P» + 10¨ç       X5 

 

  i.e., 

2
4 240 64 32 O8 8e HMnO HMn
− +− ++ + +→  

5¨�
 + 20¨�¹		 → 5
¹��» + 40P» + 50¨ç     

So finally add them up to get (after cancelling 40e- , 50H+ , and 20H2O  on 

both sides) : 

 ���Pò» + 	ELxQ+ 		êòLç → Rv'xç + 	EQPòx» + êxLxP 

 The manipulations done here are important later for the discussions of 

batteries (actually, steps 1-3  are the crucial ones for batteries, the next steps are 

less crucial). 

END OF INSERT: RULES OT BALANCE REDOX REACTIONS
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(11.iii) Galvanic  Cells and Batteries 

Electrochemical cell: device in which an electric current is either produced 

by a spontaneous chemical reaction or used to bring about a 

nonspontaneous reaction. 

Galvanic cell: electrochemical cell in which a spontaneous chemical reaction is 

used to generate an electric current 

We use special type of Galvanic cells every day. For example, batteries are one 

type of Galvanic cells, in which the materials are sealed within the battery in 

individual cells, and the cells are linked directly so that the voltage generated in 

each can be added to give a higher total voltage. Also, fuel cells are a type of 

Galvanic cell, but in these, the materials that participate in the redox reaction are 

constantly added and the products are taken away. 

Structure of Galvanic Cells 

If we simply mix two species that undergo a redox reaction, energy is released as 

heat, but no electricity is generated.  However, if we separate the reactants and 

provide a pathway for the electrons to travel, the electrons can do work, 

generating an electric current.  

A galvanic cell consists of two electrodes, or metallic conductors, which make 

electrical contact with the contents of the cell but not with each other, and an 

electrolyte, an ionically conducting medium, inside the cell.  

The two electrodes are called the: 

Anode, at which oxidation takes place, and  

Cathode, at which reduction takes place 

Electrons are released by the oxidation half reaction at the anode, travel through 

the external circuit, and reenter the cell at the cathode, where they are used in 

the reduction half reaction. 

Acronym: AOL – Anode:  Oxidation,  Loss of electrons 
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Example: (see the attached figure) 

Take our favorite reaction,    

Cu(s) + 2 Ag+(aq) ���� Cu2+(aq) + 2 Ag(s) 

 

Batteries are made  essentially out of the two half reactions.  

Intuitively, we know which direction is preferred (we'll quantify that later): 

• Ag hates to lose electrons (so it rusts very slowly, i.e., it is hard to oxidize 

it, as rusting is simply due to reactions with oxygen in which the metal is 

oxidized). 

• Cu loses electrons more easily. 

So it is preferential to have the reaction as we wrote it above, in which copper is 

oxidized and silver reduced. 

In detail:   

Let's write the half-reactions such that  a single electron is given or taken, i.e.,  

êxCu(s) ���� 
êxCu2+(aq) +  e- 

Ag+(aq) + e- ���� Ag(s) 

so the total reaction is now written, for 1 mole of transferred electrons, as:  

êxCu(s) + Ag+(aq) ���� 
êxCu2+(aq) +  Ag(s) 

Similarly, for n moles of transferred electrons, the reaction will be 

Cu Ag

���� Cl¯ K+ ����

Cu2+ Ag+
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'xCu(s) + nAg+(aq) ���� 
'xCu2+(aq) +  nAg(s) 

We'll see shortly why it is important to write it in such a form. 

In the anode, the copper electrode is oxidized, so copper ions join the solution. 

 The electrons leave the anode and will like to reach the cathode, where they 

combine with the silver-ions (Ag+) to form a solid silver, i.e., silver is deposited 

on the cathode. 

The salt bridge is needed, since without it there will be an accumulation of 

electrons in the cathode.   

But with the salt bridge, there will be charge balancing;  

E.g., for a KCl salt-bridge: 

• In the anode, as electrons leave the anode, and positively-charge copper is 

released to the solution, negative Cl¯  ions come from the salt bridge and 

balance the charge.   

• And analogously for the cathode, where K+ ions come from the salt bridge 

to the solution to  replace  Ag+ ions which are deposited on the curve. 

To quantify the battery, we need to consider the next section: 
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(11.iv) Potentials; relation between free energies and potentials, 

and Faraday equation 

We know that the amount of useful electric work remaining is essentially related 

to the free energy difference in the reaction. 

So the Gibbs free energy difference for n moles of transferred electrons is 

then 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

products reactants

2

2

1 1

2 2

i.e.,

1

2

tot

tot m m m m

tot
m m m m

G G G

G n G Cu G Ag G Cu G Ag

G
G Cu G Cu G Ag G Ag

n

+ +

+ +

∆ = −

 
∆ = + − − 

 

∆
= − − −

 

Therefore: 

( )21 1

2 2

tot

CATHODEANODE

G
G Cu Cu e G Ag Ag e

n

+ − + −∆  
= ∆ → + − ∆ → + 

  14442444314444244443
 

We did not include, for brevity, the phases; i.e., Cu and Ag are solids, and the ions 

are in aqueous solutions, e.g., Cu2+(aq.). 

This is a very interesting form, since it allows to break the free energy difference 

in the battery, to  a difference between half-cell potentials,  i.e., the 

difference between the free energy of reactions per electron in the cathode 

and anode.   

In principle, the highlighted expression is all that should have been needed for 

us to determine the electric properties of the battery. 

For historical reasons, however, two changes in the expression are done; 

(1) we subtract a reference quantity and (2) divide by a negative constant. 
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THE REFERENCE REACTION 

The reference, refG∆ , is defined customarily, at any temperature, as the G∆

(i.e., free energy difference) for a half-cell made of H+ ions in solution converting  

to (or "reduced to") H2 gas: 

0
2

1
∆ eH H

2
refG G + − 

∆ ≡ + → 
 

 

The "umlaut " (o superscript) refers to standard conditions, i.e., the proton 

concentration is 1M=1m/L, and the gas is at 1 bar. 

