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Abstract

This set of notes is for a two-quarter graduate-course on quantum
mechanics. It assumes you have had the standard one-quarter physical
chemistry QM course for chemistry undergrads that covers wavefunction
based quantum mechanics, including: the Schrödinger equation in 1D
and 3D, coordinate-based solution to Harmonic Oscillators (H.O.), and
the hydrogen atom and spherical harmonics.

You also need to know linear-algebra (for real vectors; linear-algebra
for complex operators is developed here) and have some minimal exposure
to complex numbers. Also, knowledge of Lagrange multipliers is assumed.

The notes first develop the mathematics of quantum mechanics, in-
cluding delta-functions and the bra-ket notation (Chapters 1-3). Then
this language is used to develop quantum mechanics in bra-ket notation
(Chapters 4-9,11) including operator-based solutions to H.O., the Heisen-
berg picture, angular momenta and spin, and perturbation theory and the
variational theorem. In Chapter 10 we will insert more math: Functional
derivatives and Lagrange multipliers, needed for the variational theorem
and later for DFT.

Latter chapters (Chapters 12-19) develop the many-electron problem,
including Slater-determinants, Hartree-Fock theory, DFT, MP2 and 2nd-
quantization, with an epilogue on other modern approaches.

Later topics (Chapter XXX) first cover the Born-Oppenheimer and
non-adiabatic interaction,

Then (Chapters XXX-XXX) we spend several chapters on time-dependent
perturbation theory, using both the Fermi Golden rule and the correlation-
function picture. These chapters use first a classical description of the
electromagnetic interaction, with the following chapter developing the in-
teraction with a quantum electromagnetic field.

Path integrals follow in Chapter XXX
Several advanced topics then follow. XXX

1



Copyright © 2019 by Daniel Neuhauser. All rights reserved, for internal use
only. Reproduction or translation of any part of this work without the permis-
sion of the copyright owner is unlawful.

2



Contents
1 Math: General 5

1.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Delta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Functions as vectors . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Bra-kets, operators 11
2.1 Bra-kets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Adjoints of operators and Hermitian operators . . . . . . . . . . 12
2.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Matrices and operators 20
3.1 Matrices from operators . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Operators from matrices . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Functions of matrices and operators . . . . . . . . . . . . . . . . 22

4 QM with bra-kets 24
4.1 The Schrödinger Equation, Hamiltonian and momentum opera-

tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 x-Basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Derivatives and Schrödinger equation in the bra-ket picture . . . 30
4.4 Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 The density operator: single electron . . . . . . . . . . . . . . . . 31
4.6 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 The evolution of expectation values. . . . . . . . . . . . . . . . . 35

5 Harmonic Oscillator – algebraic approach 38
5.1 Raising and Lowering Operators . . . . . . . . . . . . . . . . . . 38
5.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Example for operators →matrices: H.O. . . . . . . . . . . . . . . 43
5.4 Heisenberg Picture: Generally and for H.O. . . . . . . . . . . . . 45
5.5 The Schrödinger wavefunctions for the H.O. . . . . . . . . . . . . 48

6 Angular Momentum: General 49

7 Spin 57

8 Addition of two angular momenta 63

9 Perturbation Theory 71

10 Functional derivatives and Lagrange Multipliers 81

11 Variational Principle 84

3



12 Many-electron Hamiltonian and Wavefunction: General 87

13 Slater Determinants 93

14 Hartree-Fock theory 101

15 Pre-DFT: Homogeneous Electron Gas (HEG) 110

16 DFT 119

17 Beyond DFT: perturbation theory (MP2) 133

18 2nd quantization: Creation and destruction operators. 139

19 Higher Order theories – brief overview 146

20 Potential curves, the Born-Oppenheimer Approximation, Cou-
pling matrices 152

21 Time-dependent perturbation theory: quick derivation of Fermi’s
Golden Rule 162

22 Time-dependent perturbation theory: correlation function pic-
ture. 174

23 Electromagnetic Fields and interaction with them: proper-classical
derivation and quantum derivation (for spontaneous emission).187

24 Electron Transfer 201
24.1 Introduction: 2 electronic states and a single nuclear coordinate . 201
24.2 Insert: Canonical Transformations . . . . . . . . . . . . . . . . . 203
24.3 Perturbation theory applied to electron-transfer. . . . . . . . . . 208

25 Path Integrals and Green’s functions 209

26 Some Interesting topics: 220

4



1 Math: General

1.1 Complex numbers
Made from two real numbers:

z = x+ iy, i2 = −1, (1.1)

and the complex-conjugate of a complex number is defined as:

z∗ = x− iy. (1.2)

Properties:

zz′ = (x+iy)(x′+iy′) = xx′+i2yy′+i(xy′+x′y) = (xx′−yy′)+i(xy′+x′y) (1.3)

and
(zz′)∗ = z∗z′∗ (1.4)

and the conjugate of a conjugate brings us back to the original number

(z∗)∗ = z. (1.5)

The product of a complex number with its conjugate will be a real-
positive #, the absolute value squared:

z∗z = (x+ iy)(x− iy) = x2 + y2 ≡ |z|2. (1.6)

Note that this gives a prescription for the inverse of a complex #:

1

z
=

z∗

|z|2
, (1.7)

i.e.,

1

x+ iy
=

x− iy
x2 + y2

. (1.8)

Finally, recall that each complex number can also be written in terms of its
absolute magnitude and a phase factor

z = reiθ = r (cos θ + i sin θ) (1.9)

where

r = |z| =
√
x2 + y2 (1.10)

and we get θ from the relation above, cos θ = <(z)/r = x/r (Here: <(z) refers
to the real-part of z).

5



Derivatives of complex #’s:

Similar to real numbers:

dz

dz
= 1,

dz2

dz
= 2z, etc. (1.11)

but note that a complex-number and its derivative should be viewed in differ-
entiation as two independent quantities:

∂z∗

∂z
= 0. (1.12)

Example: differentiating |z|2

∂
(
|z|2
)

∂z
=
∂ (zz∗)

∂z
= z∗, (1.13)

while

∂ (zz∗)

∂z∗
= z. (1.14)

Residue Theorem

An important property of complex functions is the residue theorem – we will
not need it but you should read about it if you want to advance beyond what
we teach.

1.2 Delta functions
A delta function (or formally a Dirac delta function) δ(x−x′) is defined so that
for any function f(x) the integral over the delta function gives the value of
the function at the point x′ :

ˆ ∞
−∞

δ(x− x′)f(x)dx = f(x′). (1.15)

or equivalently we can shift x′ to 0, i.e., a delta function simply needs to fulfill,
for any f,

ˆ ∞
−∞

δ(x)f(x)dx = f(0). (1.16)

As a corollary (take f(x) = 1):
ˆ ∞
−∞

δ(x− x′)dx′ = 1, (1.17)

and generally we can write

f(x)δ(x− x′) = f(x′)δ(x). (1.18)

To prove the last eq., integrate both sides w.r.t. x.
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Examples of delta functions:

The simplest one is

δ(x− x′) =
1√
πε
e−

(x−x′)2

ε2 , ε→ 0. (1.19)

Indeed, this function becomes narrower and narrower as ε→ 0, and its integral
is 1:

ˆ
1√
πε
e−

(x−x′)2

ε2 dx′ =
1√
π

ˆ
e−y

2

dy = 1 (1.20)

where we defined y = (x− x′)/ε, and the last equality is the Gaussian integral,
which you may have seen a proof of in other classes.

Since this function is becoming narrower and narrower, and its integral is 1,
we can label it as a bona fide delta-function.

Insert: generally for any bounded function g(x) such that
´∞
−∞ g(x)dx =

1,

δ(x) =
1

ε
g
(x
ε

)
, ε→ 0. (1.21)

This form means that we squeeze the “g” function in x, and stretch
its height, so its area is conserved; the limit of this procedure is the
delta function.

This procedure even applies to “crazy” oscillating functions. For
example, since 1

π

´ sin(x)
x = 1, it follows that

δ(x) =
1

πε

sin
(
x
ε

)
x
ε

=
1

π

sin
(
x
ε

)
x

, ε→ 0. (1.22)

Note that this delta-function does not become smaller and smaller
at a given x when ε is made smaller and smaller, but it just oscillates
faster and faster – unless x is 0 or close to it. This is enough to make
it a proper delta function, i.e., fulfilling

´∞
−∞ δ(x)f(x)dx = f(0) for

any normal function f . (I.e., at regions away from 0 it oscillates
so much so that an integral of it associated with those none-near-
0 regions will vanish due to cancellation of positive and negative
contributions from neighboring points.)

A related delta-function is (we won’t prove):
ˆ ∞
−∞

eipxdp = 2πδ(x). (1.23)

Note that it “makes sense”; for x=0, the integral is infinity; for x 6= 0, the
oscillations lead to a vanishing integral.
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Delta function as limit of Discretization

Another delta function emerges when we consider the limit of “discretization”
of integrals, or of converting functions to lists (a function f(x) represented by
an infinite list of values f(x0), f(x0 + dx), f(x0 + 2dx), .... and see plot below).
Then:

δ(x− x′) =
δxx′

dx
, (1.24)

where the Kronecker delta δxx′ is 1 when its arguments are equal, and 0 other-
wise.

Note that this definition gives the desired fundamental relation of delta func-
tions when we use it for discretized integrals (reversing here x and x′):

ˆ
f(x)δ(x− x′)dx′ '

∑
x′

f(x′)
δxx′

dx
dx = f(x). (1.25)

3D

The extension of delta functions to 3D is simple,

δ(r − r′) = δ(x− x′)δ(y − y′)δ(z − z′), (1.26)

so ˆ
δ(r − r′)f(r)dr′ = f(r), (1.27)

where dr = dx ∗ dy ∗ dz = d3r.
There are other properties of delta functions, many books discuss them.

Physical interpretation of Dirac Delta function

Physically, think of a Dirac delta function as if it is the number density of a
classical point particle. I.e., it is 0 everywhere except for the position of the
particle (where it is infinite), but its volume integral gives 1.

Of course, physically we think of delta functions not as infinitely thin and
tall, but as almost-infinitely thin and tall.
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1.3 Vectors
I presume you had linear algebra, but let’s recall a few basic facts and then
extend them.

A vector, designated for the moment as v, is an “arrow” with a specific length
in a given number of dimensions. For example, in the figure below we plot a
vector in 2D.

• In one coordinate system the vector has the coefficients, say,
(

3
4

)
,meaning

it is v = 3x̂ + 5ŷ, where we defined the unit vectors in that coordinate
system

• If we rotate the coordinate system so the x axis lies along the direction of

the vector, then the coordinates of the vector will be
(

5
0

)
. The vector

did not change, but its list-of-coefficients did. Note that in practice we
often call this list of coefficients also a vector, apologies in advance for the
possible confusion.

Interesting vectors in physics could be, for example, in 3D (directions in space)
or 4D (space-time). However, they could also be infinite-dimensional, as the
section below shows.

1.4 Functions as vectors
Say we are in 1D, and to simplify say we only consider a finite region of space,
say 0 ≤ x ≤ 4. Say we plot a function f(x) where x is in this ranges
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If we want to store this function, one simple way is to discretize space. For
example say we discretize it to 401 points, spaced by dx = 0.01. I.e.,

x = 0, 0.01, 0.02, ..., 3.99, 4.00

Now we can characterize the function by giving its list of values, i.e.,

f(0)
f(0.01)
f(0.02)
..
..

f(3.98)
f(3.99)
f(4.00)


. (1.28)

Thus, we replaced the continuous function f(x) by a vector (or list-of-coefficients
if you want to be fancy) of length 401. Of course, if we discretized it further
and further, and/or extended space to be from x = −∞ to x =∞ (rather than
from 0 to 4), then we will need an infinitely long vector to represent f.

See also the figure below, which has a much larger grid spacing for drawing
purposes.

We’ll use these concepts in the next section.
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2 Bra-kets, operators

2.1 Bra-kets
Denote ˆ

f∗(r)g(r)dr = 〈f |g〉 = 〈bra|ket〉. (2.1)

The beauty of the bra-ket notation is that it applies no matter what the
space is – it could be a 3D r, or a single dimension x, or a vector denoting the
position of multiple electrons, etc., or even the overlap could be a summation
over two spin states rather than a continuous integral.

Similarly, given a linear operator A, we define

〈f |A|g〉 = 〈f |Ag〉. (2.2)

i.e., the bra-ket “sandwich” of an operator A is obtained by first acting with
that operator on the “ket” (here the function g), and then overlapping the result
with the bra. Occasionally we’ll write it explicitly as

〈f |A|g〉 = 〈f |A|g〉 =

ˆ
f∗(r)(Ag)(r)dr. (2.3)

Properties of bra-kets:

• First
〈f |g 〉 = 〈g|f〉∗. (2.4)

Proof:

〈f |g 〉∗ =
(ˆ

f∗(r)g(r)dr

)∗
=

ˆ
f(r)g∗(r) dr = 〈g|f〉. (2.5)

• Note also that if c denotes a complex number, then the function cf , when
evaluated at a given point r, is simply cf(r). Therefore

|cf〉 = c|f〉. (2.6)

• Similarly, since

(cf(r))∗ = c∗f∗(r), (2.7)

it follows that

〈cf | = c∗〈f |. (2.8)

• Finally, the norm-squared of a function is its bra-ket overlap, i.e.,

norm-squared(u) ≡
ˆ
|u(r)|2dr =

ˆ
u∗(r)u(r)dr = 〈u|u〉 (2.9)

then

norm(u) ≡
√
〈u|u〉.
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Physical reasons to use the bra-ket notation

The bra-ket notation emphasizes that the “vectors” and/or “functions” (which
are the same thing as we saw earlier) are abstract quantities.

Specifically, later we’ll see that there are different ways to represent kets,
i.e., to represent functions. (For example, we can represent functions by their
Fourier coefficients, as we’ll see later, or by other coefficients, etc.)

Therefore, we generalize (without actually overly changing the content) the
notion that a physical system is represented by a Schrödinger wavefunction by
saying that any state of a physical system is represented by a complex
ket. That complex ket has a norm of 1. This means, as we’ll see later,
that the overall probability to find the particle (or particles if the system has
several of those) anywhere in space is 1.

Ket-bra are operators

Another curious aspect is that ket-bra combinations are operators. I.e.,
given a bra 〈g| and a ket |f〉,then |f〉〈g| is an operator! i.e., we can write

A = |f〉〈g|

The proof is that an operator is defined as something which given a ket (i.e., a
function and/or vector) returns another ket. So given any ket, |Ψ〉,the operator
takes this ket and produces indeed another ket

A|Ψ〉 = |f〉〈g|Ψ〉 = c|f〉, (2.10)

where c = 〈g|Ψ〉. So:

• A bra dotted with a ket is a number, 〈g|f〉

• A ket first then a bra gives an operator, |f〉〈g|.

If this looks confusing, recall that in linear algebra you learned that a column
vector uT (i.e., the transpose of a row vector), times a row vector v, is a
number, uT v, while a row vector times a column vector gives a matrix, vuT .
Exchange the words row-vector with ket, column-vector with bra, and matrix
with operator and you get what we just learned.

2.2 Adjoints of operators and Hermitian operators
Adjoint of an operator:

For any linear operator A, its adjoint A+is defined as the operator that fulfills
the following requirement: for every two functions f and g:

〈f |A+|g〉 = 〈Af |g〉. (2.11)

Explicitly, the adjoint is the operator that when working on a function on the
right (the ket) and dotted by a function on the left (the bra), gives the same
result as if the original operator acted on the left function. Note that
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〈f |A+|g〉 = 〈g|A|f〉∗. (2.12)

Adjoint properties:

Adjoint of products:

(AB)+ = B+A+. (2.13)

Proof: (a little nauseating). First, recall the definition of adjoint, that says that
for every two functions f, g,

〈f |(AB)+|g〉 = 〈ABf |g〉 (2.14)

Now define an intermediate function η = Bf , so

〈ABf |g〉 = 〈Aη|g〉 = 〈η|A+|g〉 = 〈Bf |A+g〉 = 〈f |B+|A+g〉 = 〈f |B+A+|g〉.
(2.15)

Combining the last two equations gives 〈f |(AB)+|g〉 = 〈f |B+A+|g〉, and since
this is true for every f, g we get (AB)+ = B+A+, as stipulated.

Hermitian operators

An operatorW is Hermitian if for every two functions f and g it fulfills:

〈f |W |g〉 = 〈g|W |f〉∗. (2.16)

Put differently: W is Hermitian if it is equal to its adjoint:

W = W+ (Hermitian W ). (2.17)

We’ll see later that the Hamiltonian H and momentum p are Hermitian opera-
tors.

Hermitian operators are the natural extension to the complex plane of the
concept of real symmetric operators, and share similar properties.

Property I. The first and most important property is that Hermitian op-
erators have real eigenvalues; i.e., if

W |u〉 = w|u〉, (2.18)

(so w, |u〉 are an eigenvalue and its associated eigenvector) then w is real,
w = w∗.

Proof: recall that

〈u|u〉 = 〈u|u〉∗, 〈u|u〉 > 0,

and note that if W is a Hermitian operator, its expectation value is real,
i.e., 〈u|W |u〉 = 〈u|W |u〉∗ (it follows from the definition of a Hermitian operator,
replace f and g by the same function u). Therefore
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0 = 〈u|W |u〉 − 〈u|W |u〉∗ = 〈u|w|u〉 − 〈u|w|u〉∗

= w〈u|u〉 − (w〈u|u))
∗

= (w − w∗)〈u|u〉. (2.19)

so w = w∗, Q.E.D.
Measurements prelude: Note that all measured properties in QM are

real. We’ll see that measurement in Quantum Mechanics amount to expectation
values (and more precisely to eigenvalues) of linear operators. This will imply
that operators that can be measured are Hermitian, since those operators have
real eigenvalues (we wont prove it, but it works both ways, i.e., if an operator
has real eigenvalues it is Hermitian, not just the opposite). More on this later.

Property II. two eigenvectors are automatically orthogonal if their
associated eigenvalues are different, i.e.,

〈u|u′〉 = 0 if w 6= w′. (2.20)

Proof: write the difference of matrix element of W, recalling the meaning of
Hermitian operators:

0 = 〈u|W |u′〉 − 〈u′|W |u〉∗ = w′〈u|u′〉 − (w〈u′|u〉)∗ =

w′〈u|u′〉 − w∗〈u′|u〉∗ = (w′ − w∗)〈u|u′〉, (2.21)

i.e., since w is real as proved earlier,

0 = (w′ − w)〈u|u′〉 (2.22)

so if w − w′ 6= 0, then 〈u|u′〉 = 0, Q.E.D.
Property III. if two eigenvectors have the same eigenvalues (what we label

as “degenerate states”), we can still make them (by linear combination)
orthogonal.

Example:
Consider an electron is hydrogen atom in n=2 states.

Side note about notation. Instead of calling them as usual ψ2s, ψ2px , ...,we
will refer to the kets, |Ψ2s〉, |Ψ2px〉 etc. Further, we often do a
further shortcut and just label the kets by the eigenvector, i.e.,
write |2s〉, |2px〉, .... This can be a very confusing notation, since in
|2s〉,e.g., the “2” does not refer to multiplying the state by 2, it just
refers to it being an eigenstate associated with n=2 (and ` = m = 0).

Next, note that we can construct different non-orthogonal degener-
ate (same energy-eigenvalue) states. For example in hydrogen one
sp state, labeled 1√

2
(|2s〉+ |2pz〉), is not orthogonal to |2pz〉, and

they have the same energy eigenvalue (En=2 = − 13.6
22 eV).

Of course we can make orthogonal combinations from these two
states, e.g., 1√

2
(|2s〉± |2pz〉) , or if we rather prefer 0.8|2s〉+0.6|2pz〉

and −0.6|2s〉+0.8|2pz〉, or any other orthogonal linear combination.
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Hermiticity and commutators:

Note that even if A,B are both Hermitian, the product is not necessarily Her-
mitian. I.e., if A = A+, B = B+, then

(AB)+ = B+A+ = BA = AB + (BA−AB) = AB + [B,A], (2.23)

where we defined the commutator:

[B,A] = BA−AB. (2.24)

Thus, only if the Hermitian operators A and B commute (i.e., their commutator
is zero) then their product is Hermitian.

Commutators and their properties:

First, the most important one:

[p, x] = −ih̄. (2.25)

Proof: for any function f

[p, x]f = pxf−xpf = −ih̄
(
d

dx
(xf)− x d

dx
(f)

)
= −ih̄

(
x
df

dx
+ f

dx

dx
− x df

dx

)
= −ih̄f.

(2.26)
Q.E.D.

Commutators of products:

[AB,C] = A[B,C] + [A,C]B. (2.27)

Proof: add and subtract the same term

[AB,C] = ABC − CAB = ABC−ACB +ACB − CAB = A[B,C] + [A,C]B.
(2.28)

A commutator of Hermitian operators, times i, is a Hermitian oper-
ator:

C = i[A,B], A = A+, B = B+ → C = C+. (2.29)

Proof:

C+ = −i ([A,B])
+

= −i(AB −BA)+ = −i(B+A+ −A+B+)

= −i(BA−AB) = i(AB −BA) = C. (2.30)

Put differently, the commutator itself (of Hermitian operators), without the
extra i, is anti-Hermitian: ([A,B])+ = −[A,B].
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Energy levels of Hermitian operators: discrete and continuous.

Some Hermitian operators have discrete spectra – examples are the Hamiltonian
of a particle in a box, or the Hamiltonian of a harmonic oscillator.

Some have continuous spectra; an example is the Hamiltonian operator for
a free particle (i.e., the kinetic energy).

And some have a mixed spectra – discrete eigenvalues in some regions, con-
tinuous in others. This includes, of course, the Hamiltonian of hydrogen, or
of crystals with bands and in-gap states. For example, for a hydrogen atom
the discrete eigenstates would be the 1s, 2s, 2p, 3s, 3p, 3d, etc. states, and
the continuous states would have E > 0 and would extend over all space. See
picture:

Orthogonality and orthonormality:

Let’s use w to denote a eigenvalue of a Hermitian operatorW (usually the Hamil-
tonian, but could be others), and let |u〉 designate the associated eigenstate, so
W |uw〉 = w|uw〉. Similarly, w′ will denote a possibly different eigenvalue, asso-
ciated with an eigenstate |uw′〉.