 The only difference of the H+ to H2 cell and the Ag+ to Ag half-cell is that the 

reduced hydrogen will be gas rather than solid as in the case of silver. Also, in 

practice such a half cell will involve a catalyst, such as platinum, that will "lower 

the barrier" to reaction and therefore speed it up (see later); the catalyst, 

however, does not change the potential, just speeds up the reaction.   

ENERGY TO VOLTAGE: 

Specifically from the expression Charge*Voltage=Energy that you learn in 

physics, it follows that  

Voltage=Energy/Charge, 

i.e., we can get a voltage from the free energy change by dividing it by F, the 

charge of one mole 

F=eNAvogardo~96,500 Coulomb/mol 

where e is the absolute value of the charge of the electron, and to remind you – a 

Columb is the amount of charge that a current of 1 Ampere carries in 1 second. 

Further, we divide by minus, so a negative free energy difference, which 

means that the system really likes to react, will translate to a very positive 

potential. 

So the  cell potential (voltage) is; 
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 ( )0 2 21 1 1
E Cu |Cu ∆ Cu e Cu ∆

2 2
m refG G

F

+ + −  
= − + → −  

  
 

Where we subtracted a constant which does not change the total battery voltage. 

Specifically, defining the battery voltage as the difference between the two cells, 

i.e., here as: 

( ) ( )0 0 2 0E E Cu |Cu(cell) E Ag |Ag+ +≡ −  

we see that the half-cell is related to the free energy difference  

1. 

( ) ( )

0

0 2 0

2

E

E Cu |Cu E Ag |Ag

(

1 1
∆ Cu e Cu ∆

l

2

cel )

2
m refG G

+ +

+ −

∆

− =

 
+ → − 

 −

=

( )∆ Ag e Ag ∆m refG G
+ − → −− +( )

( )21 1
∆ Cu e Cu ∆ Ag e Ag

2 2
m m

tot

F

G G
G

F nF

+ − + − 
+ → + →  ∆  = −

−

= −
 

i.e. we get the: 

 Faraday equation 

0

0

( )

i.e.,

tot

tot

G
E cell

nF

G nF E

∆
∆ = −

∆ = − ∆  

(Most books will not use the "tot" subscript). 
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Faraday equation and the current that passes through: 

n, the number of models of electrons transferred, can be related to the total 

charge transferred.  Specifically: Current is : charge/time.  

(Note units: Charge has units of Coulomb, current has units of 

Amperes=Coulomb/sec ) 

 

Therefore, 

If a current “I” is acting over time: t then: Total charge transferred= I*t 

 The charge is made of n moles of electrons; to get n, divide the total charge 

transferred (I*t) by the charge of one mole, i.e., eNAvogadro  Therefore: 

 n=I*t/(e Navogardo) = I*t/F 

Therefore: The Faraday equation  

totG nF E∆ = − ∆  

can be written as: 

tot
avogadro

F
G nF E E I t

eN
∆ = − ∆ = − ∆  

i.e., 

totG E I t∆ = ∆  

The units all work out (by construction). 
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Faraday equation and typical voltages: 

The Faraday constant can be rewritten by multiplying numerator and 

denominator by 1 Volt, which is defined as 1Volt=Joule/Coulomb 

F=96,500 
ST?UTVW
VTU =96,500 

XTUA	ST?UTVW
XTUA	VTU =96,500 

YT?Uy
XTUA	VTU 

i.e., 

F=96.5 

ZY
VTU
XTUA	~100

ZY
VTU
XTUA	  

So batteries with potential of 1.5 Volt correspond to reactions with a difference 

in the free energies (per mole of transferred electrons) of about 150 kJ/mol – 

that's indeed a typical range for free energies of reactions, as we have seen 

before and as the appendix in the book shows. 

EXAMPLE: SMALL FLASHLIGHTS AND BATTERIES: Let's use the Faraday 

relation this to estimate how much energy can be stored in a battery.  

Assume a small battery, say, AA or AAA, has 0.01 moles of reactants (the reason 

for adopting this number is the following guess: say each is having a molecular 

weight of, very roughly, about 100 g/mol; i.e., each of the reactants weights 1g, 

and for 2 reactants (one in the cathode and one in the anode) we'll have 

therefore a weight of 2gram – that's typical for small batteries) 

The Faraday equation, 0
totG nFE∆ = − then tells us that if the battery potential is 

1.5 Volt (like your typical AAA battery), then from 0.01 mol of reactants we 

should be able to get  

kJ/mol
| | ~ 0.01mol*100 *1.5V ~1kJ ~ 1000J

V
totG nF E∆ = ∆  

(We use V for volt, named after the Italian scientist Volta; don’t confuse with 

volume or potential-energy). 

A typical light bulb in a very small flashlight consumes ~0.5Watt, and 1Watt= 

1Joule/sec, so a light bulb should be able to run on a small battery for about 
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2000secounds, i.e., about half-an-hour (till it consumes | |totG∆ =1000 Joule).  

This is a surprisingly accurate estimate. 

Some standard half-cell potentials: 

Half reaction E0(=E0 for reduction, ( i.e., 

electron(s) addition), in volts 

 

2

2 2

2

2

2

( ) 2 2 1.36

( ) 4 4 2 1.23

0.80

0.34

2 2 0.00 (by definition)

2 0.77

2.93

Cl g e Cl

O g H e H O

Ag e Ag

Cu e Cu

H e H

Zn e Zn

K e K

− −

+ −

+ −

+ −

+ −

+ −

+ −

+

+ +

+

+

+

+ −

+ −

�

�

�

�

�

�

�

 

Note: 

• From these tables we get the battery potential,  

e.g., for our Cu2+ + 2e- �� Cu anode and Ag++e-��Ag cathode, we get: 

Δj5 . j5*Y8RZWOP	& d j5*8AWOP& . 0.80 − 0.34 = 0.46	V 

• These umlaut (o) in these cell potentials refers to standard conditions, 

i.e., all reactants and products species in solution at 1M=1mol/Liter, and 

all gases at 1bar.  We’ll talk later about what happens to these voltages 

when the reactants get consumed as the battery is working – in short, not 

much until the end of the life of the battery, 

 

• The table follows the trend for electron affinity/ionization expected; i.e., 

O2 likes to add an electron, so the potential for reduction is high (i.e., the 

free energy for the reaction where oxygen adds an electron is very 
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negative).   