We proved 〈uw|uw′〉 = 0 if w 6= w′. Now let’s first specialize to discrete
eigenvalues, labeled wn, and label the eigenvector then as |un〉 (instead of the
more cumbersome |uwn〉.

An eigenvector associated with a discrete eigenvalue will be normalizable (we
wont prove that), so that we can multiply it by a constant to make its norm one,
i.e., 〈un|un〉 = 1. We also explained above that we can make each eigenvector
orthogonal to each other.

So ignoring degenerate eigenvalues, then what we said amounts to being able
to making the eigenvectors orthonormal:

〈un|um〉 = δn,m. (2.31)

What about continuous range of eigenvalue (also ignoring for now the pos-
sibility that there is degeneracy)? It turns out that then we can normalize the
eigenvectors, but differently, so they fulfill:

〈uw|uw′〉 = δ(w − w′), (2.32)
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i.e., their overlap is zero if the eigenvalues are different, and if they are the same
eigenvector its norm-squared is the “proper” infinity delta function.

Of course, for a mixed spectra case (i.e., some eigenvalues are discretely
distributed, some continuous), an eigenvector with a discrete eigenvalue and
another eigenvector with a continuous eigenvalue must be orthogonal to each
other (zero overlap), since their eigenvalues are different. I.e., if wn is a discrete
eigenvalue and w in a continuous range, then the associated eigenvectors fulfill
〈un|uw〉 = 0.

2.3 Completeness
Note: we are generally very flexible with notation, modifying it as we go.

Hermitian operators have complete basis sets

Recall what a complete basis set it. It is a basis which any vector (associated
with the same “space”) can be expanded in. For example, the unit vectors along
the x and y directions, x̂ and ŷ, can be used to expand any 2-D vector as
v = vxx̂+ vyŷ. Similarity, for any “dimensionality”, we can expand a vector in
a complete basis.

Now given a Hermitian operator, W , I claim without proof that the the set
of its eigenstates is a complete basis. This means that any function |Ψ〉
can be expanded in terms of the eigenstates.

|Ψ〉 =
∑
n

cn|un〉+

ˆ
c(w)|uw〉 (2.33)

where |un〉 are the discrete-spectrum eigenstates of W while |uw〉 are the con-
tinuous spectrum eigenstates.

Extracting the coefficients

Let’s specialize to the continuum case. Our results will be easily generalizable to
the discrete and mixed-spectra cases. Then, we are claiming that any function
(i.e., “ket”) |Ψ〉 can be written as:

|Ψ〉 =

ˆ
c(w)|uw〉dw. (2.34)

Claim: you can get the coefficient by a dot product with the eigenvector:

c(w) = 〈uw|Ψ〉. (2.35)

Proof (changing dummy indices in the integral from w to w′):

〈uw|Ψ〉 = 〈uw|
ˆ
c(w′)|uw′〉dw′ =

ˆ
c(w′)〈uw|uw′〉dw′

=

ˆ
c(w′)δ(w − w′)dw′ = c(w). Q.E.D. (2.36)
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Note that in the proof we “inserted” the bra into the integral, that’s allowed.

Norm-Squared

Claim:

〈Ψ|Ψ〉 =
∑
n

|cn|2 +

ˆ
|c(w)|2dw. (2.37)

Proof:

〈Ψ|Ψ〉 =

(∑
n

c∗n〈un|+
ˆ
c∗(w)〈uw|dw

)(∑
n′

cn′ |un′〉+

ˆ
c(w′)|uw′〉dw′

)
,

(2.38)
which gives four terms which we symbolically write 〈Ψ|Ψ〉 = Idd+Icc+Icd+Idc,
where “d” stands for discrete (sum), and “c” is continuous (integral).

The two cross terms vanish since 〈un|uw′〉 = 0; for example

Idc =

ˆ ∑
nw

c∗nc(w)〈un|uw〉dw =

ˆ ∑
n

c∗nc(w) · 0 · dw = 0. (2.39)

So we’re left with the Idd + Icc terms, which give

〈Ψ|Ψ〉 =
∑
nn′

c∗ncn′〈un|un′〉+

ˆ ˆ
c∗(w)c(w′)〈uw|uw′〉dwdw′

=
∑
nn′

c∗ncn′δnn′ +

ˆ ˆ
c∗(w)c(w′)δ(w − w′)dw dw′

=
∑
n

|cn|2 +

ˆ
|c(w)|2dw. Q.E.D. (2.40)

Note: |cn|2 is the probability for Ψ “to be” in a discrete state |un〉, while
|c(w)|2dw is the probability for Ψ ”to be” in a state with energy in the range
[w,w + dw], i.e., |c(w)|2 is the probability density for Ψ at w. We usually
call either cn or c(w) the “amplitude” (or probability amplitude).

Bra-kets and completeness

Completeness looks nice in bra-kets (and horrendous without it)
For a general discrete-continuous basis we claim:

1≡ identity operator =(claim)=
∑
n

|un〉〈un|+
ˆ
|uw〉〈uw|dw (2.41)
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Proof: apply both sides of the eq. from above:

|Ψ〉 = (claim) =

(∑
n

|un〉〈un|

)
|Ψ〉+

ˆ
|uw〉〈uw|Ψ〉

=
∑
n

|un〉〈un|Ψ〉+

ˆ
|uw〉〈uw|Ψ〉dw (2.42)

i.e., we get exactly the eq. from above, so the claim is valid!

|Ψ〉 =
∑
n

cn|n〉+

ˆ
c(w)|uw〉dw. Q.E.D. (2.43)

with cn = 〈un|Ψ〉 and c(w) = 〈uw|Ψ〉, as needed.
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3 Matrices and operators
Overall goal here: from H|Ψ〉 = E|Ψ〉 to matrices. (Lots of this is a linear-
algebra refresher, with the twist that now we consider complex operators/matrices,
symmetric matrices are replaced by Hermitian ones, etc.)

3.1 Matrices from operators
Take a complete basis (discrete):∑

m

|um〉〈um| = 1. (3.1)

Use this to turn

C = AB (operators) ↔ C = AB (matrices)

by defining

Cnm = 〈un|C|um〉. (3.2)

Of course, the choice of basis determines the matrices, while the operators are
abstract, i.e., independent of basis set (i.e., independent of “representation”).

Also, we’re usually using the same symbol for the matrix and operator, the
meaning should be clear by the context.

To show the operator-matrix relation we need to show:

Cnm =
∑
j

AnjBjm. (3.3)

Proof:

Cnm = 〈un|C|um〉 = 〈un|AB|um〉 =
∑
j

〈un|A|uj〉〈uj |B|um〉 =
∑
j

AnjBjm.

(3.4)
Q.E.D.

Also: what’s the matrix of the adjoint of an operator?(
A+
)
nj

= 〈un|A+|uj〉 = 〈uj |A|un〉∗ = A∗jn (3.5)

i.e., the adjoint matrix is the complex conjugate of the transpose of the original
matrix.

3.2 Operators from matrices
We previously saw how to determine a matrix from an operator. The other
direction is quite interesting.
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To start, recall that we learned that a ket-bra is an operator. Thus, take
a generic ket-bra: |f〉〈g|. Given a general function |ψ〉 it operates on it as:

Operator on |ψ〉 = |f〉〈g|ψ〉. (3.6)

Then, given a matrix Aij , and an associated basis |un〉, we define the operator
A as

A =
∑
ij

|ui〉Aij〈uj |. (3.7)

Of course, the matrix elements of the operator A are indeed Aij :

〈ui|A|uj〉 = Aij . (3.8)

3.3 Diagonalization
Given a vector and its eigenvectors and eigenvalues,

B|vn〉 = βn|vn〉, (3.9)

then dot with 〈uj | and insert a complete basis
∑
m |um〉〈um| to get∑

m

〈uj |B|um〉〈um|vn〉 = βn〈uj |vn〉, (3.10)

i.e., ∑
m

BjmVmn = βnVjn, (3.11)

where Bjm = 〈uj |B|um〉, and

Vmn ≡ 〈um|vn〉. (3.12)

This is a matrix equation,
BV = V β, (3.13)

where here βij ≡ βiδij refers to the diagonal eigenvalue matrix.
Note that if the two basis sets are orthonormal (both the |uj〉 basis used to

define the matrices and the basis |vn〉 of eigenfunctions) then the eigenvector
matrix, Vnm, is unitary, i.e., fulfills

V +V = 1. (3.14)

Proof:

(
V +V

)
nm

=
∑
j

(V +)njVjm =
∑
j

V ∗jnVjm =
∑
j

〈uj |vn〉∗〈uj |vm〉

=
∑
j

〈vn|uj〉〈uj |vm〉 = 〈vn|vm〉 = δnm. Q.E.D. (3.15)
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3.4 Functions of matrices and operators
You have presumably learned in your undergrad math that a general symmetric
matrix B can be diagonalized with an orthogonal matrix, R, satisfying RRT = 1,
as B = RβRT where β is diagonal (if you didn’t, then get some resources from
the TA).

A general (complex) Hermitian matrix can be similarly diagonalized as

A = V λV + (3.16)

or equivalently
AV = V λ (3.17)

where V is unitary, i.e., its product with its adjoint is the identity matrix I

V V + = V +V = I, (3.18)

and as we saw earlier (when we talked about operators) the diagonal eigenvalue
matrix, λ, is real.

Surprisingly, this leads to a simple prescription for functions of matrices/operators.
Specifically, start from A2

A2 =
(
V λV +

) (
V λV +

)
= V λλV + = V λ2V +. (3.19)

Similarly, for any polynomial

An =
(
V λV +

) (
V λV +

)
...
(
V λV +

)
= V λnV +. (3.20)

But since every “reasonable” function g(A) can be written as a polynomial

g(A) = g0I + g1A+ g2A
2 + ... (3.21)

we get the general relation

g(A) = V g(λ)V +. (3.22)

Proof:

g(A) = g0I+g1A+g2A
2+... = g0V V

++g1V λV
++g2V λ

2V ++....

= V
(
g0 + g1λ+ g2λ

2 + ...
)
V + = V g(λ)V +. (3.23)

So any function of an operator (or a matrix) can be replaced by the same
function for the eigenvalues!

For example,
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1

2 +A
= V


1

2+λ1
1

2+λ2

...
...

V +. (3.24)

Another example: the propagation operator in quantum mechanics: U =
e−itH (we’ll see this operator a lot soon). Writing H = V εV +, we get

e−itH = V


e−itε1

e−itε2

...
...

V +. (3.25)
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4 QM with bra-kets

4.1 The Schrödinger Equation, Hamiltonian and momen-
tum operators

Consider a Hamiltonian (in this section we’ll use 1d, the results are general):

H =
p2

2M
+ V, (4.1)

where now V means potential, not volume! In general V = V (x, t), while

p = −ih̄ d

dx
. (4.2)

The Schrödinger Eq. is then:

ih̄
∂Ψ

∂t
= HΨ, (4.3)

i.e.,

ih̄
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉. (4.4)

Henceforth we will assume we work in units where h̄ = 1.
So the Schrödinger equation will be

i
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉, (4.5)

and the momentum operator will be

p = −i d
dx
. (4.6)

If V (x, t) = V (x), i.e., the potential is time-independent, then we can find
stationary solutions, labeled by the eigenvalue of H, i.e., if

|Ψ(t = 0)〉 = |uE〉 (4.7)

where

H|uE〉 = E|uE〉 (4.8)

then

|Ψ(t)〉 = e−iEt|uE〉. (4.9)

More generally, the direct solution of the Schrodinger equation for any initial
state is
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|Ψ(t)〉 = e−iHt|Ψ(t = 0)〉. (4.10)

Proof: differentiate the RHS:

i
∂|Ψ(t)〉
∂t

= i
∂e−iHt|Ψ(t = 0)〉.

∂t
= i(−i)He−iHt|Ψ(t = 0)〉 = H|Ψ(t)〉, Q.E.D.

(4.11)

The Hamiltonian is Hermitian

Claim: H is Hermitian. Proof – using integration by parts:

〈f |H|g〉 =

ˆ
f∗(x)

(
− 1

2M

d2

dx2
+ V (x)

)
g(x)dx =

− 1

2M

(
f∗(x)

dg

dx

∣∣∣∣∣
∞

−∞

−
ˆ
df∗(x)

dx

dg

dx
dx

)
+

ˆ
f∗(x)g(x)V (x)dx. (4.12)

The boundary term vanishes (assuming our functions decay at far distances) so

〈f |H|g〉 =
1

2M

ˆ
df∗(x)

dx

dg

dx
dx+

ˆ
f∗(x)g(x)V (x)dx. (4.13)

Clearly, if we exchange f and g and complex conjugate we’ll get the same result,
so H is Hermitian, Q.E.D.

Note: Since H is Hermitian, its eigenvalues (E) are real.

Propagation:

We can analytically propagate a w.f. if we know the eigenstates. Given Ψ(x, t =
0), i.e., given |Ψ(t = 0)〉, then expand the wavefunction in terms of the eigen-
states of H, which are labeled by the eigenvalues and fulfill H|un〉 = En|un〉
(assuming a discrete spectrum, i.e., only discrete eigenvalues)

|Ψ(t = 0)〉 =
∑
n

cn|un〉, cn = 〈un|Ψ(t = 0)〉 (4.14)

so

|Ψ(t)〉 = e−iHt|Ψ(t = 0)〉 = e−iHt
∑
n

cn|un〉 =
∑
n

cne
−iEnt|un〉, (4.15)

so, for 1D, e.g.,

Ψ(x, t) =
∑
n

cne
−iEntun(x). (4.16)
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Note that here |cn|2 is the probability to be in a state |un〉 with energy En
and it is unchanged with time (since |cn|2 = |e−iEntcn|2 ). If the Hamiltonian
has also a continuous spectrum, then |c(E)|2 (for an energy E in the continuous
range) the probability density for the initial state to be at energy E, and will
also be unchanged with time.

Another Hermitian operator: p

p is Hermitian; proof – again by integration by parts:

〈g|p|f〉∗ =

(ˆ
g∗(x)

(
−i df
dx

)
dx

)∗
= +i

ˆ
g(x)

df∗

dx
dx

= i

(
g(x)f∗(x)

∣∣∣∞
−∞
−
ˆ
f∗(x)

dg

dx
dx

)
= 0− i

ˆ
f∗(x)

dg

dx
dx

= 〈f |p|g〉. Q.E.D. (4.17)

Eigenfunctions of p : here we ran into a labeling nightmare, since usu-
ally we use p for both the operator, and the eigenvalues. To avoid confusion,
we’ll denote the operator below as p̂. Note that the hat is meant here
to designate an operator, not as a unit vector like it does often in vector
analysis. But I caution you that I will often later revert to using p (rather than
p̂) as the operator; this should eventually be clear by context.

Further, we will often denote the eigenfunctions (ket) associated with an
eigenvalue p as |p〉 (rather than |up〉). But when we denote it as a function of
x, we’ll call the eigenfunctions up(x).

Anyway, the eigenfunction equation is here then

p̂|p〉 = p|p〉, (4.18)

or

− i d
dx
up(x) = p · up(x). (4.19)

The solution is

up(x) =
e−ipx√

2π
, (4.20)

where the constant factor “normalization factor” ensures the proper normaliza-
tion; i.e.,

〈p|p′〉 =
1

2π

ˆ
e+ipxe−ip

′xdx =
1

2π

ˆ
e−i(p

′−p)xdx, (4.21)

and using what we said about delta functions in a previous chapter, this implies

〈p|p′〉 = δ(p− p′) Q.E.D. (4.22)

The spectrum of p is continuous (only, no discrete eigenvalues).

26



Representation with eigenfunctions of p and Fourier transforms:

A general Ψ can be represented with eigenfunctions of p:

|Ψ〉 =

ˆ
φ(p)|p〉dp, (4.23)

i.e.,

Ψ(x) =

ˆ
φ(p)up(x)dp, (4.24)

i.e.,

Ψ(x) =
1√
2π

ˆ
φ(p)e+ipxdx. (4.25)

Therefore, dotting the ket equation above with a bra 〈p| yields (to prove,
change the integration variable from p to p’ above before “dotting” with the
bra):

φ(p) = 〈p|Ψ〉, (4.26)

i.e.,

φ(p) =
1√
2π

ˆ
e−ipxΨ(x)dx. (4.27)

The relations between Ψ(x) and φ(p) called a Fourier transform and
inverse Fourier transform. If you have not seen that, then you should consult
a mathematics book. (They are akin to Fourier sums, which you most likely
have seen, but are applicable to any function, not just periodic functions as
needed for Fourier sums.)

Interpretation:

Just like

|Ψ(x)|2dx = probability to find the particle in the momentum range [x, x+ dx]
(4.28)

we have

|φ(p)|2dp = probability to find the particle in the momentum range [p, p+ dp].
(4.29)

4.2 x-Basis set
This part can be highly confusing.

Given a wavefunction Ψ(x) we can act on it by x. Therefore, as we know,
we can think of x as an operator (and sometimes when we do, we’ll call it x̂).
Thus, x̂Ψ(x) = xΨ(x), etc.
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But if x̂ is an operator, it has eigenfunctions, which we’ll label for now as
|x0〉 and in wavefunction form as ux0(x). Those fulfill

x̂|x0〉 = x0|x0〉 (4.30)

i.e,
xux0

(x) = x0ux0
(x) (4.31)

i.e.,

(x− x0)ux0
(x) = 0 (4.32)

Note what this means: for x 6= x0, ux0
(x) needs to vanish, but since ux0

does not have a 0 norm, this means that it must be infinity at x = x0. This
means that ux0

(x) must be a delta-functions,

ux0(x) = δ(x− x0). (4.33)

(More precisely it needs to be proportional to a delta function, but the propor-
tionality constant turns out to be 1.) Thus

〈x|x0〉 = δ(x− x0). (4.34)

Note that the completeness relation becomes (where we replace “x0” by ”x”
as an integration variable)

I =

ˆ
|x〉〈x|dx. (4.35)

This gives us a clearer angle to look at wavefunctions and their value.

(I reemphasize – |x〉 is a state that is localized at x,i.e., 〈x′|x〉 =
δ(x− x′).)

Specifically, we need to think of |Ψ〉 as an abstract vector. Such a vector
can be written in terms of the “x” states as

|Ψ〉 =

ˆ
|x〉〈x|Ψ〉dx, (4.36)

so 〈x|Ψ〉 (i.e., Ψ(x)), the amplitude for Ψ to be at a point x, is the coordinate
of Ψ along the “direction” associated with the value x.

Note: in the earlier example where we discretized space, there would
be 401 values of x, and 〈x|Ψ〉 would be a “vector”, i.e., list of numbers,
with 401 numbers.

Of course, |〈x|Ψ〉|2 is the probability density to be at x.)
Or we can resolve the abstract vector Ψ in terms of the momentum

eigenstates,

|Ψ〉 =

ˆ
|p〉〈p|Ψ〉dp. (4.37)
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The overlap of two functions has of course a similar form no matter which
basis we calculate. Specifically, using completeness

〈Ψ1|Ψ2〉 =

ˆ
〈Ψ1|x〉〈x|Ψ2〉dx =

ˆ
Ψ∗1(x)Ψ2(x)dx, (4.38)

and also

〈Ψ1|Ψ2〉 =

ˆ
〈Ψ1|p〉〈p|Ψ2〉dp =

ˆ
Ψ∗1(p)Ψ2(p)dp. (4.39)

Fourier-relation revisited

We now get the Fourier-relation we got above (Eqs. (4.25),(4.27)) in a slightly
more satisfying abstract manner, by writing

Ψ(p) = 〈p|Ψ〉 =

ˆ
〈p|x〉〈x|Ψ〉dx

=

ˆ
〈x|p〉∗〈x|Ψ〉dx =

1√
2π

ˆ
e−ipxΨ(x)dx, (4.40)

and similarly (exchange x and p)

Ψ(x) = 〈x|Ψ〉 =

ˆ
〈x|p〉〈p|Ψ〉dp =

1√
2π

ˆ
eipxΨ(p)dp, (4.41)

so that there’s no need for a new symbol, φ(p), we just we Ψ(p).

Be careful: what does, e.g., Ψ(1.38) mean?

Answer: it depends on what does 1.38 refer to! For example, it
could refer to momentum, position, etc.

So the proper formula would be Ψ(x = 1.38), or Ψ(p = 1.38), etc.

This is the same as realizing that a vector in 3D is well-defined,
but its components along the “x” or “y” or “z” direction depend on
the orientation of the coordinate system, so that if we rotate the
coordinate system the components of the vector change, while the
vector does not.

In the same spirit, |Ψ(1.38)〉 is not meaningful unless we specify what
it refers to. |Ψ(x = 1.38)〉 refers to a state that is an eigenstate of
the x-operator, i.e., 〈x′|Ψ(x = 1.38)〉 = δ(x− x′),
while |Ψ(p = 1.38)〉 refers to a plane wave, with position amplitude:
〈x′|Ψ(p = 1.38)〉 = 1√

2π
eix
′p = 1√

2π
eix
′·1.38
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4.3 Derivatives and Schrödinger equation in the bra-ket
picture

The crucial pre-step in going from the abstract time-independent H|Ψ〉 = E|Ψ〉
to the coordinate-dependent Schrödinger equation is

〈x|p|Ψ〉 = −i d
dx
〈x|Ψ〉. (4.42)

Proof: (putting hat-operator subscript occasionally; also, there’s an element of
circularity in this proof, but it is still instructive).

First, note that

〈x|p̂|Ψ〉 =

ˆ
〈x|p̂|p〉〈p|Ψ〉dp. (4.43)

But since, by definition of eigenstates, p̂|p〉 = p|p〉, we write:

〈x|p̂|Ψ〉 =

ˆ
p〈x|p〉〈p|Ψ〉dp (4.44)

and recalling 〈x|p〉 = 1√
2π
eixp so p〈x|p〉 = −i ddx 〈x|p〉, we get that

〈x|p̂|Ψ〉 = −i d
dx

ˆ
〈x|p〉 〈p|Ψ〉 dp (4.45)

i.e.,

〈x|p̂|Ψ〉 = −i d
dx
|Ψ〉 . Q.E.D. (4.46)

Based then on the previous equation, we see immediately:

E〈x|Ψ〉 = 〈x|H|Ψ〉 = 〈x| p̂
2

2M
+V (x̂)|Ψ〉 =

1

2M

(
−i d
dx

)2

〈x|Ψ〉+ 〈x|V (x)|Ψ〉

=

(
− 1

2M

d2

dx2
+ V (x)

)
〈x|Ψ〉, (4.47)

so Ψ(x) ≡ 〈x|Ψ〉 fulfills indeed the Schrödinger equation, as we stipulated earlier
on:

EΨ(x) =

(
− 1

2M

d2

dx2
+ V (x)

)
Ψ(x) (4.48)

4.4 Projection operators
Given a general Ψ, and a general discrete basis set |n〉,we write

|Ψ〉 =
∑
n

|n〉〈n|Ψ〉 =
∑
n

Pn|Ψ〉 (4.49)

where we defined the projection operator
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Pn = |n〉〈n|. (4.50)

Note that ∑
n

Pn = 1 (4.51)

PnPm = |n〉〈n|m〉〈m| = δnm|n〉〈m| = δnmPn, (4.52)

and therefore P 2
n = Pn.

The states we defined above (Pn = |n〉〈n|) are called projection operators
to a specific state. We can also add such single-state projection operator in
bunches, and such bunches will still be called projection operators. E.g., define
B1 = P1 + P2 + P3, B2 = P4 + ... + P10,..., Bj =

∑
few n Pn, ...; then we’ll still

have ∑
j

Bj = 1, BjBk = δjkBj . (4.53)

(Exercise: prove for the definition here that B1B1 = B1,and B1B2 = 0).
Any set of operators that fulfills Eq. 4.53 is a set of projection operators,

and each of the operators that fulfills this relation can be shown to be made of
sum of several single-set projection operators.

Also, this discussion carries with some slight modifications to continuous
basis sets.

4.5 The density operator: single electron
The projection operator to a specific position has a special name, n̂(r), the
(spatial) density operator:

n̂(r) = |r〉〈r|. (4.54)

For a single electron, the expectation value of n̂(r) is just the electron density
at the point r

〈Ψ|n̂(r)|Ψ〉 = 〈Ψ|r〉〈r|Ψ〉 = |Ψ(r)|2. (4.55)

Note that, as it stands, this operator is a projection operator. It projects a
wavefunction to the state associated with the point |r〉, i.e., what’s |n̂(r)Ψ〉?

|̂n(r)Ψ〉 = n̂(r)|Ψ〉 = |r〉〈r|Ψ〉 = Ψ(r)|r〉, (4.56)

i.e., it becomes a ket localized at r, with an amplitude Ψ(r). Therefore, when
we ask what’s the amplitude of n̂(r)|Ψ〉 at an arbitrary point r′, we are going
to get a delta function:

〈r′|n̂(r)Ψ〉 = Ψ(r)〈r′|r〉 = δ(r − r′)Ψ(r). (4.57)

The density operator would be very important later when we consider multi-
electron systems (there it will not be a projection operator anymore).
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4.6 Measurements
Preliminaries

First recall: Any operator A can be written in terms of projection to its eigen-
states, |n〉 (that fulfill A|n〉 = an|n〉)

A =
∑
n

an|n〉〈n| =
∑
n

anPn. (4.58)

Proof: it is enough to prove this by applying to the complete basis
of eigenstates.

Thus, apply both sides on an arbitrary state |m〉.
The LHS gives:A|m〉 = am|m〉, while the RHS gives∑

n

anPn|m〉 =
∑
n

an|n〉〈n|m〉 =
∑
n

anδnm|n〉 = am|m〉, (4.59)

i.e., the same – Q.E.D.!

Example: the Hamiltonian can be written, when the eigenvalues are discrete

H =
∑
n

En|n〉〈n|, (4.60)

or, when the spectrum is continuous

H =

ˆ
|E〉〈E|dE, (4.61)

or even a mixture in a mixed continuous-discrete case.
Thus, the average energy, for example, is

〈Ψ|H|Ψ〉 =
∑
n

〈Ψ|n〉En〈n|Ψ〉 =
∑
n

|〈Ψ|n〉|2En (4.62)

Measurements: Overview

A measuring device can be denoted as a Hermitian operator; call it A. Given
a general normalized wavefunction Ψ (i.e., 〈Ψ|Ψ〉 = 1) the measurement will
choose a specific eigenfunction of A with a probability given by the overlap
squared: i.e.,

|Ψ〉 =
∑
a

c(a)|ua〉, A|ua〉 = a|ua〉 →

Post-measurement,Ψ is replaced by one of the |ua〉,
with probability |c(a)|2 = |〈ua|Ψ〉|2. (4.63)
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Another way of saying this: Let’s say the operator is the Hamiltonian. Then,
measuring the “operator” (e.g., measuring the energy) means that given a nor-
malized |Ψ〉 the measurement device forces the wavefunction to a ran-
domly chosen n’th energy-resolved state and that the probability to
end up at the n’th state is |〈Ψ|n〉|2. I.e.,

|Ψ〉 → Pn|Ψ〉 = |n〉〈n|Ψ〉 = (final state) ∗ (amplitude to reach it). (4.64)

Example: the Stern Gerlach experiment.

Given a beam of atoms going along the y-direction. We’ll choose atoms with a
single s-shell valence electron (e.g., Ag). The beam passes through an inhomo-
geneous magnetic field along, say, the z-direction, the beam will be split into
two.

The reason the beam is split into two is that if an electron has a spin up it will
be repelled from the high field region, and if down then it will be attracted to it.
Thus atoms with a single electron don’t experience the same energy at different
spins. They need to “choose” which direction they go through depending on the
spin value.

Put differently, the Stern-Gerlach device measures the spin along this direc-
tion, Sz.

Note the subtle difference from the first-year chemistry interpretation of
the Stern-Gerlach experiment. In your first-year course you were taught that
the spin are initially up and down and the beam splits it. But that’s
wrong!

The correct interpretation is that the spin is initially in a random mix-
ture state, i.e., it could be in any linear-combination of “up” and “down”
states (which corresponds to being “along” a different axis – see the spin point-
ing along different axis in the LHS of the picture above. Going through the
measurement device (the inhomogeneous magnet) forces the spin to be
either “up” or “down”, even though before it goes through the measurement
device it isn’t purely up or down.
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Measurements relate to commutators

Assertion:

If and only if [A,B] = 0, then the eigenvalues of A and of B can be
measured simultaneously.

(Example: hydrogen atom, A = H, B = L2, the eigenstates φnlm(r) are simul-
taneous eigenstates of H and L2)

Let’s prove one side, i.e., if we can find a complete set of vectors |Ψab〉 that
are eigenstates of A and of B, then A and B commute. Proof: apply AB and
BA on all members of the set:

AB|Ψab〉 = Ab|Ψab〉 = ab|Ψab〉
BA|Ψab〉 = Ba|Ψab〉 = ba|Ψab〉 = AB|Ψab〉 (4.65)

and since |Ψab〉 are a complete set, this proves AB = BA, Q.E.D.
More details in Gasiorowicz.

Stern Gerlach Experiment: Details

We can now understand a more sophisticated version of the Stern Gerlach ex-
periment (see Sakurai, 1.1, for more details; the figure is taken from there).

Say we run the silver-atom beam (which goes along the “y-axis”) through
three consecutive (rather than just one) magnets:

• The first is the same as in the original one, i.e., has an inhomogeneous
field in the z-direction. After the atoms go through it, half will go in
one direction (spin up along z) and half in the other (spin down along z).
But now we’ll block the half of the beam associated with spin
down along z.

• We then ran the remaining beam through a rotated magnet, which has
an inhomogeneous field in the x-direction. Therefore, half the atoms will
go in one direction (those that have, or more precisely that the magnet
measured to have, spin up along the x-direction), and half, those that
have “spin-x down” will go in the other direction. We block again the
latter beam.
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• We now run the remaining beam (i.e., of atoms that were first measured
to have spin up along z, and then were measured to have spin up along
x) through an identical copy of the first magnet, i.e., measuring the spin
along z.

– Naively we would have expected that the atoms will still have spin
up along z, since we measured them earlier to have spin up along z.

– But instead they split to two equal beams. I.e., the measurement
of the spin along x (in the 2nd magnet) erased the memory
of the measurement of the spin along z (in the 1st magnet).
In the mathematical language we used before, the spin along z
and along x are not commuting operators, so they cannot
be measured simultaneously.

We will verify our conclusions later when we learn about spins and Pauli ma-
trices.

4.7 The evolution of expectation values.
We’ll now conclude the chapter with a prelude to the next, harmonic oscillator
part, by discussing the evolution of expectation values.

Consider a general operator A, either time-dependent or not. Its expectation
value will generally be time-dependent:

〈A〉 = 〈Ψ(t)|A|Ψ(t)〉 =

ˆ
Ψ∗(x, t) (AΨ)(x, t) dx. (4.66)

Then (omitting where convenient the explicit mentioning of the dependence on
t):

d〈A〉
dt

=

〈
∂

∂t
Ψ(t) |A|Ψ(t)

〉
+

〈
Ψ(t)

∣∣∣∣ ∂∂tA
∣∣∣∣Ψ(t)

〉
+

〈
Ψ(t) |A| ∂

∂t
Ψ(t)

〉
= 〈−iHΨ |A|Ψ(t)〉+

〈
Ψ(t)

∣∣∣∣∂A∂t
∣∣∣∣Ψ(t)

〉
+ 〈Ψ(t) |A| (−i)HΨ(t)〉 (4.67)

and since H is Hermitian, we can rotate 〈HΨ|A|Ψ〉 = 〈Ψ|HA|Ψ〉, so (also note
the sign change of the −i factor when we take it out of the bra)

d〈A〉
dt

= +i 〈Ψ |HA|Ψ〉 − i 〈Ψ |AH|Ψ〉+

〈
∂A

∂t

〉
= +i 〈Ψ |[H,A]|Ψ〉+

〈
∂A

∂t

〉
,

(4.68)
i.e.,

d〈A〉
dt

= +i 〈[H,A]〉+

〈
∂A

∂t

〉
. (4.69)
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Example: the evolution of 〈x〉, 〈p〉 (Ehrenfest relations)

Consider the time dependence of 〈x〉, 〈p〉. The two operators x and p are time-
independent, i.e., do not explicitly dependent on time (an example of an operator
that depends on t would be, e.g., A = tx+ 5t2p).

Therefore ∂x
∂t = ∂p

∂t = 0, so inserting to the boxed relation above, we get

d 〈x〉
dt

= i 〈[H,x]〉 . (4.70)

But

i[H,x] = i

[
p2

2M
+ V (x), x

]
=

i

2M

[
p2, x

]
+i [V (x), x] =

i

2M
(p[p, x] + [p, x]p)+0

=
i

2M
(p(−i) + (−i)p) = (i)(−i) p

M
=

p

M
, (4.71)

i.e.,

d〈x〉
dt

=
〈p〉
M
. (4.72)

This is a very enticing relation: no matter what the Hamiltonian and the initial
wavefunction, the average velocity (derivative w.r.t time of the average posi-
tion) is the average momentum divided by the mass. Just like classical
mechanics!

Similarly:

d〈p〉
dt

= i〈[H, p]〉 = i

〈[
p2

2M
,p

]〉
+ i 〈[V, p]〉 = 0 + i 〈[V, p]〉 , (4.73)

Let’s evaluate the action of the last commutator on any wavefunction:

i [V, p] Ψ(x) = i

(
V (x) (−i) ∂Ψ

∂x
− (−i) ∂VΨ

∂x

)
= V (x)

∂Ψ

∂x
− ∂VΨ

∂x
=

(
−∂V
∂x

)
Ψ

(4.74)
i.e., the commutator is the same as −∂V∂x ! Therefore:

d〈p〉
dt

= −
〈
∂V

∂x

〉
. (4.75)

Again, this is a very classical-like equation.

Note however that this expression will generally not be exactly the
same as classical mechanics (the exception is Harmonic oscillator,
as discussed below). In contrast, the classical mechanics expression
would have been
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WRONG (Classical-like):
d〈p〉
dt

=-
∂V (〈x〉)
∂ 〈x〉

(4.76)

i.e., in this classical-like expression the potential would have been
evaluated only at the average position. In QM the derivative of the
potential is evaluated at a range of position values, and is integrated
over.

Ehrenfest relations for Harmonic Oscillator

An important special case where the Ehrenfest relations can be “closed” is
H.O.(=Harmonic Oscillator):

V =
1

2
Mω2x2 (4.77)

where
∂V

∂x
= Mω2x (4.78)

so the relations become together:

d〈x〉
dt

=
〈p〉
M
,

d〈p〉
dt

= −Mω2〈x〉, (4.79)

i.e., just like a classical H.O.!
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5 Harmonic Oscillator – algebraic approach

5.1 Raising and Lowering Operators
Recall that the (1-d) H.O. Hamiltonian is

H =
p2

2M
+

1

2
Mω2x2. (5.1)

First, simplify the notation. Define the natural width (definition justified later)
of the H.O. as σ =

√
h̄/(Mω). Then we redefine the momentum and coordinate:

p̄ =
σp

h̄
x̄ =

x

σ
. (5.2)

Note that
[p̄, x̄] = −i. (5.3)

Then, by substitution, we can easily show that

H = h̄ω

(
p̄2

2
+
x̄2

2

)
. (5.4)

Henceforth we’ll again set h̄ = 1. Further, we’ll remove the “bars”
from x and p, but recall that from now on x and p refer to the scaled
coordinates, not the original one.

We now define the lowering operator (name justified later) as

a =
(x+ ip)√

2
, (5.5)

while its conjugate is the raising operator

a+ =
(x− ip)√

2
. (5.6)

Now comes the key relation:

[a, a+] = 1. (5.7)

Proof:

[a, a+] =
1

2
[x+ ip, x− ip] =

i

2
[p, x]− i

2
[x, p] =

i

2
(−i)− i

2
(+i) = 1 (5.8)

Claim:

p2

2
+
x2

2
= a+a+

1

2
. (5.9)

Proof:
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2a+a = (x− ip) (x+ ip) = x̄2 − ipx+ ixp+ p2 = x2 − i[p, x] + p̄2

= x2 − i(−i) + p2 = x2 + p2 − 1. (5.10)

Therefore:
H = ω

(
a+a+

1

2

)
. (5.11)

Corollaries:

[H, a] = ω
[
a+a, a

]
= ω

(
a+ [a, a] +

[
a+, a

]
a
)

= 0 + ω(−1)a (5.12)

i.e.,
[H, a] = −ωa (5.13)

and we can similarly show [
H, a+

]
= +ωa+ (5.14)

Claim: a+ is a raising operator.

In other words, given an eigenstate |φE〉 of H, fulfilling

H|φE〉 = E|φE〉 (5.15)

(i.e., (HφE) (x) = EφE(x)), then we can find a new eigenstate, by acting
with a+, and the new eigenstate is associated with a higher energy,
E + ω, (i.e., E + h̄ω if we were to keep h̄).

Proof: Let’s act with H on the new state, and use the commutation relation:

Ha+|φE〉 =
(
a+H +

[
H, a+

])
|φE〉 = a+E|φE〉+ ω|φE〉

i.e.,

Ha+|φE〉 = (E + ω) a+|φE〉, (5.16)

So the state a+|φE〉 is an eigenstate of H with an energy higher than that of
φE by ω. (Hence: a+is a raising operator.)

a is a lowering operator.

Similarly, a|φE〉 is also an eigenstate of H, with energy E − ω.
This last part is troubling, since it ostensibly means that the spectrum could

have infinitely low energy (start with one eigenvalue E, and then lower it succes-
sively (“downward ladder”) by applying a successively on the associated eigen-
vector to get E − ω, E − 2ω, E − 3ω, ....
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But this stands in contradiction to the fact, that we’ll prove below, that the
energy cannot be negative. Specifically, for any normalized wavefunction Ψ the
expectation value of a+a is never negative:

〈Ψ|a+a|Ψ〉 = 〈η|η〉 ≥ 0, |η〉 ≡ a|Ψ〉 (5.17)

and therefore (H = ω(a+a+ 1
2 ))

En = 〈n|H|n〉 ≥ ω

2
(5.18)

Therefore, there must be a state, which we call |φE0
〉 or even more simply

|0〉, such that the “downward ladder” terminates, i.e.,

a|0〉 = 0 (5.19)

Then,
E0 = 〈0|H|0〉 = ω〈0|a+a|0〉+

ω

2
=
ω

2
. (5.20)

Finding the eigenstates using the raising operator.

Once we determined that the zero order state has E0 = ω
2 ,we can get the higher

energy states by successive application of the raising operator. I.e., the 1st
excited state (which we can label as |φE1〉 or simply as |1〉– we’ll use the latter
notation henceforth) will be obtained by applying a single raising operator:

E1 =

(
1 +

1

2

)
ω (5.21)

|1〉 = c1a
+|0〉 (5.22)

(to understand why - recall that we proved that applying a+ on a state raises
its energy by ω).

The normalization factor c1 will be obtained below.
We can similarly write:

E2 =

(
2 +

1

2

)
ω (5.23)

|2〉 ∝ a+|1〉 (5.24)

i.e.,

|2〉 = c2
(
a+
)2 |0〉 (5.25)

and therefore, climbing up the ladder by applying successively a+, we get

En =

(
n+

1

2

)
ω, n = 0, 1, 2, ... (5.26)

|n〉 = cn
(
a+
)n |0〉 (5.27)

40



Example:

The figure below shows an example – start from an arbitrary energy
level; by lowering successively, applying a each time, we eventually
will need to reach state the state with E0,below which applying a
yields a vanishing state. (I.e., a|0〉 ≡ a|u0〉 = 0). In this case this
was achieved after 6 states in the ladder. Since E0 = ω

2 , this means
that our original state was state |6〉 and had E = (6 + 1

2 )ω.

Note: we don’t even know yet how |0〉looks like in coordinate space!
Interestingly, we have not yet even determined how uEn(x) ≡ 〈x|n〉 (henceforth
labeled un(x)) looks like! We’ll determine it shortly, but the beauty of the alge-
braic approach is that we don’t even need to know it to get lots of information.

5.2 Normalization
I will write down the normalization constant, and then prove it by induction:

Claim:
cn =

1√
n!

(5.28)

Proof – by induction: First, take the starting case, n = 0. Then by defini-
tion

〈0|0〉 = 1 (5.29)

and since
c0 =

1√
0!

= 1

our claim is correct for n = 0.
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Next, assume that the claim is correct for n− 1,i.e., that

cn−1 =
1√

(n− 1)!
(5.30)

i.e., that

〈n− 1|n− 1〉 =
1

(n− 1)!
〈0|a(n−1)

(
a+
)n−1 |0〉 = 1

and try to prove then that

〈n|n〉 =
1

n!
〈0|an

(
a+
)n |0〉 = 1. (5.31)

Proof: The “big-picture” in the proof is that we want to use commu-
tation relation to end up with expressions where a acts directly on
|0〉, since that’s 0. So let’s start

First, separate
an
(
a+
)n

= an−1a
(
a+
)n (5.32)

and concentrate on the “brown” part, writing it as

a
(
a+
)n

=
(
a+
)n
a+

[
a,
(
a+
)n]

. (5.33)

Let’s evaluate the commutator. For this I need the insert:

Insert: what’s the commutator, [A,Bn] for any two operators A,B?

Answer: We can write our desired commutator as

[A,Bn] = ABBn−1 −BBn−1A (5.34)

and therefore, adding and subtracting a term:

[A,Bn] = ABBn−1−BABn−1 +BABn−1−BBn−1A = [A,B]Bn−1+B
[
A,Bn−1

]
(5.35)

Now we can repeat the same process one more time on the “green”
commutator to get

[A,Bn] = [A,B]Bn−1 +B
(
[A,B]Bn−2 +B

[
A,Bn−2

])
= [A,B]Bn−1 +B [A,B]Bn−2 +B2

[
A,Bn−2

]
(5.36)
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and we can repeat the procedure until we’ll end up at our desired
answer:

[A,Bn] = [A,B]Bn−1 +B [A,B]Bn−2 +B2 [A,B]Bn−3 + ...+Bn−1 [A,B]

(5.37)

In our case, A and B are a and a+. The commutator of them is extremely simple

[A,B] =
[
a, a+

]
= 1 (5.38)

and therefore the last two equations give:

[
a,
(
a+
)n]

= 1 ·
(
a+
)n−1

+ a+ · 1 ·
(
a+
)n−2

+ ....+
(
a+
)n−1 · 1 (5.39)

so [
a,
(
a+
)n]

= n
(
a+
)n−1 (5.40)

and therefore

a
(
a+
)n |0〉 =

(
a+
)n
a|0〉+

[
a,
(
a+
)n] |0〉 = 0 + n

(
a+
)n−1 |0〉, (5.41)

and therefore, plugging to our original equations

〈n|n〉 =
1

n!
〈0|an

(
a+
)n |0〉 =

1

n!
〈0|an−1a

(
a+
)n|0〉 =

1

n!
〈0|an−1n

(
a+
)n−1|0〉 =

1

(n− 1)!
〈0|an−1

(
a+
)n−1|0〉. (5.42)

where we used n
n! = 1

(n−1)! . But by our induction assumption, the last expression
is just 〈n− 1|n− 1〉, i.e., equals 1; therefore

〈n|n〉 = 〈n− 1|n− 1〉 = 1. Q.E.D. (5.43)

5.3 Example for operators →matrices: H.O.
We can continue with the algebraic approach and derive matrix elements for
the operators. In an H.O.:

Hnm = 〈n|H|m〉 = Enδnm =

(
n+

1

2

)
ω, (5.44)

i.e., (numbering the columns here n = 0, 1, 2....), the matrix of H in the H.O.
eigenfunctions basis is (of course) diagonal
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H =
ω

2


1

3
5

...
...

 . (5.45)

Further, let’s discuss the matrix of the a, a+ operators:

(a+)mn = 〈m|a+|n〉, (5.46)

But it turns out that
a+|n〉 =

√
n+ 1|n+ 1〉. (5.47)

Proof: |n〉 = 1√
n!