Conversely, K+ doesn’t like to add an electron so much, so the potential is 

negative. 

• By construction, the half-cell potentials for Hydrogen (i.e., proton 

converting to hydrogen) are zero. (Since in the definition of the 

potential, we subtract the reference Gibbs free energy, which is exactly 

the free energy of proton to add H!) 

 

• The potentials refer to the free energy per transferred electron,  so they 

are invariant to multiplying the reaction by an integer multiple; 

i.e., 

The potential for 2 2Zn e Zn
+ −+ �  is the same as for 21 1

2 2
Zn e Zn

+ −+ �  

(in the first case we calculate the free energy for 2 2Zn e Zn
+ −+ �  and 

divide by 2, in the second case we divide by 1)  

As a corollary, the potentials for a combined reaction are averaged (rather 

than summed), e.g., 

 ( )0 2 0 01
( 2 ) ( ) ( )

2
E Cu e Cu E Cu e Cu E Cu e Cu

+ − + − + + −+ = + + +� � �  

 i.e., in the left reaction 2 electrons are transferred, so we divide by 2.  

 (from tables:  Left side = 0.34V       

                          Right side= 1/2 * (0.16 V + 0.52 V )=0.34V 

So both sides agree , as expected  ) 
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(11.v) Nernst Equation 

The Nernst equation allows us to calculate the electric potential of a cell in non-

standard conditions. This is important as cells in real life are almost never in 

standard conditions. The Nernst equation follows from the relation we learned  

 0 lnG G RT Q∆ = ∆ +  

When combined with the Faraday relation (now we remove the subscript "tot", 

as we know it refers to the full battery; since we don’t refer to standard 

condition we drop the umlaut  (o)  in the Faraday equation)   

G nF E∆ = − ∆  

we get 

ln
ln

o o
G G RT Q G RT

E Q
nF nF nF nF

∆ ∆ + ∆
∆ ≡ − = − = − −  

i.e., 

0 ln
RT

E E Q
nF

∆ = ∆ −  

Note: RT/nF is a very small factor: 

J
8.3 300K

VK mol 0.026
J/mol

• 96500 
V

roomRT

nF n
n

= =  

Therefore, for a reaction with n=1, a change of Q of a factor of 2 will only change 

the potential by 0.026V *ln(2) ~ 0.02 V.  This is the reason that batteries are 

so stable. 
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INSERT: NOT Covered IN CLASS, BUT REQUIRED: NERNST EQ. EXAMPLE 

An example will show how to use the Nernst equation in practice, and will 

also show in more detail how the Nernst equation predicts that batteries 

will be very stable throughout their lifetime. 

Take a Zn Ag battery (of course, it will be usually too expensive to make a 

battery with silver, but it serves our purpose). 

Write the two half-cell reaction for simplicity with n=2 transferred electrons 

Zn � Zn2++2e-    

(Anode, oxidation; written as reverse of reduction;  E0(reduction)=-0.77) 

Also 

2Ag++2e-�2Ag (Cathode, E0(reduction)=0.80) 

So: 

�j5 . 0.80 − *−0.77& = 1.57	?	
Further, add the half-cell reactions to get: 

Zn+2Ag++2e- � Zn2++2e-+2Ag 

Zn(s)+2Ag+(aq.) ���� Zn2+ (aq.)+2Ag(s) 

Where we added the relevant phases.  Further, since only the ions are in 

aqueous solution (the neutrals are solids), then 

 
2

2

[ ( .)]

[ ( .)]

Zn aq
Q

Ag aq

+

+
=  

Assume that we start with  

[Zn2+]start=0.01 M,      [Ag+]start=0.03 M, 

then, after an amount "x" of change of concentration of zinc has happened, the 

concentrations are (all in mol):  
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[Zn2+]=0.01+x,      [Ag+]=0.03-2x, 

so 

2

0.01

(0.03 2 )

x
Q

x

+
=

−
 

 

Let’s put this to the Faraday equation (remember n=2): 

 ∆E = ∆E˚ - (RT/nF) * ln(Q)= ∆E˚ - 0.026/2 * ln(Q)= ∆E˚ - 0.013 * ln(Q) 

See the dramatic plot showing the essentially until x=0.15, i.e., until almost  all 

the silver is consumed , the potential of the battery is almost unchanged – this is 

because the log function (in ln(Q)) is very slowly changing until the argument 

(Q) is extremely large or small. 

 

END OF INSERT 
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Part 12: Kinetics 

Big field; here we’ll cover: 

(I) Rates; 

(II) Unimolecular and bimolecular elementary steps, and half-lives 

(III) Including back reactions to give rates of complicated reactions 

(IV) Steady state and local equi. Approximations 

(V) Equilibrium 

(VI) The dependence of the rate constants on T 

(VII) Enzymes (if time permits). 

There is a whole course (110B, highly recommended) devoted to kinetics as well 

as stat. mech.; we won’t have too much time so we’ll omit many topics 

(polymerization, combustion, rate-constants details, etc.) 

 

(I) RATES: 

All rxn, with time, reach equi. 

Some go all the way “to the right”  

H2+ ½ O2 � H2O 

(At Eq., virtually no H2, O2 left.) 

Some “never happen”, i.e., only reactants remain, e.g., 

NaCl(s)� Na(s)+1/2 Cl2(g) 

Many are in between with both reactants and products coexisting in significant 

amounts: 

3 2 4( ) ( ) ( ) ( )NH aq H O s NH aq OH aq
+ −+ → +  
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For this reaction, at Eq. all reactants and products exist in appreciable amounts. 