(a+)
n |0〉, so apply

a+|n〉 = a+ (a+)
n

√
n!
|0〉 =

√
n+ 1

(a+)
n+1√

(n+ 1)!
|0〉 =

√
n+ 1|n+1〉 Q.E.D.

(5.48)

so therefore

(
a+
)
mn

= 〈m|a+|n〉 =
√
n+ 1〈m|n+ 1〉 =

√
n+ 1δm,n+1. (5.49)

Also, there’s no need to recalculate the matrix elements of a, since 〈m|a|n〉 =
〈n|a+|m〉∗.

In matrix form: (numbering the columns n = 0, 1, 2....) a+will be a non-
diagonal, “upper-only” matrix:

a+ =


0 0√
1 0 0√

2 0 0√
3 0 ...

... ...

 , (5.50)

and the opposite for a :

a =


0
√

1

0 0
√

2

0 0
√

3
0 0 ...

... ...

 . (5.51)

We can multiply the two infinite matrices to show that indeed the three
matrices above indeed obey ω

(
a+a+ 1

2

)
= H, just like the operators do.

The matrices for x, p follow similarly:

xmn = 〈m|x|n〉 =
(
〈m|a|n〉+ 〈m|a+|n〉

)
(5.52)
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i.e., in matrix form:

x =
1√
2


0
√

1√
1 0

√
2√

2 0
√

3√
3 0 ...

... ...

 . (5.53)

Similarly,

p =
−i√

2


0

√
1

−
√

1 0
√

2

−
√

2 0
√

3

−
√

3 0 ...
... ...

 . (5.54)

We can again show easily that the two infinite matrices fulfill [p, x] = −i.

But: this is only true when we consider the infinite matrices; if
we truncate at a finite size (say, only 100 functions, for a 100*100
matrix), it will not be true

5.4 Heisenberg Picture: Generally and for H.O.
The H.O. example is a good point to introduce a new concept: the Heisenberg
and Schrödinger pictures.

The Schrödinger picture:

Our picture of time-dependent wavefunctions is called the Schrödinger picture.
In that picture wavefunctions change in time, and most operators do not.

In the Schrödinger picture, the Schrödinger wavefunction fulfills

∂|Ψ(t)〉
∂t

= −iH|Ψ(t)〉,

so then, for a time-independent Hamiltonian,

|Ψ(t)〉 = e−iHt|Ψ(0)〉. (5.55)

In 115b/215b we’ll generalize this solution to a time-dependent Hamiltonian.
The expectation value of any time-independent operator B is then

〈B(t)〉 = 〈Ψ(t)|B|Ψ(t)〉 = 〈e−iHtΨ|B|e−iHtΨ〉 = 〈Ψ(0)|eiHtBe−iHt|Ψ(0)〉.
(5.56)

The key is the realization that the only measurable property are matrix
elements, not operators by themselves nor wavefunctions by themselves.
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The Heisenberg Picture

In the Heisenberg picture, the wavefunction is a fixed object, i.e., |Ψ(0)〉.
Instead, what changes are operators, i.e., given a time-independent operator (in
the Schrodinger picture) which we call B, then in the Heisenberg picture the
operator is time dependent

Heiseberg picture: B(t) ≡ eiHtBe−iHt, (5.57)

From the previous two equations, we learn that the measurable property,
matrix elements of

〈B(t)〉 = 〈Ψ(0)|B(t)|Ψ(0)〉 = 〈Ψ(0)|eiHtBe−iHt|Ψ(0)〉. (5.58)

and therefore 〈B(t)〉 is the same in both pictures! Whichever picture is used
depends on convenience; for most of our discussion we’ll continue using the
Schroeidnger one, but you should be aware of the Heisenberg picture since it is
a better starting point for approximations, necessary in physical chemistry. It
is especially important for NMR.

Time-dependent equation for the evolution of operators in the Heisen-
berg picture.

From the definition, we see that

dB(t)

dt
=

d

dt

(
eiHtBe−iHt

)
= iHeiHtBe−iHt−ejHtBe−iHtiH = i

[
H, eiHtBe−iHt

]
,

(5.59)
i.e., we reach the Heisenberg equation of motion, equivalent to the Schrödinger
equation:

Heisenberg picture operator-evolution equation:
dB(t)

dt
= i [H,B(t)] (5.60)

Example for the Heisenberg relation: Harmonic Oscillator

Preface: Products are preserved when we go from the Schroeidnger picture
to the Heisenberg one, i.e., in general

If C = AB then C(t) = A(t)B(t). (5.61)

Proof:

C(t) = e+iHtABe−iHt = e+iHtAe−iHte+iHtBe−iHt = A(t)B(t), Q.E.D.
(5.62)
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As a corollary, commutation are also preserved, i.e.,

If D = [A,B] then D(t) = [A(t), B(t)] . (5.63)

Next, look at the H.O. Hamiltonian,

H = ω

(
aa+ +

1

2

)
.

What we just learned is that

H(t) = ω

(
a(t)a+(t) +

1

2

)
(5.64)

But since H is time-independent and commutes with itself it would not be
modified by the Heisenberg time-evolution

H(t) ≡ e+ i
h̄HtHe−

i
h̄Ht = He+ i

h̄Hte−
i
h̄Ht = H, (5.65)

so from the above we can write,

H = ω

(
a(t)a+(t) +

1

2

)
. (5.66)

We also need to recall from above that [H, a] = −ωa, and therefore

[H, a(t)] = −ωa(t).

Plugging to the Heisenberg equation of motion we get:

da(t)

dt
= −i[H, a(t)] (5.67)

i.e.,
da(t)

dt
= −iωa(t) (5.68)

Note that this equation has a simple solution:

a(t) = e−iωta, (5.69)

and conjugating gives

a+(t) = eiωta+. (5.70)

The nice thing is that from these equations we can get directly the evolution of
the x, p operators. Specifically, since a = (x+ ip) /

√
2, a+ = (x− ip) /

√
2, it

follows that x = a+a+
√

2
, so

x̄(t) =
a(t) + a+(t)√

2
=
e−iωta+ eiωta+

√
2

=
e−iωt (x+ ip) + eiωt (x− ip)

2
,

(5.71)
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i.e.,
x(t) = x cosωt +

p

ω
sinωt, (5.72)

and similarly we can show

p(t) = p cosωt − ωx sinωt. (5.73)

These are just the classical equations! (for scaled coordinates).

5.5 The Schrödinger wavefunctions for the H.O.
Finally, we can ask: what are the H.O. functions in space? I.e., what is 〈x|n〉?

Answer: Recall that

p = −i d
dx

so since
0 = a|0〉 = (x+ ip) |0〉 =

(
x+

d

dx

)
|0〉 (5.74)

so the ground-state wavefunction in scaled coordinates, φ0(x) ≡ 〈x|0〉 would
fulfill

〈x|
(
x+

d

dx

)
|0〉 = 0 (5.75)

i.e., (
x+

d

dx

)
φ0(x) = 0 (5.76)

and the solution is
φ0(x) ∝ e− x

2

2 (5.77)

and therefore when we go back to non-scaled coordinates (and recall ) and
normalize properly:

Original unscaled coordinates: φ0(x) =
1

π
1
4
√
σ
e−

x2

2σ2 (5.78)

where the normalization constant results from requiring
´
|φ0(x)|2dx = 1.

Similarly (we’re casual on the symbols, and go back to scaled coordinates):

φ1(x) ∝ 〈x|a+φ0〉 ∝
(
x− d

dx

)
e−

x2

2 = 2xe−
x2

2 (5.79)

i.e.,

Original unscaled coordinates: φ1(x) = C1xe
− x2

2σ2 (5.80)

where C1 is a normalization constant. In general, since a+ ∝ x− d
dx , we get

φn(x) = const ∗
(
x− d

dx

)n
e−

x2

2 . (5.81)
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6 Angular Momentum: General
Recall classical mechanics (the definition carries over to QM):

L = r × p. (6.1)

The same definition carries over to QM. For example,

Lx = ypz − zpy, (6.2)

and the other components are defined similarly (circle x→ y → z → x).
Note that the components of L are Hermitian, e.g.,

L+
x = (ypz)

+ − (zpy)+ = p+
z y

+ − p+
y z

+ = pzy − pyz = ypz − zpy = Lx, (6.3)

etc.
Let’s look at the commutators:

[Lx, Ly] = [ypz − zpy, zpx − xpz] . (6.4)

Of all the operators in this commutator, only z and pz don’t commute, so

[Lx, Ly] = y [pz, z] px + py [z, pz]x = −ih̄ (ypx − xpy) = ih̄Lz. (6.5)

Similarly, (circle x→ y → z → x) :

[Ly, Lz] = ih̄Lx,, [Lz, Lx] = ih̄Ly,, (6.6)

Claim:

L = ih̄L× L. (6.7)

Proof:
(L× L)x = LyLz − LzLx = [Ly, Lz] = ih̄Lx, (6.8)

etc. for the other components.
Claim: [

Lz, L
2
]

= 0 (6.9)

Proof:

[
Lz, L

2
]

=
[
Lz, L

2
x + L2

y + L2
z

]
=
[
Lz, L

2
x

]
+
[
Lz, L

2
y

]
+ 0

= Lx [Lz, Lx] + [Lz, Lx]Lx + Ly [Lz, Ly] + [Lz, Ly]Ly

= ih̄ (LxLy + LyLx)− ih̄ (LxLy + LyLx) = 0 (6.10)

and the same for the other components. Thus, we can take common eigenfunc-
tions of Lz and L2 (since they commute).
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Side-note: we mentioned that operators that don’t commute can’t
share eigenfunctions. Let’s see here an example – Lx and Lz. Say
they did, i.e., there was an eigenfunction

Lx|u〉 = lx|u〉 (6.11)

Lz|u〉 = lz|u〉. (6.12)

Thus:

[Lx, Lz] |u〉 = −ih̄Ly|u〉, (6.13)

(lxlz − lzlx) |u〉 = −ih̄Ly|u〉 (6.14)

i.e.,
0 = Ly|u〉, (6.15)

and therefore

lx|u〉 = Lx|u〉 = − i
h̄

[Ly, Lz] |u〉 = − i
h̄

(LyLz − LzLy) |u〉 =

− i

h̄
(Lylz − lz · 0) |u〉 = − i

h̄
lzLy|u〉 = 0 (6.16)

i.e., lx = 0; similarly it follows that lz = 0. Thus: it is an S state.
Any other state cannot be an eigenstate of both Lx and Lz.

End of side note.

So we’ll designate states by the eigenvalues of L2 and Lz :

L2|l,m〉 = h̄2l(l + 1)|l,m〉, (6.17)

Lz|l,m〉 = h̄m|l,m〉. (6.18)

We know from undergrad QM that these |l,m〉 state are spherical harmonics,
and that l,m are both integers; we’ll prove it now with operator methods.

The proof is quite similar to that of H.O. Again we define raising and lowering
operators (names justified later):

L+ = Lx + iLy (6.19)

L− = Lx − iLy. (6.20)

Since Lx, Ly, Lz are all Hermitian, L+ and L−are adjoints of each other: (L+)
+

=
L−.
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We then form a few important commutators involving these raising/lowering
operators:

[L+, L−] = [Lx + iLy, Lx − iLy] = i [Ly, Lx]− i [Lx, Ly] = −2i(ih̄)Lz = 2h̄Lz
(6.21)

while

[Lz, L+] = [Lz, Lx + iLy] = [Lz, Lx] + i [Lz, Ly] = ih̄Ly + i(−ih̄)Lx = h̄L+

(6.22)
and similarly

[Lz, L−] = −h̄L−. (6.23)

The last two eqs. are reminiscent of [H, a+] = h̄ωa+ in the H.O. case,
and that’s why these operators got the same title (raising/lowering). Another
important relation is [

L+, L
2
]

= 0. (6.24)

Proof: I leave it up to you, it is too painstaking.
Claim: (alluded to above): L+ raises the eigenvalue of Lz by h̄, i.e., raises

m by 1. (To simplify the discussion below, henceforth h̄ = 1.) Specifically,
given an eigenstate

Lz|l,m〉 = m|l,m〉, (6.25)

we note that

LzL+|l,m〉 = (L+Lz + [Lz, L+]) |l,m〉 = (L+m+ L+) |l,m〉 = (m+ 1)L+|l,m〉,
(6.26)

so L+|l,m〉 is indeed an eigenstate of Lz with an eigenvalue m+ 1.
Similarly, L−|l,m〉 is an eigenstate of Lz with an eigenvalue m − 1. So we

need to limit the “ladder”, otherwise |m| would go to infinity.
In a familiar type of proof (following the H.O. example), we first define

|η〉 = L−|l,m〉. Then

0 ≤ 〈η|η〉 = 〈l,m|L+L−|l,m〉. (6.27)

For a similar reason, the expectation value of L2
x,L2

y, L
2
z are non-negative, and

therefore the expectation value of L2, i.e.,

l(l + 1) ≥ 0.

which means l > 0 or l < −1. And we can always choose l > 0 (if l < −1,
replace it by −(l + 1); they both give the same l(l + 1).)

In addition:
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L+L− = (Lx+ iLy)(Lx− iLy) = L2
x+L2

y− i[Lx, Ly] = L2−L2
z +Lz Q.E.D.

(6.28)
Similarly

L−L+ = L2 − L2
z − Lz. (6.29)

Putting what we learned together we learn that

0 ≤ 〈l,m|L+L−|l,m〉 = 〈l,m|L2 − L2
z + Lz|l,m〉 (6.30)

i.e.,

0 ≤ l(l + 1)−m2 −m = l(l + 1)−m(m+ 1) (6.31)

Similarly, replacing L+L− by L−L+ above, we get

0 ≤ l(l + 1)−m(m− 1), (6.32)

and together both equations give

− l ≤ m ≤ l. (6.33)

Since m varies by integers, this implies that

2l = integer, (6.34)

so m it at least half-integer. Examples:

l = 3, m = −3,−2, ..., 3

l = 2.5, m = −2.5,−1.5, ..., 2.5.

Expectation values
Classically a vector is aligned, so if it is aligned along z then the x and y
components vanish. But this is not true in QM. Even if a state has mz = l, still
〈L2

x + L2
y〉 > 0 (except for S-states). Specifically:

〈l, l|L2
x + L2

y|l, l〉 = 〈l, l|L2 − L2
z|l, l〉 = l(l + 1)− l2 = l (6.35)

Interestingly, as we raise l we approach the classical limit. Specifically, the
relative uncertainty in the most-aligned state decreases, where we define this
relative uncertainty as

Uncertainty in alignment =
〈l, l|L2

x + L2
y|l, l〉

〈l, l|L2|l, l〉
=

l

l(l + 1)
=

1

(l + 1)
→ 0 as l→∞.

(6.36)
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Spherical Harmonics
We can now get the angular momentum eigenfunctions, the spherical harmonics
which you know (for integer l; for half integer we’ll need spin, later).

Specifically, using the concept of solid angle:

ylm(θ, φ) = 〈θ, φ|l,m〉 ≡ 〈Ω|l,m〉. (6.37)

We need also the solid-angle integration, using dΩ = sin(θ)dθdφ

1 =

ˆ
dΩ|θ, φ〉〈θ, φ| =

ˆ 2π

0

dφ

ˆ π

0

sin(θ)dθ|θ, φ〉〈θ, φ|. (6.38)

This integration weight implies that the bra-ket overlap must be

〈θ, φ|θ′, φ′〉 =
1

sin(θ)
δ(θ − θ′)δ(φ− φ′) (6.39)

(Proof: apply the eq. before the last to |θ′, φ′〉.)
Also, using the definition of the angles in terms of x, y, z and the associated

derivatives w.r.t. φ, θ, it can be shown (as was done presumably in undergrad
QM) that

Lz = −i ∂
∂φ
. (6.40)

This immediately implies that

− i ∂
∂φ
ylm(θ, φ) = 〈θ, φ|Lz|l,m〉 = m〈θ, φ|l,m〉 = mylm(θ, φ), (6.41)

so

ylm(θ, φ) = ylm(θ, 0)eimφ. (6.42)

In addition, we get the theta dependence of ylm by first considering yl,m=l

and then applying the lowering operators successively to lower m. It is straight-
forward to show that

L± = eiφ
(
± ∂

∂θ
+ i cot(θ)

∂

∂φ

)
, (6.43)

so noticing that raising the highest m orbital leads to a vanishing state, we get

0 = 〈θ, φ|L+|l,m = l〉 = eiφ
(
∂

∂θ
+ i cot(θ)

∂

∂φ

)
yll(θ, φ) = eiφ

(
∂

∂θ
+ i cot(θ)(il)

)
yll(θ, φ)

(6.44)
where we used yll(θ, φ) = eilφyll(θ, 0). Thus,(

∂

∂θ
− l cot(θ)

)
yll(θ, 0) = 0, (6.45)

i.e.,
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yll(θ, φ = 0) = const. ∗ (sin(θ))
l
. (6.46)

The other ylm follow by applying successively L−,i.e.,

ylm(θ, φ) ∝ (L−)(l−m)yll(θ, φ). (6.47)

See Gasiorowicz Chap. 7 for details.

Another example for operators → matrices: Angular mo-
mentum

〈l,m|L2|l′,m′〉 = l(l + 1)δll′δm′m (6.48)

〈l,m|Lz|l′,m′〉 = mδll′δm′m . (6.49)

We will now form specific matrices, each for a different l, that represent
the angular momentum components for that specific l. Thus,

L+|l,m〉 = c|l,m+ 1〉 (6.50)

where c = c+(l,m) is a function of l,m, and is obtained by noting (repeating
the previous derivation)

|c|2 = |c|2〈l,m+ 1|l,m+ 1〉 = 〈l,m|L−L+|l,m〉 =

〈l,m|
(
L2 − L2

z − Lz
)
|l,m〉 = l(l + 1)−m(m+ 1) (6.51)

i.e., (we can make c real and positive):

〈l,m′|L+|l,m〉 = δll′δm′m+1

√
l(l + 1)−m(m+ 1) (6.52)

Example: l = 1

Let’s consider the matrices for l = 1. Historically we label the indices in the
matrix in the order m = 1, 0,−1 (top to bottom)

Then:

Lz =

 1 0 0
0 0 0
0 0 −1

 (6.53)

L+ =

 0
√

2 0

0 0
√

2
0 0 0

 (6.54)

L− = (L+)+ =

 0 0 0√
2 0 0

0
√

2 0

 (6.55)
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so

Lx =
1

2
(L+ + L−) =

1√
2

 0 1 0
1 0 1
0 1 0

 (6.56)

while

Ly = − i
2

(L+ − L−) =
1√
2

 0 −i 0
i 0 −i
0 i 0

 . (6.57)

(Note that Ly is Hermitian!)
Note that the matrices of the angular momentum operators obey the same

relation as the operators themselves. It is straightforward to check that the
three matrices defined above fulfill [Lx, Ly] = iLz, etc.

I reemphasize that the matrices we defined above are only for l = 1, i.e.,
involve the subspace of three spherical harmonics with l = 1 and different m.
In principle we should have labeled these matrices with an l = 1 superscript,
but it would be too cluttered.

Of course, for each different l we’ll have three such matrices that are of the
order (2l + 1) × (2l + 1), and fulfill the commutation relations, [Lx, Ly] = iLz,
etc.

Lie-Algebras
In mathematics, a finite group of operators I1, I2,, ..., IM such that their commu-
tators are linear combination of each other are called Lie-algebras, i.e., they
fulfill

[Ii, Ij ] = i

M∑
k=1

Cki,jIk (6.58)

The angular momentum operators are Lie-algebras (M = 3, Czxy = 1, etc.)

Symmetry

Lie-algebras are important for symmetry operations. In the context of angular
momentum, we can show that upon a rotation by an angle γ around any axis
denoted by its direction ĉ (here, unlike the rest of the notes, a “hat” means a
unit vector, not an operator), then a wavefunction changes as

|ψ〉 → R(γ, ĉ)|ψ〉 = eiγL·ĉ|ψ〉 (6.59)

where R is the rotation operator, and L · ĉ = cxLx + cyLy + czLz.
To motivate the proof of the last equation (without fully proving it), start

from an infinitesimally small amount we’ll call δz. When we rotate the wave-
function by, say, δz =0.01 radian around the z-axis, than whatever value it has
at φ is the value it has earlier at φ− 0.01 (see class). Thus
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Rψ(θ, φ) = 〈θ, φ|R(δz, ẑ)ψ〉 = ψ(θ, φ− δz) (6.60)

But (in casual notation)

ψ(θ, φ− δz) = ψ(θ, φ)− δz ·
∂ψ

∂φ
=

(
1− δz

∂

∂φ

)
ψ

=

(
1 + δz · i2

∂

∂φ

)
ψ = (1 + iδz · Lz)ψ ' eiδz·Lzψ (6.61)

This was for a tiny rotation around one axis (the z axis). Turns out that
for a tiny rotation by δx around the x-axis the rotation operator is, of course,
eiδx·Lx |ψ〉, and analogously for the y-axis.

We can then combine infinitesimal rotation around the x, y, z axis to make
an infinitesimal rotation around our desired ĉ axis. When we do it, the crucial
step it to prove that combining two small rotations is the same as one small
rotation around the combined axis. e.g.,

eiδzLzeiδLz = eiδzLz+iδxLx +O(δ2). (6.62)

To first order the proof is trivial.
Once we combine the rotations we rotate a little bit (by δγ) around some

average axis, i.e., we write

R(δγ, ĉ) = eiδγL·ĉ, (6.63)

we can do the tiny rotations around the same axis many times (see class), to
end up at

R(γ, ĉ) = R(δγ, ĉ)R(δγ, ĉ)...R(δγ, ĉ) = eiδγL·ĉeiδγL·ĉ...eiδγL·ĉ = eiγL·ĉ Q.E.D.
(6.64)

Representations

The spherical harmonics are, for each l, a finite set of functions such that any
rotation mixes them up among themselves (at the same l and different m).

For example, take l = 2. Rotating by 90 degrees around the y-axis turns the
five d-spherical Harmonics into a combination of the original five (can you work
it out?).