REACTION RATES: 

When reactions occur, e.g., 

aA+bB � xX +yY+zZ 

(and we can also have that the reaction proceeds in the opposite direction, 

products to reactants),  then we can relate the change in the moles, i.e., 

 1 [ ] 1 [ ] 1 [ ] 1 [ ] 1 [ ]d A d B d X d Y d Z
rate

a dt b dt x dt y dt z dt
≡ − = − = = =  

For example, in 3NO � N2O+NO2, for every three moles of NO consumed, 1 mol 

of N2O and 1 mol of NO2 will be made, so 

2 2[ ] [ ]1 [ ]

3

d NO d N Od NO
rate

dt dt dt
= − = =  

The question then what is this rate, (which we can write as rate=(1/x)d[X]/dt ? ) 

In some cases the rate is very simple (I.e., depends in a simple way on the 

concentrations of the products and reactants) , in others very complicated. 

There are three prevalent questions in kinetics: 

1) From the rates, what happens in equilibrium; 

2) How do the rate change in time (i.e., and from that how the 

concentrations change in time).   

3) Can we represent the rates in terms of simpler ingredients (like “Lego 

blocks”) 

Let’s start with the 3rd point: 

A huge simplification, which is NOT ALWAYS VALID is to assume that the rate is 

made from two components, a “forward” rate which depends on the reactants 

concentration, and a “backward” rate which depends on the products 

concentration.  For the “general” reaction above this will amount to writing: 

 ([ ],[ ]) ([ ],[ ],[ ])forward backwardrate rate A B rate X Y Z= −  
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If:   

 Forward rate > backward :   then more products are made in time. 

 Forward rate < backward :  then more reactants are made. 

      =     :  equilibrium, conc. unchanged in time. 

In general : rate depends on concentration. 

Forward rate: usually (not always!) depends mostly on reactant’s concentration 

(zero if no reactants);  

Backward rate depends usually mostly on products conc. 

Example: 

Say initially we throw NH3 into water.  

Initially only reactants. Forward rate appreciable; backward rate small since 

there are no products.   

As more products made, backward rate starts to be appreciable, until forward 

and backward rate balance each other. 

See figure:  

 

Concentration vs. 

time: levels off 

 

 

 

 

Rate vs. time: rates 
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level off and match eventually. 

 

 

(II) ELEMENTARY REACTIONS 

Luckily in many cases we can understand complicated rates as the “result of one 

or several elementary reactions.” 

The 2 basic ingredients are : 

• Unimolecular reactions ,  A� products 

• Bimolecular reactions, A+B� products  

We first write these reactions as if the backward rate is zero; later, we will see 

how these basic ingredients (forward uni- and bi-molecular reactions)  can be 

used to understand reactions which go both backward and forward.   

But for right now, it will be forward only; so let’s tackle each case. 

Elementary Unimolecular reactions:  

 1k
A products→  
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Examples of unimolecular decays: 

• Radioactive decay – the half-lives of radioactive elements ranges 

between billions of years and tiny fractions of seconds.   

• Transition state – when molecules collide (typically in bimolecular 

reactions, see below), the transition state (see later) usually decays by 

itself. 

• Excited molecules – more generally, molecules can be excited not just by 

collisions but e.g., by radiation, and then the excited state decays. 

Many unimolecular reactions are not really unimolecular, but are “disguised” 

bimolecular, as we’ll see 

Mathematically, we write: 

 1

[ ]
[ ]

d A
k A

dt
= −  

(Note: as mentioned above, our analysis below assumes we can ignore the back 

reactions;  that’s OK for radioactive decay but in many other cases we do have to 

include the back reactions (products � A), as we’ll do later) 

Here, k1 is a constant, which has units of 1/time (d[A]/dt has units of 

concentration/time, [A] has units of concentration, so k1 has to have units of 

1/time so the units match).    

(Note: k has nothing to do with Boltzmann’s constant which you may 

encounter in the class). 

Even without doing any math we can guesstimate how long it takes for the 

reaction to proceed “significantly”, i.e., for the concentration to fall by a 

factor of, say, 2: 

 T(half-life) = Time for concentration to fall by 2 ~ 1/k1 

This is because the only quantity with units of time we have in this problem is 

1/k1 ! 
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INSERT: (not covered in class , but is expected knowledge): 

MATHEMATICAL SOLUTION OF FIRST-ORDER EQUATIONS. 

Mathematically, we can write 

1

1

1

1

1 0
0

[ ]
[ ]    

Multiply by dt and divide by k :

[ ]

Integrate:

[ ]

[ ]

[ ]
ln                (where [ ] [ ( 0)]).

[ ]

d A
k A

dt

d A
k dt

A

d A
k dt

A

A
k t A A t

A

= −

= −

= −

 
= − = = 

 

∫ ∫

 

( )1
0

Exponentiate:

[ ]
exp

[ ]

So

A
k t

A
= −

 
( )0 1[ ] [ ] expA A k t= −  

And indeed, if the time=1/k1, then the concentration will be about ½ what it was 

initially (or more precisely 37% of its initial value). 

 1
0 0 0

1 1

1
[ ]exp [ ]exp( 1) ~ 0.37[ ]

k
A t A A A

k k

    
= = − = −    

    
 

Mathematically, the “half-life” (time for the concentration to fall off by a factor of 

2) is more precisely ln(2)/k1 = 0.7/k1, as you can readily prove from the 

highlighted eq. 

END OF INSERT 

Next: 
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Elementary bimolecular reactions:  the most important type of elementary 

reactions. 

k
A B AB+ →  

[ ]
[ ][ ],

[ ] [ ]
[ ][ ],

d AB
k A B

dt

d A d B
k A B

dt dt

=

= = −

 

Note units, k has units now of  1/ ( (molar-density) time) (it multiplies molar 

density squared to give molar density over time, so it needs to have units of 

inverse(time*molar-density). 

Physically, the reason for this rate law can be understood by realizing what 

happens when the concentration is, e.g., made to be 10 times higher (e.g., for 

gases, reduce the volume by a factor of 10); then, in a given volume there will be 

10 times as many molecules (say “A”), and each of them will have 10 times as 

many chances to interact with a “B” (since the conc. of B was also increasing), so 

the rate is becoming 100 times as big – and that’s what k[A][B] will indeed give. 

More precisely, the reaction above is a “heterogeneous bimolecular reaction”; 

we’ll deal mathematically below with: “homogenous bimolecular reaction”, 

A+A�A2; 

(Note stoichiometry; if we only have A, i.e., homogenous reaction,  

then d[A]/dt = -2k[A]2 , i.e., d[A2]/dt = -1/2 d[A]/dt). 

We’ll consider first the A+A���� A2 homogenous case 

 Physical considerations: If there are no back reactions we can also integrate 

these reactions; before the math. note that physically we expect that as the 

product dwindle with time, their decay will be much slower.  To see this, let’s 

look at the instantenous decay rate, 

(1/[A]) d[A]/dt 
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A quantity which has the units of 1/time, so it is a measure of how fast the 

reaction goes. 

In unimolecular decay (1/[A]) d[A]/dt is fixed, i.e., it is k1.   For bimolecular 

reactions this relative decay becomes smaller in time;   e.g., for the A+A�A2 

reaction, as [A] is, say, ten times smaller , d[A]/dt becomes 100 times smaller, so 

the relative decay becomes (1/(0.1)) * (0.1)2 = 0.1  of what it was.  So: the 

smaller the density the slower the decay.  

A little more quantitatively, we can estimate the time it takes to reduce the 

concentration significantly (say by 50%, i.e., the “half-life” time); if we start 

at [A0], then the only two quantities with units will be  [A0] and k, and the only 

possible combination of units of time is  
�

[îÙ�ñ    so we predict that the half-life 

will now be proportional to the density squared.). 
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INSERT: MATHEMATCIAL SOLUTION OF BIMOLECULAR REACTIONS: 

The math in that case also verifies this rate, as the book shows: 

 

2

2

2

0

0

[ ]
2 [ ]

[ ]
2

[ ]

[ ]
2

[ ]

1
2 ;   

[ ]

 mutlply by -1,to take away the - in front, and get

1 1
2

[ ( )] [ ]

t

d A
k A

dt

d A
kdt

A

d A
k dt

A

kt
A

kt
A t A

= −

= −

= − =

− = −

− =

∫ ∫
 

So, e.g., at t1/2 , when the concentration is halved,  i.e., \ã �R�©�] . îÙ�ñ� ,then  

1/2
1/2 0

1/2
0 0

1/2
0

1/2
0

1 1
2

[ ( )] [ ]

2 1
2

[ ] [ ]

1
2

[ ]

1

2 [ ]

kt
A t A

kt
A A

kt
A

t
k A

− =

− =

=

=

 

Similar to the rate we predicted on physical grounds. 

END OF INSERT. 

The solution to the heterogeneous case is mathematically analogous but 

could be physically different; there could be “limiting reagent”, e.g., if we 

have initially 6moles of A and 2 of B, then after a while we’ll almost have 0 moles 
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of B and close to 4 moles of A; i.e., percentage wise A does not change much, only 

B, so the rate will be influenced mostly by [B], the limiting reagents. 

 

(III)  MUTLIPLE STEPS AND INCLUDING BACK REACTIONS: 

More interesting then these elementary steps are the combinations. 

E.g., a reaction Y2+X� XY+Y which proceeds as: 

 

1

1

2

2 2

2

k

k

k

X Y XY

XY XY Y

−

→+ ←

→ +
 

A few comments: 

1) The overall reaction is  

                               X+Y2 ↔XY+Y 

It looks like a single-step bimolecular reaction but is really made from two  

individual elementary steps. 

2) The reaction involves a “transition states”, i.e., unstable states of a 

molecules.  The state here is: XY2.   

Sometime we will put a * or a # subscript to emphasize that we consider a 

transition state. 

Schematically, see the figure below: 
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XY2 is a transition state, i.e., a state of the molecules which lives for a short time. 

3) Let’s write the math; for each compound we need to consider all the 

reactions (with correct signs) that make or destroy it 

1

1

2

2 2

2

k

k

k

X Y XY

XY XY Y

−

→+ ←

→ +
 

                             d[X]/dt      =         -k1 [X][Y2] + k-1[XY2] 

                             d[Y2]/dt    =          -k1 [X][Y2] + k-1[XY2] 

d[XY2]/dt =   k1 [X][Y2] - k-1[XY2]-k2[XY2] 

d[XY]/dt  =                                           k2[XY2] 

d[Y]/dt     =                                          k2[XY2] 
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Note that we have two reactants, two products, and one intermediate (XY2). 

We could solve these eqs. numerically, or for more insight apply meaningful 

approximations.  The most important one is: 

IV. Approximations: First, Steady State Approximation  

In the steady-state approx., we assume that the concentrations of the 

intermediates are essentially fixed as a function of time (except for the early 

times, when there are no products, and at late times, when the reaction is almost 

over;  see picture); 

 

In our case the steady state approximation means that 

0~ d[XY2]/dt =   k1 [X][Y2] - k-1[XY2]-k2[XY2] 

So: 

îÐ0�ñ~ 	��	îÐñî0�ñ	�»� 	+ 	�� 

So that the rate of production of the product will be: 

Oî0ñOR 			. ��îÐ0�ñ . 	��		�»� 	+ 	�� îÐñî0�ñ 
Note a qualitative feature: to make Y the system goes “twice forward” (rate 

proportional to k2k1) 
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 (V) EQUILIBRIUM 

The stage step in a reaction is when it is over (or approaching completion).  The 

result is boring if it is only a forward reaction, i.e., no reactants remain, only 

products (though it could be quite interesting if we have several option for 

different products, and the details of the react. determine which of the possible 

products is made).  However, in many cases there will be some reactants and 

some products rmeaining, so then we’ll like to use the rates to tell us the 

concentrations 

Before considering the equilibrium let’s do one change – allow products to back-

react, otherwise in equilibrium we’ll only have products.  I.e., we’ll modify the 

reaction to be: 

1

1

2

2

2 2

2

             (I)

           (II)

k

k

k

k

X Y XY

XY XY Y

−

−

→+ ←

→ +←
 

With a rate constant “k-2” to go back from the products XY+Y to the transition 

state. 

Let’s only concentrate on reaction I, reactants to transition state. 