Such sets are called representations of the rotation group. We will next see,
when we talk about spin, that there are also such representations of which are
half-integer (have l which is half-integer).
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7 Spin
Spin (or more precisely spin half) is angular momenta with l = 1

2 , so two m
values (m = ± 1

2 ).

Single-stage Stern-Gerlach experiment
To remind you, the original Stern Gerlach experiment proved that an electron
has a property with two values. Specifically, an inhomogeneous field is applied
along, say, the z axis, and a beam of neutral Ag atoms with one valence s-
electron (with zero “regular” spatial momentum) is split by the field – half go
down, repelled from the field, and half go up.

This is consistent with the fact that in classical mechanics an object with an
angular momentum of L will interact with a magnetic fieldB with an interaction
potential

− const. ∗ (L ·B) (7.1)

where the constant is proportional to the inverse mass (of the valence s-electron
in our case). Thus, if the angular momentum is along the magnetic field, the
interaction is negative so the electron (and therefore the Ag atom) would be
attracted to the field and will turn up to regions where the field is stronger, and
if the spin is opposite to the field the electron will be repelled.

But we just said that the valence electron in Ag is an s-electron, with zero
spatial angular momentum; so this property must be a different angular mo-
mentum (not related to the spatial L) which we call spin, S.

Multi-stage Stern Gerlach experiment (following Sakurai,
Modern QM)
The multi stage S.G. experiment proved that different components of the spin
cannot be specified simultaneously, i.e., the spin along z and along y (or x)
cannot be specified independently.

Three stages:

• First an inhomogeneous field along the z axis; the beam is split to two, one
with Sz = h̄

2 , the other with Sz = − h̄2 (we’ll occasionally use h̄ explicitly,
before setting it back to h̄ = 1). We then block the beam with Sz = − h̄2 .

• Then we pass the remaining Ag atoms (that have Sz = h̄
2 ) through a

region with an inhomogeneous field pointing along the y axis; half the
atoms bend in the positive y axis, half in the negative, showing that we
have two beams with Sy = ± h̄2 . We block the beam with Sy = − h̄2 , so
only Sy = h̄

2 atoms remain.

• We now pass the atoms through a third stage, similar to the first, i.e.,
splitting a beam according to Sz. Now IF the z-component and the y-
component of the spin could have been specified together, then as a result
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of the 2nd stage the valence electron would have simultaneously Sz = h̄
2

(from the first stage) and Sy = h̄
2 (from the 2nd stage). So in that case

all atoms would have gone up (along the positive z-axis).

But instead, after the third stage we get the same result as after the first, i.e.,
the beam splits into two! Half with spin up and half with spin down! Thus,
specifying Sy in the 2nd stage ERASED the memory of specifying Szin the first
stage.

So to conclude: the components of the spin do not commute. We can’t
specify Sy and Sz simultaneously.

This is consistent with the fact that spin is an angular momentum, so it
fulfills:

S × S = ih̄S (7.2)

i.e.,
[Sx, Sy] = ih̄Sz, (7.3)

etc. for the other components.

Spin half and Pauli spin matrices
A spin-half (i.e., l = 1

2 ) ket cannot be represented with spatial functions (one
s, three p’s, five d’s, etc.). Instead we need to use the matrix representation
(analogous to the 3*3 matrix rep. for l = 1). Here, it will be 2*2 matrices.

Replacing L by S, and numbering the matrix again top to bottom, i.e., the
first column is m = 1

2 and the 2nd column is m = − 1
2 , gives

Sz =
h̄

2

(
1 0
0 −1

)
(7.4)

Further, applying the general rules on what L+ and L− should be for l = 2,
and therefore what Lx and Ly should be, we get that

S+ = h̄

(
0 1
0 0

)
, S− = (S+)+ = h̄

(
0 0
1 0

)
, (7.5)

(the “1” in S+ is
√
l(l + 1)−m(m+ 1) for m = − 1

2 , i.e,
√

1
2 ·

3
2 −

(
− 1

2

)
1
2=1).

Therefore:

Sx =
S+ + S−

2
=
h̄

2

(
0 1
1 0

)
(7.6)

Sy =
S+ − S−

2i
=
h̄

2

(
0 −i
i 0

)
. (7.7)

For simplicity, we abbreviate

S =
h̄

2
σ, (7.8)
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where we defined the Pauli spin matrix,

σx =

(
0 1
1 0

)
(7.9)

σy =

(
0 −i
i 0

)
(7.10)

σz =

(
1 0
0 −1

)
. (7.11)

Note that the components of S and the Pauli spin matrices are all Hermitian
(prove it for σy!).

Due to the factor of two between S and the Pauli spin matrices (in addition
to h̄), the latter fulfill

σ × σ = 2iσ (7.12)

i.e.,
[σx, σy] = 2iσz, (7.13)

etc.
Interestingly (and this is a particular feature to l = 1

2 ) the Pauli spin matrices
anticommute:

σxσy = −σyσx (7.14)

etc. for the other two pairs. (Prove it!)

Spin-half eigenstates
The eigenstates of any Pauli matrix are length-two vectors, labeled spinors. The
eigenstates of σz are labeled

χ+ =

(
1
0

)
(7.15)

χ− =

(
0
1

)
(7.16)

Side note: in chemistry (NOT IN Gasiorowicz) these are often la-
beled instead, in casual writing, as a spin-up vector

|α〉 = χ+,

(the components of |α〉 when measured along the z axis are 1 and
0), and similarly the spin-down

|β〉 = χ−.

We’ll use that notation later, but not in the next page or two.

End of note)
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It is trivial to note that σzχ± = ±χ±, so Szχ± = ± h̄2χ
±.

We can similarly ask what are the spin eigenstates along different directions;
e.g., eigenstates of Sx or Sy, or even of a general vector. Specifically, given a
normalized length-3 vector

n̂ = (nx, ny, nz), n̂ · n̂ = 1, (7.17)

we can define the “Pauli spin matrix along the direction n̂”

σn̂ = n̂· σ = nxσx + nyσy + nzσz =

(
nz nx − iny

nx + iny −nz

)
(7.18)

and each of its eigenstates is a 2-component spinor denoted as(
γ+

γ−

)
. (7.19)

I use γ± instead of α± like Gasiorowicz, since α is used in chemistry for spin
up. The eigenstates (the spinors) are normalized, |γ+|2 + |γ−|2 = 1.

Example Eigenstates of spin pointing in the x-y plane

Let’s take an example, the eigenstates of a spin aligned along a vector in the
x-y plane, at an angle φ to the x axis:

n̂ = ( cosφ, sinφ, 0) (7.20)

so

n̂ · σ = nxσx + nyσy =

(
nz nx − iny

nx + iny −nz

)
=(

0 cosφ− i sinφ
cosφ+ i sinφ 0

)
=

(
0 exp(−iφ)

exp(iφ) 0

)
. (7.21)

The normalized eigenstates are labeled as
(
u
v

)
and fulfill(

0 exp(−iφ)
exp(iφ) 0

)(
u
v

)
= λ

(
u
v

)
, (7.22)

so

exp(−iφ)v = λu (7.23)

exp(iφ)u = λv. (7.24)

Multiply the last two eqs. together to get

uv = λ2uv. (7.25)
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We know that neither u nor v are 0, (if u was 0 then by the eqs. above v=0 so
the vector was 0, but it needs to have a unit norm). Therefore, we can divide
the eq. above by uv, to get that the eigenvalue of n̂ · σ is

λ = ±1. (7.26)
So the eigenvalue of the spin ( n̂ · S ) along this axis is ± h̄2 . Note that this
conforms to what we said about spin: the projection of the spin along any axis
is always up or down, and has the same value regardless of the axis.

What about the eigenvectors themselves? First, since |u| = |v|, and the
norm-squared is 1, it follows that

|u| = |v| = 1√
2
. (7.27)

If λ = 1,then

exp(−iφ)v = u, (7.28)
and we can write the up-eigenvector then

|η+(φ)〉 =
1√
2

(
exp

(
− i

2φ
)

exp
(
+ i

2φ
) ) . (7.29)

Similarly, the down-eigenvector is easily shown to be

|η−(φ)〉 =
1√
2

(
exp

(
− i

2φ
)

− exp
(
+ i

2φ
) ) . (7.30)

Note that

〈η−(φ)|η+(φ)〉 =
1

2

(
exp

(
+
i

2
φ

)
exp

(
− i

2
φ

)
− exp

(
+
i

2
φ

)
exp

(
− i

2
φ

))
= 0,

(7.31)
as it should.

Rotating by 360 degrees.

Interestingly: if we rotate the spin vectors by 360 degrees, for example
by slowly rotating the magnetic field by an angle φ that starts at 0 and ends at
2π, the spin vector change sign! i.e.,

|η+(φ = 0)〉 =
1√
2

(
exp (i0)
exp (i0)

)
=

1√
2

(
1
1

)
. (7.32)

while

|η+(φ = 2π)〉 =
1√
2

(
exp

(
− i

22π
)

exp
(
+ i

22π
) ) =

1√
2

(
−1
−1

)
= −|η+(φ = 0)〉. (7.33)

This has profound implications in scattering in chemistry; we won’t get into
there, but beware.
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Expectation value for a general spin direction

Back to a spin vector along a general direction (not just in the x-y plane). A

given spin vector, |γ〉 =

(
γ+

γ−

)
has the following expectation values (hence-

forth we’re back to h̄ = 1, so S = σ
2

) :

〈γ|Sz|γ〉 =
1

2

(
γ∗+ γ∗−

)( 1 0
0 −1

)(
γ+

γ−

)
=
|γ+|2 − |γ−|2

2
. (7.34)

Similarly for Sx, Sy (see the book).

Measurement along two axis at an angle φ

More importantly, let’s see what happens when we start with a spin up along a
given direction, and then measure the spin along a different axis at an angle φ.
What’s the probability to end again up (along the new axis?)

Let’s say the first axis was along x, and the next at an angle φ along the x-y
plane, as we just studied. Then we start at |η+(φ = 0)〉

|η+(φ = 0)〉 =
1√
2

(
1
1

)
(7.35)

so the amplitude to transfer to |η+(φ)〉 is 〈η+(φ)|η+(φ = 0)〉, and the probability
is then

Pφ = |〈η+(φ)|η+(φ = 0)〉|2 =
1

4

∣∣∣∣∣ exp

(
− i

2
φ

)
+ exp

(
i

2
φ

) ∣∣∣∣∣
2

= cos2

(
φ

2

)
(7.36)
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8 Addition of two angular momenta
Classically: angular momenta add. Moon around the earth: L1, earth around
the sun L2, so moon around the sun is L1 + L2.

Quantum addition:

J = L1 + L2, (8.1)

where L1, L2 are angular momenta, either spatially (of a particle) and/or spin.
I.e., we can add the spin and the spatial angular momentum for the same parti-
cle, spins for different particles, spatial angular momentum for different particles,
or other combinations.

Note that the different angular momenta are presumed to commute,

[L1,i, L2,j ] = 0 i, j = x, y, z. (8.2)

So a side note: different angular momenta commute, but an angular
momenta “does not commute with itself” which is a fancy way of
saying that an angular momenta x, y, z components don’t commute
with each other. That’s a confusing point which we need to get used
to.

With this it is easy to prove that the sum of two angular momenta is also
an angular momenta, i.e., it fulfills

J × J = iJ . (8.3)

Proof:

J × J = (L1 + L2)× (L1 + L2) =

L1 × L1 + L2 × L2 + L1 × L2 + L2 × L1. (8.4)

The brown-colored terms cancel each other since all components in L1 and L2

commute. Thus

J × J = iL1+ i L2 = iJ Q.E.D. (8.5)

This equation is completely equivalent to

[Jx, Jy] = iJz, (8.6)

etc.

Triangle rule
Since J × J = iJ , the proof that we had before on angular momenta is still
valid, i.e., we can choose states with a definite integer value for J2 = h̄2j(j+1),
Jz = mh̄ (I reinserted just this once h̄). Just as before, the allowed range for m
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would be −j,−j + 1, ..., j. But what about the allowed values for l, if l1 and l2
are known?

Classically, when we add two vectors, J = L1 + L2, then the length of the
vector sum ranges between the difference and sum of the length of each, i.e. (see
class):

Classical triangle rule:
∣∣∣|L1| − |L2|

∣∣∣ ≤ |L1 + L2| ≤ |L1|+ |L2|. (8.7)

Quantally, the same rule turns out to be true, though we won’t prove it:

Quantum triangle rule:
∣∣∣l1 − l2∣∣∣ ≤ j ≤ l1 + l2. (8.8)

Example: addition of 2 spins S1 + S2

Use |α1〉 to denote a spin up along the z axis for electron 1 (m1 = + h̄
2 ), while

spin-down for electron 1 is denoted as |β1〉 . So there are four possible states:

• |α1α2〉, abbreviated as |αα〉(the first letter refers to the 1st electron, etc.)

• |αβ〉

• |βα〉

• |ββ〉

From the triangle rule, the total spin for the two electrons (abbreviated here as
S rather than J) will have the associated values between s = 1

2 + 1
2 = 1 and

s = 1
2 −

1
2 = 0, i.e., it will be 0 or 1.

The |s = 1,m = 1〉 state

Let’s find the states. Start with: |s = 1,m = 1〉. Since Sz = S1z +S2z, the only
way for a state to have an eigenvalue of 1 is for the two eigenvalues to align, i.e.,

|s = 1,m = 1〉 = |αα〉 (8.9)

Note our cursory use of bra-kets; on the left we refer to the eigenvalues of the
combined spin and its projection along z, on the right we refer to the projection
of the spin of each of the electrons on the z-axis.

We could proceed without proving the previous. equation (the RHS is the
only available state for use on the LHS!), but for good measure (and practice)
we will prove it. First apply Sz,

Sz|αα〉 = (Sz1 + Sz2) |αα〉 =

(
1

2
+

1

2

)
|αα〉 = 1 ∗ |αα〉. (8.10)

So this works. Now apply S2,
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S2|αα〉 =
(
S2
1 + S2

2 + 2S1 · S2

)
|αα〉 =

(
1

2
∗ 3

2
+

1

2
∗ 3

2
+ 2S1 · S2

)
|αα〉.

(8.11)
But generally, for two commuting angular momentum operators

2 L1 · L2 = (L1+L2− + L1−L2+) + 2L1zL2z, (8.12)

Proof:

L1+L2− + L1−L2+ = (L1x + iL1y)(L2x − iL2y) + (1↔ 2) =

L1xL2x + L1yL2y + i(L1yL2x − L2yL1x) + (1↔ 2) = 2L1xL2x + 2L1yL2y

as needed. So

S2|αα〉 =

(
3

2
+ S1+S2− + S1−S2+ + 2S1zS2z

)
|αα〉. (8.13)

But S1+|α〉 = 0, S1z|α〉 = 1
2 |α〉, so

S2|αα〉 =

(
3

2
+ 0 + 0 + 2 ∗ 1

2
∗ 1

2

)
|αα〉 = 2 ∗ 1|αα〉, (8.14)

as expected for an s = 1 state (since s*(s+1)=1*(1+1)=2).
Thus we proved that |αα〉 is an eigenstate of S2 and of Sz, so it must be the

|s = 1,m = 1〉 state.
Similarly, |ββ〉 = |s = 1,m = −1〉

Lowering operator to get |s = 1,m = 0〉

Next, apply a lowering operator:

|s = 1,m = 0〉 = const. ∗ L−|s = 1,m = 1〉 = const. ∗ (L1− + L2−) |αα〉
= const. ∗ (L1−|αα〉+ L2−αα〉) = const. ∗ (|βα〉+ |αβ〉) , (8.15)

and when we normalize properly

|s = 1,m = 0〉 =
|βα〉+ |αβ〉√

2
. (8.16)

Note that the three triplet states (s = 1, m = −1, 0, 1) are completely
symmetric w.r.t. exchanging 1 and 2, as you probably know already.

Singlet

The singlet state, |s = 0,m = 0〉, is constructed to be orthogonal to |s = 1,m =
0〉, so it must be the antisymmetric combination

|s = 0,m = 0〉 =
|βα〉 − |αβ〉√

2
. (8.17)
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Application: Spin-Spin Interaction (NMR, EPR, etc.)

Take an electron-nucleus, nucleus-nucleus, etc., interaction and assume that for
some reason it has a spin-spin interaction component:

V (r) = V0(r) + VI(r)S1 · S2. (8.18)

But as we saw
S1 · S2 =

1

2

(
S2 − S2

1 − S
2
2

)
. (8.19)

When applying on individual spins, assume they are spin-half, i.e., s1 = s2 = 1
2

(either an electron or a nucleon – proton or neutron – or a nucleus with net-spin
1/2).

S2
1 = S2

2 =
1

2
× 3

2
=

3

4
,

So S1 · S2 is diagonal (i.e., conserves) the total momentum and its z-projection,
so

S1 · S2|s,m〉 =
1

2

(
S2 − S2

1 − S
2
2

)
|s,m〉 =

(
S2

2
− 3

4

)
|s,m〉 =

(
s(s+ 1)

2
− 3

4

)
|s,m〉

(8.20)
The prefactor is then s(s+1)

2 − 3
4 = 1∗2

2 −
3
4 = 1

4 for triplet states (s=1), and − 3
4

for singlets. Thus the total interaction is

V (r) = V0(r) +
1

4
VI(r) s = 1

V (r) = V0(r)− 3

4
VI(r) s = 0 (8.21)

Example: deuterium, p-n interaction; since VI(r) < 0 (attraction) we find
that the singlet would be unbound (its energy is too positive!)

The Einstein-Podolsky-Rose “paradox”
A very important and puzzling phenomena. Should be really the beginning of
a few-weeks discussion on measurement and entanglement if we had time.

Prepare two electrons in a spin singlet state and then send them very far away
from each other (while preserving their state). That’s experimentally feasible.
One will be on the left, the other on the right. They are in an “entangled” state,
|βα〉−|αβ〉√

2
.

Now measure the spin on the left electron, i.e., measure Sleft,z. If the result
is up (+ 1

2 , i.e., |α〉) then it means you projected from the full w.f. the second
component, i.e., (using colors)

|βα〉 − |αβ〉√
2

→ |αβ〉 (8.22)
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(and vice-versa for measuring Sleft,z to be |β〉.) But the eq. above means that,
immediately, i.e., faster than the speed of light, the “information” that the
left electron was measured to be spin-up “propagated” to the right-electron,
which will be for sure in a spin-down state!

That was presented as a paradox by Einstein, Podolsky and Rosen in the
1930’s, but it turns out to be experimentally measurable and true. The (not
fully satisfying, for me at least) “answer” to the paradox is that QM is a non-
local theory; the wavefunction “extends” over space, and affecting it in one place
immediately affects it all over space.

Now back to “examples” and “chemistry”.

Next example: Spin-Orbit interaction
Origin of the S.O. effect: the nuclei and electrons create an overall Coulomb
electric potential, Vc(r), and therefore an electric field,

E = −1

e
∇Vc(r) ≈ −

1

e

r

r

dVc(r)

dr
. (8.23)

where we used the fact that Vc(r) is approximately spherical, so the electric field
points radially.

The electric field when coupled with the motion of the electrons (velocity v)
creates a magnetic field

B = −v ×E
c

= −p×E
emec

=
1

emecr
p× rdVc(r)

dr
=

1

emecr

dVc(r)

dr
L. (8.24)

Thus, as we learned in classical mechanics, an angular momentum creates a
magnetic field. This magnetic field interacts with the dipole-moment that the
electron spin creates, which turns out to be

µ = g
eS

2mec
, (8.25)

where we denote explicitly the electron mass and velocity of light. The eq. above
is classical in origin (each angular momentum, classical or quantum, creates such
a dipole moment) except for the factor of g ' 2 due to relativity. So together
the S.O. term in the Hamiltonian is

HS.O. = f(r) S·L (8.26)

where
f(r) ≈ 1

m2
ecr

dVc(r)

dr
. (8.27)
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The spin-orbit interaction and combining L and S
Since HS.O. = f(r)S·L, we need to find its eigenstates. We know by now that
when when combining spatial eigenstates with definite l and an electron spin
(with s = 1

2 ) then S·L will be diagonal when applied on eigenstates of J2 (and
Jz) where J = L+ S since

L · S =
1

2
(J2 − L2 − S2), (8.28)

so
L · S|j,m〉 = 1

2

(
j(j + 1)− l(l + 1)− 3

4

)
|j,m〉 (8.29)

where 3
4 = s(s + 1), and “m” refers to the eigenvalue of the total angular mo-

mentum, Jz (ml and ms refer to the eigenvalues of Lz and Sz, respectfully).
The triangle rule gives

j = l − 1

2
, l +

1

2
(8.30)

where we assume l > 0 (the l = 0 case is trivial – zero spin-orbit interaction).
So therefore:

for j=l+
1

2
: L · S|j,m〉 = 1

2

((
l +

1

2

)(
l +

3

2

)
− l(l + 1)− 3

4

)
|j,m〉 =

l

2
|j,m〉

(8.31)

for j=l -
1

2
: L · S|j,m〉 = 1

2

((
l − 1

2

)(
l +

1

2

)
− l(l + 1)− 3

4

)
|j,m〉 = − l + 1

2
|j,m〉

(8.32)
So the splitting (difference in interaction) is linear in l.

Forming |j,m〉 eigenstates

We now need to ask: how can we combine the (2l+1)*2 different states, which
we’ll label as |mlms〉 (omitting the l, s labels, and putting spatial angular mo-
menta before the spin one). We wont get to the glory details, just a quick
overview.

Combining ml = +l with a spin-up (|α〉, i.e., ms = + 1
2 ) must give the

higher-j state:

|j = l +
1

2
,m = l +

1

2
〉 = |ml = l,ms =

1

2
〉 = |ml = l, α〉 (8.33)

Again note how the labels in the kets on the RHS and LHS refer to different
things! This is made clearer when we write, in casual notation

Ψl
j=l+ 1

2 ,m=l+ 1
2

= yl,l(θ, φ)|α〉. (8.34)
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Now to a general |j,m〉state. We can reach an eigenvalue ”m” of Jz in two
ways. Combining ml = m− 1

2 with a spin-up, or ml = m+ 1
2 with spin down.

Thus:
|j,m〉 = cjm,α|m−

1

2
, α〉+ cjm,β |m+

1

2
, β〉 (8.35)

where Gasiorowicz derives the explicit form of cjm,α and cjm,β (that depend of
course also on the value of l), but we won’t do it.

General addition of two angular momenta: Clebsch Gordan
coefficients.
We added so far two spin halves, or a spin-half with a general angular momen-
tum.

Now add two angular general momenta, i.e., J = L1 + L2. We know
that given eigenstates |yl1m1〉 (labeled |l1,m1〉) of (L1)

2and L1,z, and analo-
gous eigenstates labeled |l2,m2〉 of (L2)

2and L2z, we can form eigenstates of
J2, Jz, (L1)

2
, (L2)

2
, labeled |j,m, l1, l2〉 from them; formally, we can write

|j,m, l1l2〉 =
∑
m1m2

Cjml1m1l2m2
|l1,m1, l2,m2〉. (8.36)

Often this is abbreviated by omitting the l1l2 from the LHS ket, i.e.,

|j,m〉 =
∑
m1m2

Cjml1m1l2m2
|l1,m1, l2,m2〉. (8.37)

The coefficients in the expansion are called Clebsch Gordan coefficients, and
they are tabulated in books and on the web (e.g., use Wolfram Alpha). Formally,
by dotting with the appropriate bra, we see that

〈l1m1l2m2|j,m〉 = Cjml1m1l2m2
(8.38)

Some properties of the Clebsch Gordan coefficients

First, since Jz = L1z + L2z, we need to have m = m1 +m2, i.e.

Cjml1m1l2m2
= 0 if m1 +m2 6= m (8.39)

Similarly, the triangle rule states that

Cjml1m1l2m2
= 0 if j < |l1 − l2| or j > l1 + l2 (8.40)

Next, there’s one (actually two) CG coefficients we always know. Specifically,
as we did earlier with spins, if we our two angular vectors are maximally aligned
states, i.e., if we consider the state |l1,m1 = l1, l2,m2 = l2〉 then the answer
must be the combined system at the maximum angular momentum and most
aligned, |j = l1 + l2,m = j〉, i.e.
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|j = l1 + l2,m = j〉 = |l1,m1 = l1, l2,m2 = l2〉. (8.41)

This implies that
Cj=l1+l2,m=m1+m2

l1,m1=l1,l2,m2=l2
= 1, (8.42)

and if we reverse the sign of m1,m2,m in the eq. above we’ll get 1 again of
course.

The CG coefficients. fulfill sum rules; i.e., since 〈j′,m′|j,m〉 = δjj′δmm′ we
get by dotting Eq. (8.37) with itself:∑

m1m2

Cj,ml1m1l2m2
Cj
′m′

l1m1l2m2
= 〈j′,m′|j,m〉 = δjj′δmm′ . (8.43)

It is easy to see that we can further generalize this relation to include the case
of different l1 and different l2 in the two coefficients.

Finally, let’s recall the simplest example, addition of two spins, in terms of
CG coefficients. Specifcially, we learned that, for example, |s = 1,m = 0〉 =
1√
2

(|αβ〉+ |βα〉) . In terms of CG coefficients this says

C1,0
1
2,

1
2,

1
2 ,−

1
2

= C1,0
1
2,−

1
2,

1
2 ,

1
2

=
1√
2

(8.44)

and you can similarly work out the coefficients for the other s=1 states and for
the s=0 state.

70



9 Perturbation Theory
Crucial for chemistry – correlation is the difference between the mean-field and
the actual correlated electron Hamiltonian. That’s later. Now general theory
and some atomic applications.

Non-degenerate perturbation theory
Given a solvable Hamiltonian, H0, with easily solved eigenstates and eigenvalues

H0|φn〉 = ε0
n|φn〉, (9.1)

add a perturbation
H = H0 + λH1, (9.2)

with a small (“λ”) strength; the new eigenstates and eigenvalues, which depend
on the perturbation strength, satisfy

(H0 + λH1) |ψn〉 = εn|ψn〉. (9.3)

Expand

|ψn〉 = N(λ)

|φn〉+
∑
k 6=n

Cnk(λ)|φk〉

 . (9.4)

Expand order-by-order in λ (the “1”, “2”, etc. on the C’s and ε’s are
superscripts, not powers).

Cnk(λ) = λC1
nk + λ2C2

nk + ... (9.5)

εn(λ) = ε0
n + λε1

n + λ2ε2
n + ... (9.6)

So
(H − εn)ψn = 0 (9.7)

becomes (we divide N(λ) out):

(
H0 + λH1 − ε0

n − λε1
n − λ2ε2

n − ...
)|φn〉+ λ

∑
k 6=n

C1
nk|φk〉+ λ2

∑
k 6=n

C2
nk|φk〉+ ...

 = 0

(9.8)
We’ll derive the terms one by one; once we find them, the energy modification

etc. would be found by setting λ = 1 (which is the as assuming that we replace
λH1 by H1, i.e., absorb λ in H1).

zeroth order

To zeroth order we get our undisturbed eq.,

zeroth-order in λ: H0|φn〉 = ε0
n|φn〉. (9.9)
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1st order

Now collect the terms linearly proportional to λ:

(
λH1 − λε1

n

)
|φn〉+

(
H0 − ε0

n

)λ∑
k 6=n

C1
nk|φk〉

 = 0 (9.10)

i.e., ∑
k 6=n

C1
nk

(
ε0
k − ε0

n

)
|φk〉 = −

(
H1 − ε1

n

)
|φn〉. (9.11)

1st order energy correction
Now first dot product with 〈φn| to get

− 〈φn|
(
H1 − ε1

n

)
|φn〉 =

∑
k 6=n

C1
nk

(
ε0
k − ε0

n

)
〈φn|φk〉 =

∑
k 6=n

C1
nk

(
ε0
k − ε0

n

)
∗ 0 = 0,

(9.12)
i.e., the first order correction to the energy is

ε1
n = 〈φn|H1|φn〉. (9.13)

1st order correction to the eigenvectors
Next dot product Eq. (9.11) with 〈φj | (j 6= n) to get

C1
nj

(
ε0
j − ε0

n

)
| = −〈φj |

(
H1 − ε1

n

)
|φn〉 = −〈φj |H1|φn〉, (9.14)

i.e., the first order correction to the eigenstates is

C1
nj =

〈φj |H1|φn〉
ε0
n − ε0

j

(n 6= j). (9.15)

Note that distant energy state contribute less than nearby states — we know
it from first-year chem. where in M.O.s we mix only states with similar energy.

Energy denominator

We should pause here to think about the energy denominators, ( 1
ε0n−ε0j

).

They are prevalent also in 2nd-order and any-order perturbation theory. Beyond
the dry math, why are they there physically?

To better appreciate, we’ll need time-dependent perturbation theory, devel-
oped in 115b/215b. But already here we can state the key aspect (my reasoning
is extremely heuristic) in two different ways:

• Extremely simple: starting from a state ’n’, we in a sense violate conser-
vation of energy by “jumping” to state j. Put differently, the perturbation
H1 polarizes the system. But we can only do it for a “short time” – and
the length of time is h̄/(Energy Difference), i.e., 1

ε0n−ε0j
.
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• Somewhat more rigorous: The undisturbed eigenstates |φn〉 and |φj〉 os-
cillate in time with phases exp(−iε0

nt) and exp(−iε0
j t) . Adding a pertur-

bation is in a certain sense “kicking” the n’th state to the j’th state (with
kicking-amplitude 〈φj |H1|φn〉). But once we start “kicking” we have inter-
ference between the kicked-state amplitude (at level “j”) and the original
part (at level “n”), i.e., dephasing, since the two states evolve differently,
with a relative phase exp

(
−i(ε0

j − ε0
n)t
)
. Thus, “kicked” amplitudes at

different times interfere constructively or destructively, and the integral
of the dephased contribution amplitudes will be

〈φj |H1|φn〉
ˆ ∞

0

exp
(
−i(ε0

j − ε0
n)t
)
dt =

〈φj |H1|φn〉
i(ε0

j − ε0
n)

(9.16)

Now back to the formulae, this time for:

2nd order perturbation theory

The 2nd order terms in Eq. (9.8) are

λ2
(
H0 − ε0

n

)∑
k 6=n

C2
nk|φk〉+

(
λH1 − λε1

n

)
λ
∑
k 6=n

C1
nk|φk〉 − λ2ε2

n|φn〉 = 0. (9.17)

Dot with 〈φn| to get (and notice that the 1st term involving |φk〉, k 6= n, drops
out, as does the ε1

n term): ∑
k 6=n

C1
nk〈φn|H1|φk〉 = ε2

n, (9.18)

i.e., based on the previous equation for C1
nk,

ε2
n =

∑
j 6=n

〈φj |H1|φn〉
ε0
n − ε0

j

〈φn|H1|φj〉, (9.19)

i.e.,

ε2
n =

∑
j 6=n

|〈φj |H1|φn〉|2

ε0
n − ε0

j

. (9.20)

Note that if n is the ground state the denominator would always be negative,
so the correction ε2

n would then be negative. I.e., any perturbation that has a
vanishing first-order contribution would lower the ground-state energy!

Similarly, if n is an excited state, any higher energy state j gives a negative
contribution (ε0

n−ε0
j < 0), i.e., “pushes” the energy down, and any lower-energy

state “pushes” the energy up.
We know this from first-year MO diagrams. There, the 0’th order states are

separate atoms, and the perturbation is the difference between the full molecular
Hamiltonian and this 0th order Hamiltonian. Then we know that when we
“combine” two states, j and n (in this case belonging to two separate atoms),
the low one is “pushed” lower and the high one is pushed higher. See diagram
in class.
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2nd order perturbation theory and vdW interaction

Another way to look at the 2nd order perturbation theory is the vdW picture,
which we saw already when we talked about C1

nj and the energy denominators.
Starting from a state “n”, the system can fluctuate to a state “j”, for a short time
(1/(energy difference)) and then go back to state “n”. Going back and forth has
a squared amplitude of |〈φj |H1|φn〉|2, and is multiplied by the short time.

Sum rules and 2nd order perturbation theory example: Stark shift

Apply on hydrogen an electric field, assumed to be along z. The perturbation
due to the field is then

H1 = −eE· r = −fz (E ‖ z, f = eE). (9.21)

The first order perturbation correction vanishes for any state due to symmetry

ε1
n ≡ ε1

n=1 = −f〈n|z|n〉 =

ˆ
z|ψn(r)|2dr = 0 (9.22)

since the states are all symmetric or antisymmetric, so the “z” due to the electric
field times the w.f. squared will be antisymmetric in z.

We’ll now concentrate on the 2nd order change in energy of the ground state.
We’ll switch notation, defining the shift of the ground-state energy as

− δε ≡ −ε2
n=1 = f2

∑
j 6=1

|〈φj |z|φ1〉|2

ε0
j − ε0

1

. (9.23)

This summation can be approximated, once we realize that

• First, most of the contribution will be from bound state (i.e., ignore the
continuum states

• Also, the energy differences from the ground state are in a narrow range
(13.6 ∗ 3

4 eVfor n=1 to n=2; 13.6eV for n=1 to very high n).

We therefore substitute, using

1

ε0
j − ε0

1

≤ 1

ε0
2 − ε0

1

=
1

ε0
2 − ε0

1

(9.24)

getting

− δε ≤ f2
∑
j 6=1

|〈φj |z|φ1〉|2

ε0
2 − ε0

1

=
f2

ε0
2 − ε0

1

∑
j

|〈φj |z|φ1〉|2 (9.25)

where in the last summation we extended the summation also to j=1, since
〈φj |z|φ1〉 = 0
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We now introduce the technique of sum rules∑
j

|〈φj |z|φ1〉|2 =
∑
j

〈φ1|z|φj〉〈φj |z|φ1〉 = 〈φ1|z∗1∗z|φ1〉 = 〈φ1|z2|φ1〉 =
〈φ1|r2|φ1〉

3

(9.26)
which is easily calculable; but we won’t even worry about calculating it, since
by dimensional analysis 〈φ1|r2|φ1〉 should be, for hydrogen, a number not too
far from 1 times (a0)2.

All together then:

|δε| ≤ (eE)2

ε0
2 − ε0

1

〈φ1|r2|φ1〉
3

. (9.27)

Breakdown of perturbation theory

If the field strength is too big, then we can’t trust 2nd order perturbation
theory; in fact, if it is really strong the perturbation expansion fails altogether.
Physically, at very strong field strengths the electron would be ripped out from
the atom. See picture in the book and in class.

Degenerate Perturbation Theory
Happens if

〈φj |H1|φn〉 6= 0, ε0
n = ε0

j (9.28)

Then perturbation theory explodes since the 〈φj |H1|φn〉/(ε0
j−ε0

n) term (and
others like it, with the same denominator) explode.

The solution is very simple: take the starting subset of states that are
degenerate-energy with |φn〉 (and of course |φn〉 itself) and rotate it by re-
defining a new orthogonal basis which is a linear combination of states of the
same energy

|φ̃n〉 =
∑

l,ε0l=ε
0
n

aln|φl〉, (9.29)

so that in this subspace (of rotated states with the same energy as ε0
n ) the

perturbation is diagonal

〈φ̃m|H|φ̃l〉 = δml〈φ̃m|H|φ̃n〉. (9.30)

An example will clarify.

2nd order degenerate perturbation theory: Stark shift for n = 2 states
in hydrogen

Recall H1 = −eEz. What’s the energy perturbation for n=2 states? There
are 4 such states of course; we can ignore |2px〉 and |2py〉, and concentrate of
|2s〉, |2pz〉.

Here, the problem is that
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c ≡ 〈2s|z|2pz〉 6= 0 (9.31)

So in this |2s〉, |2pz〉 subspace, the perturbation potential matrix (we use the
same symbol for it as the operator) has the form

H1 =

(
0 −eEc
−eEc 0

)
. (9.32)

Clearly what we need is to define two sp-states,

|left〉 ≡ |2s〉 − |2pz〉√
2

, (9.33)

and

|right〉 ≡ |2s〉+ |2pz〉√
2

. (9.34)

so in the rotated basis

H̃1 =

(
eEc 0

0 −eEc

)
, (9.35)

and since there’s no interaction between different states (between Left and Right
here) we can remove these interaction in the perturbation expansion.

After a two-line calculation, we see then (prove it!) that the Stark shift
2nd-order perturbation energy corrections would be

εn=2 = −Ze
2R

4
+ eEc×


1 (left)

0 px, py

−1 (right).

(9.36)

Atomic examples of perturbation theory
In the remainder of the chapter we’ll briefly consider perturbation theory as
applied to atoms.

The most important interactions in an atom is, of course:

• H0 : kinetic p2

2me
+nuclear+ e − e interaction on a mean-field level (the

interaction with the mean-field of all other electrons, we’ll see later).

Beyond that, the other interactions are.

• e-e interaction beyond the mean-field level – here we’ll only include a little
discussion on atomic vdW interactions and continue in latter chapters.

• Spin orbit interaction: ∝ L · S

• Interaction with magnetic field: ∝ B · (L+gS)

• Relativistic corrections to the kinetic energy.

Let’s tackle them one-by-one, starting with the last term:
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Relativistic corrections to the kinetic energy.

The true K.E. in relativity is (“c” is the velocity of light here)

√
p2c2 +m2

ec
4 −mec

2 = mec
2

(√
1 +

p2

m2
ec

2
− 1

)
'

mec
2

(
(1 +

p2

2m2
ec

2
− p4

4m4
ec

4
− 1

)
=

p2

2me
− p4

4m3
ec

2
(9.37)

where we used the Taylor expansion expression,
√

1 + a ' 1+ a
2 −

a2

4 + .... Thus,
the correction to the orbital energy is proportional to 〈φn|p4|φn〉.

Spin-orbit interactions:

Recall HS.O. = f(r)L · S. We recall that this requires combination of the ylm
and spin states, so the S.O. interaction is diagonal in a state labeled as Ψn,l,j,m

where “n” is the usual # of angular nodes, and as before “l” labels the spatial
angular momentum, “j” labels the total angular momentum, and “m” is the
eigenvalue of Jz. Then the orbital perturbation is:

∆nljm = 〈Φnljm|f(r)L · S|Φnljm〉, (9.38)

where (casual notation):

Φnljm = Rnl(r)Ψ
l
jm (9.39)

so

δεS.O.nljm = bnl〈j,m|L · S|j,m〉, (9.40)

where
bnl ≡ 〈Rnl|f |Rnl〉 =

ˆ
|Rnl(r)|2f(r)r2dr. (9.41)

The bnl term turns out to be positive.
Note that bra-kets refer above to a different space than the previous equation!

(radial here, full 3-D a few equations above).
Also, remember that the combined angular momentum state |j,m〉 depends

also on l.
We calculated earlier L · S|j,m〉 so we recall the result

〈j,m|L · S|j,m〉 =
1

2
〈j,m|J2 −L2 − S2|j,m〉 =

1

2

(
j(j + 1)− l(l + 1)− 3

4

)
(9.42)

so the final result is:

δεS.O.nljm =
bnl
2
×

{
l

(
j = l + 1

2

)
− (l + 1)

(
j = l − 1

2

)
.

(9.43)
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The splitting between the j = l ± 1
2 levels is essentially proportional to l.

Example: Yellow line in Na. The valence electron is in 3s; the six 3p
states (3 spatially*2spin) are split due to the S.O. interaction to two levels,
denoted as 3p 3

2
, i.e., n = 3, l = 1, j = 3

2 (of course with four m-states), and 3p 1
2

(with two m states); the latter level is lower in energy, by the formula above.
And indeed experimentally the 3s→ 3p transition has two peaks, the lower-

frequency 3s→ 3p 1
2
(5896 Angstrom) and the higher-frequency 3s→ 3p 3

2
(5890

Angstrom). The frequency splitting between these levels matches (when multi-
plied by h̄) the calculated 1st order perturbation theory term.

Question for thought: would a classical mechanics treatment of L
give a similar result for the expectation value〈L · S〉?

Zeeman effect: interaction with magnetic field.

We talked about the interaction with B, with an angular momentum, which is
(for a field pointing along the z-axis)

HB = µBB · (L+ gS) ' µBB · (L+ 2S) = µBB · (J+S) = µB (Jz + Sz) ,
(9.44)

since the g-factor for electron (the enhancement of the interaction with magnetic
field for spin relative to angular momentum) is about g ' 2. Here,

µB = Bohr Magneton=
e

2mec
.

As long as the magnetic field is not too strong compared to the S.O. interac-
tion we should use as our basis the |j,m〉 states (for which HS.O. is diagonal) as
our basis, and calculate the expectation value of HB in that basis (the opposite
case, very strong magnetic fields, is discussed later):

1

µB
· δεBnljm = 〈j,m|HB |j,m〉 = 〈j,m|Jz + Sz|j,m〉 =

〈j,m|m+ Sz|j,m〉 = (m+ 〈j,m|Sz|j,m〉) . (9.45)

The matrix element 〈j,m|Sz|j,m〉 can be calculated from the expressions we
had of |j,m〉 = cjm,α|ml = m− 1

2 , α〉+ cjm,β |ml = m+ 1
2 , β〉. But at any rate, it

is not going to be large, i.e.,

− 1

2
≤ 〈j,m|Sz|j,m〉 ≤

1

2
(9.46)

so we can roughly ignore it,

δεBnljm ' µBBm. (9.47)

Thus, the m-levels split linearly (approximately).
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Finally, if the field is extremely strong then the S.O. can be ignored; the
best basis will be one where HB is diagonal, i.e., the |ylml ,ms〉basis (denoted
earlier more simply as |m,ms〉or better yet write it as |l,m,ms〉. Then

δεBnlmlms = 〈l,ml,ms|HB |l,ml,ms〉 = µBB〈l,ml,ms|Lz+gSz|l,ml,ms〉 = µBB (ml + gms)
(9.48)

The book has some figures on the transition between the HB � HSO and
HSO � HB cases.

Following Sakurai, we thus give a table comparing the weak-B-field and
strong one case.

• Weak field: dominant interaction: HSO. Almost conserved opera-
tors: J2 (i.e.,L · S ). Not good: Lz, Sz.

• Strong field: dominant interaction: HB. Almost conserved opera-
tors: Lz, Sz.. Not good: J2 (i.e.,L · S).

• Both cases, always good operators: L2, S2,Jz

Example: vdW interaction energy of two distant hydrogen atoms

Take two distant hydrogens, i.e., one electron around one proton and the 2nd
electron around the other one. Ignore antisymmetry and exchange, i.e., treat
the electrons as a distinct particles. Label the (vector) distance of electron 1
from proton 1 as r1, and the (vector) distance of electron 2 from proton 2 as
r2. Further:

• The vector distance between protons is denoted R,

• so the vector distance between the two electrons is r1 −R+ r2 (see pic-
ture in book/class), and

• the distance between electron 1 and proton 2 is |r1 −R| ,

• and the distance electron 2 and proton 1 is |r2 +R| .

The Hamiltonian is made from a zero-order part, and the “perturbation”

H = H0 +H1 (9.49)

where the 0-order part has each electron around its own nucleus

H0 = H01 +H02, (9.50)

where H01 is the 0-th order Hamiltonian for the 1st electron,

H01 =
(p1)

2

2me
− e2

r1
. (9.51)

H02 is analogous.
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The perturbation is made from four terms: ion-ion interaction, the electron-
electron repulsion, electron-1 attraction with proton-2, and the electron-2 proton-
1 attraction

H1 = +
e2

R
+

e2

|r1 +R− r2|
− e2

|r1 −R|
− e2

|r2 +R|
(9.52)

The 0-order 2-elecrron wavefunction is (ignoring spin)

Ψ(r1, r2) = φ1s(r1)φ1s(r2). (9.53)

Let’s calculate the matrix element at the limit of large-R; then we can show (a
long derivation which we will skip) that

H1 = e2
r1 · r2 − 3

(
r1 · R̂

)(
r2 · R̂

)
R3

(9.54)

where R̂ = R
R . Thus, the R-dependence of the matrix element is R−3, and when

we square it we get the vdW R−6dependence.
The matrix element can be calculated analytically, but it is quite painstaking.
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10 Functional derivatives and Lagrange Multipli-
ers

In this part we’ll cover two mathematically important concepts we have not
discussed yet: funcitonal derivatives and Lagrange multipliers (you probably
have seen the latter).