Now at equilibrium the amount of reactants does not change 

0 . *8R	PåXQ. & 	OîÐñOR 			. 			d��	îÐñî0�ñ 	+	�»�îÐ0�ñ	
So the concentration of the transition state is 

î^_xñ . `ê
`»ê î^ñî_xñ 

So we can use a thermodynamic relation like we had before 

î^_xñî^ñî_xñ . +a 
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Where we defined an “equilibrium constant”, 

+a . `ê
`»ê 

Let’s define a “”Free energy of the transition state”,  

�∗ ≡ �U*Ð0�& 

which will be calculated by imposing the K vs. G relation that we derived earlier 

+a~yz{ �d%∗ d %ö÷bc=b'=ùtu � 

Put differently G* will be defined so as to fulfill this relation above, i.e., I is 

defined as 

�∗ . �ÄÇà�ÒàÛÒÈ + ED^A*�d& 

Also, ���������� . �U*Ð& + �U*0�&,   

(One word of caution: the reason for having a ~ sign is that we ignore terms like 

RT/P which are necessary when we go from K to Kc, as we learned earlier.  For 

this reason we are “missing units”, i.e., K as we defined it has units of 1/density, 

so it cannot be an exponent unless we divide by another quantity with the same 

units; but for our qualitative discussion this is OK). 

And we can summarize this as: 

`ê
`»ê .

î^_xñî^ñî_xñ . yz{ �d *%∗ d %ö÷bc=b'=ù&tu � 

  So the lesson is that there is a relation (the yellow-highlighted eqs. above)  

between the forward and backward rate constant;  they are related by the 

exponential of the free energy difference between the transition state and 

the initial state. 

This shows you that if the transition state free energy is much larger than RT, 

than the forward rate, k1, has to be very small (as “K” will be very small).   I.e., to 

get a high occupation of the transition state, which will allow you to have fast 
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reaction, you need to lower the free energy of the transition state, which will 

make k1 higher. 

Now let’s briefly consider the second reaction, i.e.,. transition state to products.  

Using exactly the same mathematics, we will get 

`»x
`x . î^_xñî^_ñî_ñ . yz{|d*%∗ d %eö)ýbc=ù&tu } 

 (Note that now k2 is at the denominator, since it refers to reacting away from 

the transition state, just like k-1  ). 

Let’s divide the last two highlighted equations, so we get: 

`»x`»ê
`x`ê . î^_ñî_ñî^ñî_xñ . yz{|d *%eö)ýbc=ù d %ö÷bc=b'=ù&tu } 

Note that we get the mass-reaction law – i.e., the densities are related by a 

constant. 

îÐ0ñî0ñîÐñî0�ñ . �� 

where 

�� . �����»��»�	 
Note that this is the mass reaction law, derived from rate kinetics!  
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 (VI)   The dependence of the rate constants on T 

We can understand how the rate constant depends on T qualitatively (for 

elementary reactions).  Let’s consider a typical bimolecular elementary reaction 

case where the transition state could be quite high (e.g., our X+Y2� XY2  � XY+Y 

reaction diagrammed above); t 

Ten, let’s say that a pair of molecules (X and Y2) needs to have relative kinetic 

energy above , Δ�∗ to react (where, at least approximately, Δ�∗ . �∗ d�ÄÇà�ÒàÛÒÈ, i.e., the difference in free energy between the  transition state and the 

reactants).   

 Δ�∗
 is the activation free-energy (it is similar to E  in the book)  

Then, from the |Boltzmann distribution we know that at least approximately, the 

fraction of molecules with molar energy above Δ�∗ (i.e., those molecules that 

can react) is      

(Fraction with E higher than E ) ~ exp(-Δ�∗/(R T)) 

And therefore we expect that the forward rate will be proportional to  

 k1 ~ exp(-Δ�∗/(RT)) 

Note that the rate will then be very small at low T (as we saw in the earlier 

section);  

So then �»� ~ constant (any molecule in the transition state breaks easily), and 

k�k»� ~	exp �−ΔG∗E	D� 

Note that this is the same as the expression we derived in the previous section, 

k�k»�~ exp �−�∗ − �ÄÇà�ÒàÛÒÈED � 

Arrhenius plot 

Further, if Δ�∗ is made from two components, an energy term and an entropy 

term,  
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Δ�∗ . Δ¨∗ d DΔ
∗ 

We can find we find them by plotting ln(k1) vs. -1/T , this is called an “Arrhenius 

plot (and is similar to what we did earlier with general transitions, as you’ll  

recall) 

 
* *

1

1
) .

∆
(

∆
ln

H S

R
k

T R
+•= −

 

See the book for examples, and the figure below 

 

(Note that some small number of important reactions, especially involving 

hydrogen, can “penetrate through a barrier” by quantum mechanical tunneling 

so then then ln(k1) will remain flat even when T is reduced) 

Also note that this only applies to reactions with barrier, i.e., typically to the 

reactions leading to the transition state; in the opposite direction, i.e., for the 
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breakup from the transition state, the temperature dependence (of k-1 or k2 in 

our example) will be very weak, since all molecules in the transition state will 

break without barrier 
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(VII)  ENZYMES:  

Final kinetics topic.  Important in biochem.! 

Covered clearly in Oxtoby, so just a summary: the enzyme is a catalyst, enabling 

the reaction (other kinds of catalysts, typically metal surfaces, are also covered). 

The reactions are 

 

1

1

2

( ) (bound enzyme, transition state)( )  

( )

k

k

k

subtrateenzyme

product

E S ES

ES E P

−

→+ ←

→ +
 

 Note that the total enzyme (defined as [E0]) is conserved, i.e., it could be either 

unbound E or bound ES, i.e.,   

0[ ] [ ][ ] [ ]E E S ES= + ). 