Functional derivatives
Let’s again treat integrals as discrete summation, and ask what’s the derivative
of an integral w.r.t. the value of a function at a particular point. The simplest
such expression will be

∂

∂f(x)

ˆ
f(x′)dx′ =

∂

∂f(x)

∑
x′

f(x′)dx =
∑
x′

∂f(x′)

∂f(x)
dx =

∑
x′

δxx′dx = dx,

(10.1)
where we used

∂f(x′)

∂f(x)
= δxx′. (10.2)

To get rid of the resulting “dx” we define then the functional derivative as

δ

δf(x)
=

1

dx

∂

∂f(x)
. (10.3)

and this refers, of course, to the limit of tiny dx. Therefore

δ

δf(x)

ˆ
f(x′)dx′ = 1. (10.4)

Formally, since ∂
∂f(x)f(x′) = δxx′ , we get

δf(x′)

δf(x)
=
δxx′

dx
= δ(x− x′). (10.5)

The generalizations to 3D are straightforward.
First Example: the classical electrostatic repulsion energy due to a charge

density n(r) will be (we’ll see it later too):

Eee =
1

2

ˆ
n(r)n(r′)

| r− r′| drdr
′. (10.6)

Note that we generally use atomic units (no 4πε0, the electron charge is unity
e = 1, and h̄ = 1 – although often we’ll keep h̄ explicitly).

Upon differentiation we get (the factor of 2 is due to two equal terms; also
note that before taking the derivative I am changing the integration variable):
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δEee
δn(r)

=
1

2

δ

δn(r)

ˆ
n(r′′)n(r′)

| r′′− r′| dr
′′dr′ =

1

2
∗ 2 ∗

ˆ
δn(r′′)

δn(r)

n(r′)

| r′′− r′|dr
′′dr′

=

ˆ
δ(r − r′′) n(r′)

| r′′− r′|dr
′′dr′, (10.7)

i.e.,

δ

δn(r)
Eee =

ˆ
n(r′)

| r− r′|dr
′. (10.8)

Another example: the kinetic energy associated with a wavefunction Ψ(r)
of an electron with mass me is

T =
h̄2

2me

ˆ
∇Ψ∗(r) · ∇Ψ(r)dr. (10.9)

Differentiating w.r.t. the complex-conjugate of the w.f. gives:

δT

δΨ∗(r)
=

h̄2

2me

δT

δΨ∗(r)

ˆ
∇Ψ∗(r′) · ∇Ψ(r′)dr′

=
h̄2

2me

ˆ
∇
(

δT

δΨ∗(r)
Ψ∗(r′)

)
· ∇Ψ(r′)dr′, (10.10)

so (we don’t do a derivative of Ψ w.r.t. Ψ∗!)

δT

δΨ∗(r)
=

h̄2

2me

ˆ
∇ (δ(r − r′)) · ∇Ψ(r′)dr′. (10.11)

Let’s integrate by parts (where the non-integral term is taken over a distant
surface)

δT

δΨ∗(r)
=

h̄2

2me

(
δ(r − r′)∇Ψ(r′)|surface,|r|→∞ −

ˆ
δ(r − r′)∇2Ψ(r′)dr′

)
.

(10.12)
Note that the surface term vanishes since we assume that the w.f. is bounded;
so integrate the delta function in the integral to get

δT

δΨ∗(r)
= − h̄2

2me
∇2Ψ(r), (10.13)

and this is just the action of the kinetic energy operator on the wavefunction!
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Lagrange Multipliers
To extremize an expression while holding some constraint fixed, subtract the
constraint times a Lagrange multiplier.

E.g., define (again using the same symbol T , but for a different expression;
this is actually the same kinetic energy as above, but for a specific case, a
uniform electron gas – we’ll see later in the course the relation):

T =
3

5
c

ˆ
n(r)

5
3 dr, (10.14)

where c is some numerical constant we’ll see later.
Maximize T w.r.t. n(r), keeping the total number of electrons (the integral

over the density) fixed:
´
n(r)dr = N, by using a Lagrange multiplier. Thus,

define D, a modified functional of the density, including the Lagrange multiplier:

D = T − µ
(ˆ

n(r)dr −N
)

(10.15)

and then find the optimal density by functional differentiation

0 =
δD

δn(r)
=
δ
(
T − µ

(´
n(r)dr −N

))
δn(r)

. (10.16)

Here, this gives

0 =
δ

δn(r)

(
3

5
c

ˆ
n(r′)

5
3 dr′ − µ

(ˆ
n(r′)dr′ −N

))
= cn(r)

2
3 − µ, (10.17)

i.e., n(r) = (µ/c)3/2=const. So the density is uniform indeed. Put differently,
starting from a uniform density expression, we get back a uniform density. So
the uniform density expression is stable.
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11 Variational Principle

Simpler approach
First, simpler approach (that you probably saw). Assume we’re given a set of
eigenfunctions |k〉, H|k〉 = εk|k〉, numbered from k=0. Any wavefunction |η〉can
be expanded|

|η〉 =
∑
k

ck|k〉, (11.1)

so that

〈H〉 ≡ 〈η|H|η〉
〈η|η〉

=

∑
k |ck|2εk∑
k |ck|2

≥
∑
k |ck|2ε0∑
k |ck|2

= ε0 (11.2)

i.e., the normalized expectation value of the Hamiltonian with any function is
larger or equal than ε0.

Note that if |η〉 is close to the ground state, i.e., if

cn ∼ O(λ), n 6= 0 (11.3)

(where O(λ) means that it is proportional to λ to the 1st order, which is a small
number), then |c0|2 = 1−O(λ2). Proof:

∑
k |ck|2 = 1, so

|c0|2 = 1−
∑
k

|ck|2 = 1−O(λ2). (11.4)

Therefore, in that case:

〈H〉 ≡
∑
k |ck|2εk

1
= |c0|2ε0+

∑
k 6=0

|ck|2εk =
(
1−O

(
λ2
))
ε0+O(λ2) = ε0+O(λ2).

(11.5)
i.e., the error in the energy is of second order in the deviation of the
w.f. from the ground state.

Put differently, even a crummy w.f. gives a good estimate to the ground-state
energy.

Variational principle: with a Lagrange variable.

Instead of 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 ≥ ε0, minimize 〈Ψ|H|Ψ〉 under the constraint 〈Ψ|Ψ〉−1 = 0,
i.e., extremize the functional of the w.f.,

D ≡ D[Ψ∗,Ψ, µ] = 〈Ψ|H|Ψ〉 − µ (〈Ψ|Ψ〉 − 1) . (11.6)

Note that we need to extremize both w.r.t. µ and Ψ∗ (or w.r.t. the parameters
in Ψ∗ if it is restricted).

Extremizing w.r.t. µ always gives:
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0 =
∂D

∂µ
=
∂µ

∂µ
(〈Ψ|Ψ〉 − 1) = 〈Ψ|Ψ〉 − 1. (11.7)

so Ψ needs to be normalized indeed. Further, if Ψ (and therefore Ψ∗) is un-
restricted (except for the overall normalization) we’ll get back the Schrödinger
equation; for example, if our space is 3-d for a single particle then

0 =
δD

δΨ∗(r)
= 〈r|HΨ〉 − µ〈r|Ψ〉, (11.8)

i.e.,
HΨ = µΨ (11.9)

so in that case µ, the Lagrange multiplier, has the interpretation that it is the
energy of the w.f.

Note that if the w.f. is restricted (as we’ll see later in Hartree-Fock and DFT)
then µ is not the total energy. In fact, in DFT it turns out to be the Fermi
energy (the HOMO or LUMO or middle of both, depending on the situation).

Parameter dependence

Formally, we can think of the variational principle with a “restricted” w.f., as
relating to a w.f. that depends on a parameter set, λ (i.e., λ1, λ2, ...; the number
of parameters can be finite or infinite and they can even be continuous). Also,
here the parameters are not necessarily “small”, unlike λ in the previous section.
Then ψ = ψ(r;λ), so we’ll denote its ket as |ψ(λ)〉, so

D = 〈ψ(λ)|H|ψ(λ)〉 − µ (〈ψ(λ)|ψ(λ)〉 − 1) (11.10)

and the best set of λ is found by extremizing

∂D

∂λ
= 0→ Best λ (11.11)

No nodes for ground-states
We can use the minimum energy principle to prove that the ground-state w.f.
cannot have nodes, i.e., its sign is fixed (all positive, or multiply by -1, to get
all negative). Let’s prove for a single-particle in 1 dimension.

Let’s do a proof by contradiction.
Say a 1D w.f. ψ(x) did have a node at x0, such that at x close to but below

x0 it would be positive, and for x > x0 (but nearby) it would be negative.
And assume for simplicity that b ≡ dψ

dx |x=x0
6= 0.

We recall that

〈ψ|H|ψ〉 = 〈ψ|T |ψ〉+ 〈ψ|V |ψ〉 =
1

2M

ˆ ∣∣∣dψ(x)

dx

∣∣∣2dx+

ˆ
V (x)

∣∣∣ψ(x)
∣∣∣2dx.
(11.12)
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Then take a small region (of size labeled as 2δx) around x0, i.e., [x0 −
δx, x0 + δx]. The size is assumed to be so small that the w.f. behaves linearly
there, ψ(x) ' ψ(x0) + dψ

dx |x=x0
· (x − x0) = 0 + b · (x − x0), so max(|ψ(x)|) in

that region is b · δx.
Then:

• The wavefunction is tiny in this [x0−δx, x0+δx] region (maximum absolute
size: b · δx), and therefore the contribution of the potential energy times
the w.f. squared to that region would be very small,∣∣∣∣∣

ˆ x0+δx

x0−δx
V (x)|ψ(x)|2dx

∣∣∣∣∣ ≤ V (x0) · |bδx|2 · (2δx) ∼ O(δx3) (11.13)

• while the kinetic energy contribution would be much larger (and positive),
since in this region dψ(x)

dx ∼ dψ(x)
dx |x=x0

= b is non-zero

h̄2

2me

ˆ x0+δx

x0−δx

∣∣∣∣dψ(x)

dx

∣∣∣∣2 dx ' h̄2

2me
· |b|2 · (2δx) ∼ O(δx). (11.14)

So we’re going to construct a new w.f., that has a much smaller kinetic
energy (and possibly slightly higher potential energy, but that’s not going to
matter). We’ll do it in two stages.

1. Construct a continuous but not smooth w.f. that’s “peaked” (see figure
in class)

ψ′(x) =

{
ψ(x) (x ≤ x0)

−ψ(x) (x ≥ x0)
(11.15)

2. This w.f. is then “smoothed” ψ′(x) → ψ′′(x), where the “sharp corner”
at x = x0 is smoothed out over a region of size 2δ. This reduces the K.E. by
O(δ), and potentially increases the P.E. by O(δ3). The w.f. also needed to be
renormalized, but that’s an O(δ3) effect.

So the main effect is that the K.E. was reduced, and therefore ψ′′ has a
lower associated energy than ψ, in contradiction to our initial assumption that
ψ (with the nodes) has the lowest energy.

This proof carries over to the many-particle case, but not for
fermions since those have to change sign upon particle exchange.
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12 Many-electron Hamiltonian andWavefunction:
General

We now enter the last part of the course, dealing with the Coulombic many
body system, i.e., the energy of many electron systems. Here we’ll study the
Hartree-Fock and DFT approaches, and also learn the language of more so-
phisticated approaches. At least initially we’ll follow along Baer’s notes (with
abbreviations and modifications), and for the latter part also read Schatz and
Ratner’s Advanced Q. M. for Chem., especially Chapter 6.

Wavefunction Notation:
Starting this chapter, upper case Greek letters (essentially only Ψ) would be
reserved to many-electron wavefunctions; lower case Greek letters (ψ, η, φ) would
be reserved to one-electron wavefunctions.

The many-electron Coulomb Hamiltonian
The starting point is the N-electron Coulomb Hamiltonian

Ĥ = Ĥ1B + Û (12.1)

where

Ĥ1B = T̂ + V̂ (12.2)

(don’t confuse V for potential with V for volume...) and where the kinetic
energy is

T̂ = − h̄2

2me

(
∂2

∂r2
1

+
∂2

∂r2
1

+ ...+
∂2

∂r2
N

)
, (12.3)

while the electron-nuclear potential energy is

V (r1, ..., rN ) = v (r1) + ...v (rN ) , (12.4)

where in atoms (recall e=1 for us):

v(r) = −
NNUC∑
j=1

Z

|r −Rj |
. (12.5)

In addition, the 2-body interaction is

U =
1

2

∑
i 6=j

u(ri, rj) (12.6)

u(ri, rj) =
1

|ri − rj |
, (12.7)

and we’ll ignore spin-orbit interactions.
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We’ll label V as a one-body term, and U is a 2-body term. We’re generally
lax about adding the “hat” for operators, we’ll do it where things are otherwise
unclear.

The i ≡ ri, si notation

We will often label coordinates and w.f. very strange (but economical – which
eventually makes life easier!) notation:

Ψ(1, 2, ..., N) ≡ Ψ(r1, s1, r2, s2...., rN , sN ), (12.8)

where “1” as coordinate is abbreviation for the spatial coordinate of the first
electron and its spin, i.e.,

”1” ≡ r1,s1 (12.9)

“2” means similarly “r2,s2”, etc.

Pauli principle
The Pauli principle states that any electrons w.f. must satisfy

Ψ(...., i, ...., j, ...) = −Ψ(...., j, ...., i, ...), (12.10)

i.e.,

Ψ(...., ri, si, ...., rj , sj , ...) = −Ψ(...., rj , sj , ...., ri, si, ...), (12.11)

i.e., if we replace particle i and j, including BOTH their positions and their
spins, the w.f. changes sign.

The expectation value of the Hamiltonian
The density operator: many-electrons case

In the early chapters we defined the single-electron density operator, n̂(r), and
we got the result 〈r′|n̂(r)|ψ1e〉 = ψ1e(r)δ(r − r′), where the “1e” subscript
refers to a single-electron wavefunction. We now extend it to a multi-electron
case. Specifically,

n̂(r)Ψ(1, 2, .., N) =

N∑
i=1

δ(r−ri)Ψ(1, 2, .., N), (12.12)

while a more formal way is to write:

n̂(r) =

N∑
i=1

|r(electron i)〉〈r(electron i))|, (12.13)

where “ |r(electron i)〉” implies a ket for electron i only.
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Note that the density operator acts on the full w.f.
The expectation value of the density operator is nothing more than the

one-electron spatial density (which we usually abbreviate simply as the
electron-density or just “density”)

n(r) ≡ 〈Ψ|n̂(r)|Ψ〉 =

ˆ
|Ψ(, 2, .., i, ., N)|2

N∑
i=1

δ(r−ri)d1d2d3....dN, (12.14)

and since the w.f. is completely antisymmetric, the w.f. squared is completely
symmetric, so each “delta” in the sum would give the same contribution. We
therefore replace the N delta functions by a single delta function over the 1st
coordinate, multiplied by N.

n(r) = N

ˆ
δ(r−r1) |Ψ(1, 2, .., i, ., N)|2 d1d2d3....dN. (12.15)

Further, we’ll expand “d1” to explicitly denote the integration over position and
spin, d1 = dr ds1 and expand “1” in the wavefunction to be r1,s1, so

n(r) = N

ˆ
δ(r−r1) |Ψ(r1, s1, 2, .., i, ., N)|2 dr1ds1d2d3....dN, (12.16)

i.e., the final expression is (replacing s1 by s)

n(r) = N

ˆ
|Ψ(r, s, 2, .., i, ., N)|2 ds d2d3....dN. (12.17)

The spatial density n(r) is the probability to find ANY of the N electrons
at r regardless of the positions of the other electrons.

Note that since 〈Ψ|Ψ〉 = 1, we get the normalization constant.
ˆ
n(r)dr = N (12.18)

i.e., the total electron density represents N electrons, as expected.

One-body potential in terms of the density operator

We can further write the one-body potential in terms of the density operator

V̂ =

ˆ
v(r)n̂(r)dr. (12.19)

This eq. would prove invaluable in DFT. To prove it, act with both sides on a
general w.f. The L.H.S. gives

〈r1, r2, ..., rN |V̂ |Ψ〉 = (v(r1) + v(r2) + ...v(rN )) Ψ(r1, r2, ..., rN ), (12.20)
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while the R.H.S. gives, once we recall what’s n̂(r)|Ψ〉 is (we color some parts
for clarity):

〈r1, r2, ..., rN |
ˆ
v(r)n̂(r)dr|Ψ〉 =

ˆ
v(r)〈r1, r2, ..., rN |n̂(r)|Ψ〉dr =

ˆ
v(r) (δ(r−r1) + δ(r−r2) + ...δ(r−r2)) Ψ(r1, r2, ..., rN )dr

= (v(r1) + v(r2) + ...v(rN )) Ψ(r1, r2, ..., rN ), (12.21)

Q.E.D.

The one-body density matrix

For the kinetic energy later, and also for the exchange (also later), we need to
define now the spatial one-body density matrix (or just “density matrix”
below), in analogous steps to the definition of the density above.

Formally the one-body density-matrix operator is defined

ρ̂(r, r′) =

N∑
i=1

|r(electron i)〉〈r′(electron i))| (12.22)

and in practice we can show as before that, defining the one-body density matrix
(not operator!) as

ρ(r, r′) ≡ 〈Ψ|ρ̂(r, r′)|Ψ〉, (12.23)

we get after similar manipulations that

ρ(r, r′) ≡ N
ˆ

Ψ(r,s, 2, .., i, ., N)Ψ∗(r′,s, 2, .., i, ., N)ds1d2d3....dN. (12.24)

Note that
ρ(r, r) ≡ ρ (r,r′ = r) = n(r). (12.25)

One-body potential expectation value and electron density

Since H involves only 1-body and 2-body terms, the expectation value of a
specific wavefunction Ψ is:

〈Ψ|H|Ψ〉 = 〈Ψ|T̂ |Ψ〉+ 〈Ψ|V̂ |Ψ〉+ 〈Ψ|U |Ψ〉 (12.26)

where we saw that V̂ =
´
v(r)n̂(r)dr, so the one-body expectation value is

simply:

〈V̂ 〉 ≡ 〈Ψ|V̂ |Ψ〉 =

ˆ
v(r)n(r)dr. (12.27)

i.e., the expectation of the potential becomes an integral over the total elec-
tron density.
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Kinetic energy expectation value and one-body density matrix

It is straightforward to show, using similar steps to above, that the kinetic
energy is related to the behavior of the density matrix “near the diagonal”

〈Ψ|T̂ |Ψ〉 =
h̄2

2me

ˆ
∂

∂r

∂

∂r′
ρ(r′, r)

∣∣∣∣∣
r′=r

dr. (12.28)

2-body density and the electron-electron interaction

Finally, we define the 2-body density. The associated operator is:

Ŷ (r, r′) = n̂(r)n̂(r′)− δ(r − r′)n̂(r) (12.29)

i.e., the operator of localizing any electron at one position and any other electron
at another position (the “minus delta” at the end guarantees that we wont
measure the same electron twice).

Similar derivations to the ones we did lead to:

Y (r, r′) = N(N − 1)

ˆ
|Ψ(r, s, r′, s′, 3, 4, ..., N)|2 ds ds′ d3....dN (12.30)

Note that Y (r, r′) is the probability of finding ANY electron at r1 with ANY
OTHER electron at r2.

Using the same techniques as above we can show that

〈Ψ|U |Ψ〉 =
1

2

ˆ
Y (r,r′)

|r − r′|drdr
′. (12.31)

Warning: don’t confuse ρ(r,r′) and Y (r,r′).

Summary: overall expectation value 〈H〉

〈Ψ|H|Ψ〉 =
h̄2

2me

ˆ
∂

∂r

∂

∂r′
ρ(r′, r)

∣∣∣∣∣
r′=r

dr+

ˆ
v(r)n(r)dr+

1

2

ˆ
Y (r,r′)

|r − r′|drdr
′.

(12.32)

Solving for the lowest energy:
There are many approaches to find the lowest energy or a good approximation
to it. We’ll talk mostly about two in the next few lectures; qualitatively (and
somewhat inaccurately):

• One method would be to take the eqs. above and insert an approximate
w.f. for which all these quantities are reasonable, and then look for the
best such approximate function. The one we will use is a Slater determi-
nant, and the lowest-energy Slater determinant is called the Hartree-Fock
solution.
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• Another would be to approximate the terms in the Hamiltonian – this is
the regime of DFT, density functional theory.

• Other techniques would be perturbation theory, and further more sophis-
ticated methods – we’ll briefly comment on these at the end.
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13 Slater Determinants
Slater determinants are “simple w.f.” that satisfy the Pauli antisymmetry rela-
tion and are therefore the basic ingredients in electronic structure. Getting used
to them involves lots of notation. So to warm up, let’s consider first instead the
case of:

Warmup: Non-identical particles and Hartree products.
Say for example we want to talk about a system of different particles, e.g.,
hydrogen (electron+proton), when we now consider the quantum nature of the
proton. The simplest quantum function of the two coordinates, r for the electron
and R for the proton, will be a product (labeled usually a Hartree product)

φ(r)ζ(R), (13.1)

where φ and ζ are some functions of the electron and proton coordinates. Fur-
ther, if we have a complete basis of the electrons, φi(r) and a similar complete
basis of the protons ζj(R) then we can make a complete basis of the two-particle
system:

Ψij(r,R) = φi(r)ζj(R), (13.2)

which we could write in a bra-ket notation as

|Ψij〉 = |φiζj〉.

The true wavefunction for such a system could be written as

|Ψ〉 =
∑
ij

cij |Ψij〉. (13.3)

Such an expansion is called a CI expansion (CI means Configuration In-
teraction). Note that it may not be very economical, since in each |Ψij〉 the
particles move independently (while in practice we expect the electrons to move
with the protons). Therefore, we may need may ij terms, i.e., many products
φi(r)ζj(R), but at least it is easy to understand.

So let’s move to electrons:

Fermions: 2-electron wavefunctions.
Specific examples for 2-electrons w.f.