The product formation rate is  

2

1 2 1

[ ]
[ ]

using the steady state approximation, which says that the 

formation of the ES transition state intermeidiary

is essentially balanced by its consumption, we get 

[ ]
0 ~ = [ ][ ] ( )

d P
k ES

dt

d ES
k E S k k

dt
−

=

− + ( )1 0 2 1

0

[ ] [ ] [ ] [ ] ( )[ ]

(where we used [ ] [ ][ ] [ ] )so

ES k E ES S k k ES

E E S ES

−= − − +

= +

 

1 0

1 2 1

[ ][ ]
[ ] ~ ,    i.e.,  

[ ]

k E S
ES

k S k k−+ +
 

2 1 0
2

1 2 1

[ ][ ][ ]
[ ]

[ ]

k k E Sd P
k ES

dt k S k k−

= =
+ +  

Note that for small enzyme substrate concentration([S])  the enzyme will be 

mostly free, and then the rate of production of products will be proportional to 
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the concentration of the substrate (i.e., the denominator in the expression above 

will be k2+k-1, i.e., constant); 

But if there is a lot of enzyme, so that the denominator will be dominated by the 

substrate form (k1[S]>>k2+k-1) then 

d[P]/dt ~ k2 [E0],   

i.e., at high substrate concentration the reaction will look zeroth order in the 

substrate density – this makes sense since then the reaction will be limited by 

the amount of enzyme, not substrate. 
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Part 13.  Raul's Law  and Colligative properties (if 

time permits!) 

Physical properties of solution diff. from pure solvent:   

 Diff. boiling point (b.p.), vapor pressure, melting point (m.p.) 

Most importantly: solutions exhibit a range of temperatures where, at the same 

pressure, there’s equilibrium between liquids and vapors!  This is the basis for 

distillation, i.e., purifying solutions making them richer in one compound or 

another, as we’ll see. 

Start: Vapor pressure 

Add:  two liquid compounds, "1" and "2" (I label them “A” and “B”  or “1” and “2”, 

interchangeably) to form a solution;  

 

Seal this solution in a fixed volume container so there will be equilibrium 

between the compounds in their liquid and vapor phases  

  

How is vapor pressure (v.p., denoted as PA , PB ) of compounds affected? 

Let's concentrate on species "A", for example. 

 Think of: mole fraction xA (L) of A(in Liquid!). 

 We know what happens at the extremes 
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             xA(L)=1 � pure "1" � 4Ù . 4Ù∗  where * denotes pure solvent 

            xA(L)=0 � no "1" � PA=0. 

That’s always true.  What’s in between? 

If "A" and "B" are “PHYSICALLY SIMILAR liquids  that interact in similar ways, 

will be called “ideal mixture”, then 

For ideal mixtures, Raul’s law obeyed: 

 Pf = xf*L)	Pf∗*T& 

 

Physically, reason that in Raul’s law vapor pressure relates to the molar 

fraction in the liquid is due to equilibrium; 

I.e., Raul’s law  Pf = xf*L)	Pf∗*T&, is really the same (up to an overall function 

multiplying both sides) the same as:  

98RP*�8]W9 → ^QåXQO& = 98RP*^QåXQO → �8]W9& 
Left: Pressure term, particles coming from vapor to liquid come at a rate which 

is determined by the pressure (higher pressure � more vapor particles impinge 

on the liquid); 

Right:  represents tendency of “A” particles to leave liquid and go to vapor. This 

tendency is reduced when there is a solution, as there is more disorder (each A 

now can be surrounded by only As, or B and several A’s, or 2B & several As, etc.).  
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More disorder � more stability (particles love higher entropy, as it leads to 

lower free energy). 

Notice “Left=Right” : since in equilibrium # of particles leaving solution is same 

as # of particles entering it from vapor. 

Graphical explanation for why solvent vapor pressure is reduced when 

there is a solute: 

 

  

(due to entropy)           
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In solutions, vapor's composition will be different than Liquid: 

Let's see this for ideal solutions, where we can work the numbers. If the solution 

is ideal, we have Raul’s law 

Pf = xf*L)	Pf∗*T& 

Pg = xg*L)	Pg∗*T& 
E.g., “A”=toluene (methyl-benzene) , “B”=benzene, T=300K: 

	Pf∗*T . 300K) = 29mbar 

Pg∗*T . 300K& . 99mbar 

Note that toluene is less volatile than benzene (slightly bigger molecule, vdW 

interactions more effective, holding the liquid slightly more together,  

everything else the same). 

Graphically: 

    

  

 

xB 

xA 
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Example: 

Solution of toluene and benzene, 60% of liquid is “A” (toluene); the solution is in 

a container and there’s equilibrium between vapor and liquid. 

Question.  

 (i) What’s the vapor pressures of “A” and “B” 

 (ii) What’s the mole fraction of “A” and “B” in vapor. 

 

Answer: 

. (i) PA = xA(L) PA*  = 0.60*29mbar = 17.4 mbar 

     PB = xB(L)  PB*  = 0.40*99mbar = 39.6 mbar 

 

 (ii) 
ÛÜÛÝÞÝ . �Ü�ÝÞÝ . �I.�,h.Hç�I.� = 30% = 0.30 

 

Note that solution is 60% toluene, but vapor only 30% toluene!  

Reason – toluene is much less volatile.: 

We can use the difference in composition of vapor and liquid for: 

 

Distillation: 

Scrape the vapor; richer in one compound (above, vapor richer in Benzene).   

Then repeat: Cool down vapor till it liquefies, scrape vapor; that vapor is even 

richer in benzene, and continue for a few more steps. 
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Colligative properties  

Next, specialize to non-volatile solutes (e.g., salt in water, or sugar in 

water).  

The reduction of vapor pressure for a solvent upon inclusion of a non-volatile 

solute, leads to: colligative properties i.e., properties that depend on # of 

dissolved solute, not on identity of such species.   

First: 

Vapor pressure lowering: 

• Boiling temp. elevation (e.g., salty water boils at > 1000C) 

• Freezing point depression: 

(Salty water freeze at temp. as low as -18 0C [ 0 Fahrenheit], depending on 

conc. ) 

• Osmotic pressure (see later). 

Important prelude on Raul's law: it is always valid for solvents.    

I.e., we said that Raul’s law is only valid for "ideal" mixtures; but for solvent-

solute mixtures, i.e., if one compound is much more abundant than the other, 

Raul's law  is valid for the solvent when any solute is inserted, as long as the 

concentration of the solute is small;  

So in general:			P£¡¢ØÀÃÂ . x£¡¢ØÀÃÂ*L&	P£¡¢ØÀÃÂ∗ *T& 

Physically: the solvent molecules “like” to remain liquid a little more due to 

the presence of the solute – the solvent molecules therefore will have lower 

vapor pressure 
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Now we can understand colligative properties.  Start with: 

Boiling point elevation. 

Consider vapor pressure vs. T figure: 

 

First: boiling without solute. 

Thick black line: vapor pressure vs. T.   

Say the external pressure is, say, 1bar.  When the vapor pressure reaches the 

external pressure (i.e., the thick black line  crosses the 1bar line) then boiling 

occurs; that temperature is denoted as Tb* 

(Reminder: Reason for bubbles in boiling: when the compound reaches even 

slightly above Tb*, then any vapor that’s formed pushes away the air around it; 

that lowers its pressure, so more liquid turns to vapor, and so forth – causing 

boiling.   Boiling occurs only because the container is open and the external 

pressure is fixed. In a closed flask, there is no bubbly boiling – as we raise T,  p 

increases. ) 

Next: solute added;  

The solvent’s concentration decreases � its pressure is reduced; and if  only the 

solvent is volatile (e.g., when the solute is salt, nonvolatile), then the total 

pressure is made from the solvent’s pressure, i.e. at the same temperature, 
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equilibrium between the mixture as liquid and as vapor will happen at lower P 

once the non-volatile solute is added.  (See picture).  

Analogously, from the picture, we will need a higher T to reach equilibrium with 

vapor at the same pressure. 

Finally, without doing the math, you see from the picture that if the original 

curve of P vs. T for pure solvent is “flatter” , then we will need a larger 

temperature to affect the boiling – i.e., the boiling point elevation will happen at 

higher T. 

 

Mathematically: we write   ODÚ .  �ÚÐÈÅâ�ÒÇ  

Where KB (not Kelvin, and not related to the other K’s we used!) is the boiling-

point increase parameter, which depends on solvent and the temperature. 

Technical points 

1): we used X£¡¢ÕÂÀ.  Note that if we have salts, e.g., 

NaCl → 	Naç + Cl» 

Then, 1mol of salt in water solution gives 2mol solutes (Naç, Cl»)   

Example, 1mol of salt in 1800g of water gives 

X£¡¢ÕÂÀ . n£¡¢ÕÂÀnÂ¡Â . 2mol100mol + 2mol ~	0.02, 
where the 100 mol comes from the water, 1 mol comes from Na+, and 1mol from 

Cl-; so the total # of moles is 102mol, and of which 2mol is solution.  So the 

answer is about 2%, not 1%, since the salt gives 2 contributions – one from 

positive ions, one from the negative ones. 
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2) It is important to note that in practice when we use this equation we need to 

measure the concentration in molality, as Kb is usually given in units of 

K/molality. (i.e.,   
��	
�����	jÞ;kÝl

mn	jÞ;ol9Ý
] 

I would have preferred the concentration, but for experimentalists it is more 

convenient, at least historically, to use Molality. 

The experimental number for water is Kb ~ 0.5 
¦	¦ �¡¢ .  It is possible to estimate 

this number theoretically. 

Now we can turn to a completely similar phenomena: 

Freezing point depression 

Similar;  since liquid solvent is made “more stable” by presence of solute, then 

freezing temperature is lowered.  For example, if we add salt to water, then, 

whereas it would have frozen at 0 Celsius before, now it will freeze at a lower 

temperature, as low as -18 Celsius if we add salt (and even lower for some forms 

of “antifreeze”). 

Formally, if the amount of solute is not too much, we write the same equation as 

before 

OD< .	d�<ÐÈÅâ�ÒÇ  

Where, as mentioned, Xsolute now stands for the Molality and not the mole 

fraction.  

Also, the negative sign is since the freezing point depresses (liquid is more stable 

than solid);  

 For water : 

 �Æ = 0.5 K Kg /mol �< = 1.8 K · Kg/mol   
Physically, Kf is larger since solids & liquids are quite similar (strongly 

interacting molecules) and differ only in whether the molecules are ordered. 
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Therefore, the increased stability of the liquid in the presence of the solute can 

cause a big effect on freezing.   

In contrast, for gas-liquid (boiling) transition, the difference between liquid and 

gas is quite large, so the extra stability of the solvent is not going to affect the 

transition temperature strongly. 

 

The last colligative effect is:    

Osmotic Pressure 

Take a semi-permeable membrane that just lets water pass through, but not a 

solute. 

Use it to separate water into two compartments – e.g., in the left one put solute, 

and in the right one pure water (labeled “l” for “liquid” in the figure).  

 

Then the liquid which contains ions is more stable � water will move into the 

left region, as solvent prefers region with higher stability, i.e., with more solute ‘ 

the extra water in the left compartment will create a higher pressure (so the 

water column will rise on the left). 

Analogously, in biological cells: the cells have ions, and cell wall which is 

permeable to water; within the cell there will be higher P as water moves into 
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the cell.  Can be as high as 50bar (as the work of several professors in ULCA 

demonstrated!) 

 

In summary: P higher in region with more solutes! 

We can prove (Chem. 110A) that: 

There is an equation ostensibly (and only ostensibly!!!) resembling ideal-gas 

law: 4Ç�ÒÄà? . AÈÅâ�ÒÇED  (proof: difficult; 110A) 

where:  

Pextra is extra pressure in region with solutes; 

 nsolute  : number of moles of solute. 

 V: volume of region with solutes 

R, T : usual meaning. 

Note the appearance of R, gas constant; it is the only time we’ll see R, relating to 

gas, in equations relating to liquid. Otherwise, R never enters equations for 

liquids. 

Osmotic pressure:  useful to extract molecular weight. 

Take measured mass, msolute of solute; 

Do osmotic pressure measurement;     From Pextra get nsolute ; 

Molecular weight: msolute/nsolute!   
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END OF NOTES. 

GOOD LUCK IN THE EXAM! 

 

 