Ground-state Helium
Take Helium, assign each electron to 1s, and put the electrons in spin-zero

combination; then (casual notation)

Ψ = ψ1s(r1)ψ1s(r2)
|αβ〉 − |βα〉√

2
, (13.4)
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(This is of course just an approximation to the true wavefunction, which has
extra terms due to correlation).

In a more “formally correct” and tedious notation (which we’ll avoid gener-
ally), it will be

Ψ(r1, s1, r2, s2) = ψ1s(r1)ψ1s(r2)
δs1, 12 δs2,−

1
2
− δs1,− 1

2
δs2, 12√

2
. (13.5)

Excited Helium
Another example: H∗e , where one electron (with the “down” spin) is excited

to 2py:

Ψ =
ψ1s(r1)ψ2py (r2)|αβ〉 − ψ2py (r1)ψ1s(r2)|βα〉

√
2

(13.6)

2-electron w.f.: Antisymmetrization

Since electrons are fermions, their wavefunction must be antisymmetric w.r.t.
particle exchange. Say we want to take one electron in an orbital “η” and
another in an orbital “ζ”. We can make a 2-electron wavefunction from them.
We will label this function in a seemingly very strange (but economical – which
eventually makes life easier!) notation:

Ψ(1, 2) =
1√
2

(η(1)ζ(2)− ζ(1)η(2)) (13.7)

where “1” as coordinate is abbreviation for the spatial coordinate of the first
electron and its spin, i.e.,

η(1) ≡ η(r1,s1) (13.8)

and “2” means similarly “r2,s2”. Note the antisymmetrization above, which
results in the desired Ψ(1, 2) = −Ψ(2, 1), i.e., if we exchange at the same time
both the spins and the spatial coordinates of the two electrons, the w.f. reverses
sign.

Revisiting Helium Let’s consider again the Slater determinant that repre-
sents two electrons in Helium. Say each is in a 1s-type orbital denoted as φ0(r),
but one is in a spin up (α) and the other is down (β). We write (in a fairly
relaxed non-rigiorus notation, as usual):

η(1) = φ0(r1)|α〉

η̄(1) = φ0(r1)|β〉

So
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Ψ(1, 2) =
1√
2

(η(1)η̄(2)− η̄(1)η(2)) =

1√
2

(φ0(r1)|α〉φ0(r2)|β〉 − φ0(r1)|β〉φ0(r1)|α〉) (13.9)

i.e.,

Ψ(1, 2) = φ0(r1)φ0(r2)
|α〉|β〉 − |β〉|α〉√

2
(13.10)

which is most often written as

Ψ(1, 2) = φ0(r1)φ0(r2)
|αβ − βα〉√

2
(13.11)

or even more compactly:

|Ψ〉 =
1√
2
|ηη̄ − η̄η〉. (13.12)

(Of course, the true ground-state w.f. of Helium is a CI expansion with more
configurations, as in Eq. (13.3), but this Slater determinant is the dominant
part of the true ground-state wavefunction).

An arbitrary Slater determinant for excited-state Helium As another
example, consider a complete basis for the electrons (for the combined spatial
and spin coordinate), which we’ll denote as η1,η2,η3.... . Let’s pick two orbitals
for the electrons which are denoted as |η8〉 and |η11〉 (why 8 and 11 and not just
1 and 2? I want you to remember that we can use any orbitals; the electrons
are denoted as 1, 2,... but we can use any orbitals we want). Then

|Ψ8,11〉 =
1√
2
|η8η11 − η11η8〉 (13.13)

i.e.,

Ψ8,11(1, 2) =
1√
2

(η8(1)η11(2)− η11(1)η8(2)) . (13.14)

Time for yet another “simplification”: we’ll often denote this antisymmetric
product of two basis-set members as “simply”

|8, 11〉 ≡ |Ψ8,11〉 =
1√
2
|η8η11 − η11η8〉. (13.15)

This last notation, |8, 11〉 assumes that we have a specific basis in mind. But
it can be confusing (does it mean antisymmetrized w.f., like here; or
does it not?), and the precise meaning depends on the context, so
we’ll avoid it for now.
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Slater Determinants: example
Since

det

(
a b
c d

)
= ad− bc (13.16)

the expression above can be rewritten as

Ψ8,11(1, 2) =
1√
2

det

(
η8(1) η11(1)
η8(2) η11(2)

)
, (13.17)

and we often abbreviate it as |Ψ8,11〉 = det(η8, η11) — this is a definition of the
RHS, and the 1/sqrt(2) factor is absorbed into the definition.

This generalizes to more electrons; e.g., a 3-electron Slater determinant made
from three basis functions η6, η8,η11, will be

Ψ6,8,11(1, 2, 3) =
1√
3!

det

 η6(1) η8(1) η11(1)
η6(2) η8(2) η11(2)
η6(3) η8(3) η11(3)

 , (13.18)

or simply |6, 8, 11〉 or |Ψ6,8,11〉 or det(η6, η8, η11).
Note that the determinant does not change when we take linear combination

of orbitals. This is very important below.

General and closed-shell determinants
A general Slater determinant made from N orbitals (N is the number of electrons
here) that will be numbered η1, η2, ..., ηN would be denoted as:

|1, ..., N〉 or |Ψ1,2,..,N 〉 or |det(η1η2...ηN ),

and the meaning would be

Ψ1,....,N (1, 2, ..., N) =
1√
N !

det


η1(1) ... .... ηN (1)
... ... ... ...
... ... ...

η1(N) ηN (N)

 . (13.19)

Could be highly confusing, practice makes perfect.
Closed shell-determinants are ones where for every up-spin orbital there’s a

similar down-spin one; in that case, denoting the spatial orbitals by φn, we get:

η1(1) = φ1(r1)|α〉

η2(1) = φ1(r1)|β〉

η3(1) = φ2(r1)|α〉
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η3(1) = φ2(r1)|β〉

...

ηN−1(1) = φN
2

(r1)|α〉

ηN (1) = φN
2

(r1)|β〉.

It is OK to consider only orthogonal orbitals

Recall you learned in linear algebra that the value of a determinant does not
change when we linearly combine a column with another; for example

det(η1, η2, η3, ..., ηN ) = det(η1 + cη3, η2, η3, ..., ηN ).

Therefore, we can always do linear transformation of the states, till they are
orthogonal:

〈ηj |ηk〉 = δjk. (13.20)

Note that if each state has a definite spin, i.e., is either |α〉 or |β〉 (the usual
case but there are exceptions) then the spatial orbitals within each spin are
orthogonal. For closed-shell determinants as defined above the orthogonality
condition becomes simply:

〈φj |φk〉 =

ˆ
φ∗j (r)φk(r)dr = δjk. (13.21)

One-body density and density matrix for Slater determi-
nants
One-body density for a Slater-Determinant

For a Slater determinant, the density is very simple

n(r) =

N∑
i=1

∑
s

|η(r, s)|2 (13.22)

(here we explicitly sum over spins, which is what we really mean when we write
that we integrate over them). In lieu of a full blown proof, let’s show this for a
2-electron system, with a Slater determinant made from 2 orthogonal orbitals,
η and ζ.

Ψ(1, 2) =
η(1)ζ(2)− ζ(2)η(1)√

2
, (13.23)

so
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n(r) = N

ˆ
|Ψ(1, 2, .., i, ., N)|2 ds1d2 =

2

2

∑
s1

ˆ
|η(1)ζ(2)− ζ(1)η(2)|2 d2 =

=
∑
s1

ˆ
(η∗(r1, s1)ζ∗(2)− ζ∗(r1, s1)η∗(2)) (η(r1, s1)ζ(2)− ζ(r1, s1)η(2)) d2.

(13.24)

where the 2
2 term is first because N=2, and second because the Slater determi-

nant squared gives a factor of 1
N ! .

The cross term vanish, since
´
ζ∗(2)η(2)d2=0, so we’re left with the diagonal

terms

n(r) =
∑
s1

|η(r1, s1)|2
ˆ
|ζ(2)|2 d2 + (η ↔ ζ). (13.25)

But
ˆ
|ζ(2)|2 d2 = 1, (13.26)

so, removing the “1” subscripts:

n(r) =
∑
s

(
|η(r, s)|2 + |ζ(r, s)|2

)
, (13.27)

as stipulated.

Closed-shell density

For a closed-shell Slater-determinant, where each electron-up has a correspond-
ing electron down at the same spatial orbital, the density becomes

n(r) = 2

N
2∑
i=1

|φi(r)|2 . (13.28)

One-body density matrix for a closed-shell Slater-Determinant

The closed-shell Slater determinant density matrix is similarly shown to be

ρ(r, r′) = 2

N
2∑
i=1

φi(r)φ∗i (r
′). (13.29)

Interestingly, this is (except for the factor of 2) just the form of a projection
operator to the space of the occupied spatial orbitals (i.e., the φ1, .., φN

2
). We

talked about projection operators earlier, so I remind you:
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Formally, given a general one-electron spatial wavefunction |ψ〉 (in the
language of the beginning of the course), then ρ projects from ψ the ground-state
components

ρ

2
|ψ〉 =

N
2∑

n=1

cn|φn〉, cn = 〈φn|ψ〉 (13.30)

Also, it is easy to see that formally the density matrix from the Slater-
determinant fulfills: (ρ

2

)2

=
ρ

2
(13.31)

where the product here is in a matrix sense, i.e.,
ˆ
ρ(r, r′)ρ(r′, r′′)dr′ = 2ρ(r, r′′). (13.32)

Two-body density for Slater determinants
It is painstaking, but we can show that the two-body density for a general Slater
determinant det(η1, ..., ηN ) has the form

Y (r, r′) =
∑
s,s′

∑
i,j

η∗i (r, s)η∗j (r′, s′) (ηi(r, s)ηj(r
′, s′)− ηj(r, s)ηi(r′, s′)) .

(13.33)
Note that we don’t need to explicitly restrict the terms to i 6= j since the i = j
term automatically vanishes.

For a closed shell determinant, the summation over spins is simple and gives

Y (r, r′) =

N
2∑

i,j=1

φ∗i (r)φ∗j (r
′) (4φi(r)φj(r

′)− 2φj(r)φi(r
′)) . (13.34)

The factor of “+4” above comes from the summation over 2 values of “ s ” times
2 values of “ s’ ”. The factor of -2 (and not -4) derives from the cross-term in
Eq. (13.33), where only the s = s′ term contributes.

The “+4” term in the two body density is easily seen to be just the density
squared, while the “-2” term relates to the density matrix, so (prove this!) for
a closed-shell Slater-determinant, the two-body density is built from
the one-body density matrix:

Y (r, r′) = n(r)n(r′)− 1

2
|ρ(r, r′)|2. (13.35)

This is not a general property and relates only to Slater determinants.
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Fermi hole

Y is quite interesting at the diagonal:

Y (r, r′ = r) = n(r)2 − 1

2
|ρ(r, r)|2 =

n(r)2

2
(Closed-Shell Slater Determinant)

(13.36)
Contrast this with the true 2-body density matrix, which, for electrons (or any
strongly repulsive particles) must vanish

Y (r, r′ = r) = 0 (True ground-state wavefunciton), (13.37)

since two repulsive electrons can’t be at the same place.
So the Slater two-body density is not vanishing at it should; physically this

is since in Slater determinant a spin-up electron and a spin-down electron can
occupy the same point in space.

BUT at least the Slater determinant two-body density is reduced from the
density-density product (i.e., it is not n(r)2, only n(r)2

2 ). This reduction leads
to better ground-state energies for Slater determinants (i.e., fermions) than in
case of bosons where the w.f. is completely symmetric.

The reduction of Y (r, r′ = r) in a Slater-determinant is (or more precisely:
is related to something called) the Fermi hole. The (stronger) reduction in the
true ground-state two-body density is associated with a Coulomb hole.
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14 Hartree-Fock theory
We will ask: what’s the Slater determinant |Ψ〉 (for simplicity, closed-shell one)
with the lowest 〈H〉? So first:

〈H〉
Recall:

〈H〉 = 〈Ψ|T̂ |Ψ〉+ 〈Ψ|V̂ |Ψ〉+ 〈Ψ|Û |Ψ〉 ≡ E1B + Eee (14.1)

where

E1B = EKin + EeN = 〈H1B〉 (14.2)

and we recall H1B = T̂ + V̂ . From above, Eq. (12.32) – and we’re back to h̄ = 1:

EKin =
1

2me

ˆ
∂

∂r

∂

∂r′
ρ(r′, r)

∣∣∣∣∣
r′=r

dr (14.3)

EeN =

ˆ
n(r)u(r)dr (14.4)

Eee =
1

2

ˆ
Y (r, r′)u(r, r′)dr =

1

2
·
ˆ
n(r)n(r′)

|r − r′| drdr
′ − 1

4

ˆ
|ρ(r, r′)|2

|r − r′| drdr
′.

(14.5)
Plug in the expressions for n, ρ,D for Slater determinant in terms of the oc-

cupied eigenstates as derived in the previous chapter in terms of the orthogonal
orbitals and get (with factors of 2,4 due to spin, as mentioned):

EKin =
2

2me

N∑
i=1

ˆ
∇φ∗i (r)∇φi(r)dr = 2

∑
i

〈φi| −
∇2

2me
|φi〉 (14.6)

EeN = 2 ·
N∑
i=1

ˆ
|φi(r)|2v(r)dr = 2

∑
i

〈φi|v|φi〉 (14.7)

so:
E1B ≡ EKin + EeN = 2

∑
i

〈φi|ĥ|φi〉 (14.8)

where

ĥ ≡ − ∇
2

2me
+ VeN . (14.9)

Further, you can also show from our expressions that

Eee = EH +K, (14.10)
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where the Coulomb direct energy (so called Hartree term, or classical electro-
static term) is

EH =
1

2

ˆ
n(r)n(r′)

|r − r′| drdr = 2
∑
ij

ˆ
|φi(r)|2|φj(r′)|2

|r − r′| drdr′, (14.11)

while the exchange energy is (bad symbol “K” used historically, don’t confuse
with K.E.)

K = −1

4

ˆ
|ρ(r.r′)|2

|r − r′| drdr
′ = −

∑
ij

ˆ
φ∗i (r)φ∗j (r

′)φi(r
′)φj(r)

|r − r′| drdr′. (14.12)

Minimizing 〈H〉
We need to minimize 〈H〉 w.r.t. the spatial orbitals, subject to the constraint
〈φi|φj〉 = δij , i.e., extremize the “Lagrangian”

L =
1

2
〈H〉 − CL (14.13)

where the 1
2 is for convenience (removing the spin factor), CL are the constraints

times Lagrange multipliers,

CL =

N∑
i,j=1

λij (〈φi|φj〉 − δij) (14.14)

and λij are a set of Lagrange multipliers.
Thus, we need find the set of φi(r) that fulfill:

δL

δφ∗i (r)
= 0. (14.15)

The Fock operator

From above we find
1

2

δE1B

δφ∗i (r)
= ĥφi(r), (14.16)

1

2

δEH
δφ∗i (r)

= vH(r)φ(r), (14.17)

where we defined the Hartree potential, i.e., the classical Coulombic potential
due to the density

vH(r) =

ˆ
n(r′)

|r − r′|dr
′, (14.18)

and
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1

2

δK

δφ∗i (r)
= 〈r|k̂φi〉 (14.19)

where we defined the Fock exchange operator

〈r|k̂φi〉 =
∑
j

φj(r)

ˆ
φ∗j (r

′)φi(r
′)

|r − r′| dr′ =

ˆ
ρ(r, r′)φi(r

′)

|r − r′| dr′, (14.20)

In addition, differentiating the constraint term leads to

δCL
δφ∗i (r)

=

N∑
j=1

λijφj(r) (14.21)

Putting it all together converts δL
δφ∗i (r) = 0 to

f̂φi =

N∑
j=1

λijφj(r) (14.22)

where the Fock operator

f̂ = ĥ+ vH + k̂, (14.23)

is a one-body operator, made from:

• combining the underlying one-body operator ĥ (kinetic+ e-N attraction)
with:

• the one-body Hartree and exchange terms that result from the “folding” of
the two-body Coulomb interaction and the Hartree-Fock two-body density.

Rotating the orbitals

Now comes a trick. We have freedom to “rotate” the orbitals, i.e., to take
orthogonal linear combination of them, φ̃i =

∑
j Bijφj where B

+B = I – since
that will not change the Slater determinant, and therefore will not change the
Fock operator. So we’ll rotate them till the Fock equation is diagonal, i.e., till
f̂ φ̃i = εiφ̃i, (question for you: what should B fulfill?).

We can then remove the tilde and get

f̂φi = εiφi. (14.24)

Thus, we have a new interpretation of the Hartree-Fock procedure: the
process of minimizing the total energy w.r.t. a set of orthogonal orbital is
completely equivalent to the process of finding the lowest N

2 eigenstates of the
Fock operator.
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Hartree-Fock energy

Given the Fock orbitals, the Hartree-Fock energy is then (and all the bra-kets
henceforth except the LHS on the present equation refer to a single-electron
expectation values), as we wrote:

〈H〉 = E1B + EH +K, (14.25)

where all summations in this subsection are for i = 1, ..., N2 . On the other hand

εi = 〈φi|f̂ |φi〉 = 〈φi|ĥ|φi〉+ 〈φi|vH(r)|φi〉+ 〈φi|k̂|φi〉, (14.26)

and it is not too hard to prove (do it on your own!) that

2
∑
i

〈φi|ĥ|φi〉 = E1B ≡ EKin + EeN (14.27)

where we define the one-body energy; and further

2
∑
i

〈φi|vH(r)|φi〉 = 2EH , (14.28)

2
∑
i

〈φi|k̂|φ〉 = 2K, (14.29)

and therefore

2
∑
i

εi = E1B+2(EH+K) = E1B+2Eee = 〈H〉+Eee = 〈H〉+EH+K, (14.30)

i.e.,

〈H〉 = 2
∑
i

εi − Eee = 2

N
2∑
i=1

εi − EH − K. (14.31)

The interpretation of this eq. is very simple. Each orbital energy εi double-
counts the Coulomb interaction (in the direct and in the exchange terms).

For example, if i=2 and j=5, then ε2 will contain the interaction of the
2nd-electron with the 5th. On the other hand, ε5 counts this interaction again,
this time as the interaction of the 5th-electron with the 2nd one. So in short,
the sum over all orbital energies (times 2, for spin) double-counts the Coulomb
interaction, so we need to subtract half of it, i.e., to subtract Eee.

SCF procedure

Finally, note that the Hartree Fock equations need to be solved self-consistently,
since the Fock operator depends on the eigenstates, i.e., f̂ = f̂ [φ]. Thus we need
to solve a procedure schematically noted as:

1. Choose a random set of N
2 functions φi(r);

2. Then, repetitively:
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2.i Calculate the density and Fock operator from these φi(r)

2.i Find the lowest N
2 eigenstates of f̂ , φi(r),i = 1, ..,N2 .

Basis-sets solution of the Hartree-Fock equation
Basis-sets

While it is possible to do the SCF procedure above with actual dense orbitals
defined over space, in chemistry it is quite common to use basis set methods
(and these are important also for MP2, and higher-level correlated approaches).

Specifcially, we write the unknown eigenstates in terms of an orthogonal set
of fixed functions

φi(r) =

M∑
l=1

Cliχl(r). (14.32)

whereM > N
2 is the overall basis-set size, and the χj(r) are in turn LCAO, i.e.,

linear-combination of atomic orbitals

χl(r) =

M∑
k=1

dklgl(r), (14.33)

Here, dkl are linear coefficients constructed to make the χl orbitals orthogonal.
Each gl(r) is associated with a specific atom, and a specific nlm, and is

obtained by placing one or several Gaussians. This is because some of the
integrals we’ll show shortly turn out to be analytically solvable for Gaussian
basis functions.

For example, a fairly simple basis for LiH would be made from 7 functions,
two on the hydrogen (representing 1s and 2s) and five on the lithium (repre-
senting 1s, 2s, and 2px, 2py, 2pz)

g1(r) = c1ae
−ζ1a(r−RH)2

+ c1be
−ζ1b(r−RH)2

g2(r) = c2e
−ζ2(r−RH)2

g3(r) = c3ae
−ζ3a(r−RLi)2

+ c3be
−ζ3b(r−RLi)2

g4(r) = c4e
−ζ4(r−RLi)2

g5x(r) = c5 (x−XLi) e
−ζ5(r−RLi)2

g5y(r) = c5 (y − YLi) e−ζ5(r−RLi)2

g5z(r) = c5 (z − ZLi) e−ζ5(r−RLi)2
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In practice, the values of the coefficients (the c’s and ζ’s) and the number
of Gaussians in each basis functions is optimized based on studies of small
molecules. Better basis sets have more functions and more associated work.

The basis sets have names, e.g., STO-3G, 6-31G, and 6-31G**, we won’t go
over these.

Hartree-Fock eqs. with basis-sets

Given f̂φi = εiφi, we turn it to a basis-set eq. involving the orthogonal basis
χl (the LCAO). Note that even though in the derivations we treat the χl as a
complete set, they are NOT A COMPLETE basis, so the results would need to
be converged with basis (i.e., increase M till convergence).

Dot-product with χl to get

〈χl|f̂ |φi〉 = 〈χl|φi〉εi. (14.34)

Now insert a “resolution of the identity”, i.e.,
∑M
m=1 |χm〉〈χm| ' I (not

exactly 1 since M is not infinitely large) to get

M∑
m=1

〈χl|f̂ |χm〉〈χm|φi〉 = 〈χl|φi〉εi (14.35)

i.e., a matrix relation ∑
m

flmCmi = Cliεi (14.36)

or in short

fC = Cε (14.37)

where flm ≡ 〈χl|f̂ |χm〉, and Cli = 〈χl|φi〉. In short, we need to find the lowest
N
2 eigenvalues of the matrix flm

Further, to make the matrix flm we note, from the eq. we derived, f̂ =
ĥ+ vH(r) + k̂, that

flm = hlm + (vH)lm +
(
k̂
)
lm

(14.38)

where

hlm = 〈χl| −
∇2

2me
+ v(r)|χm〉 = 〈χl| −

1

2me
∇2 −

NNUC∑
q=1

Zq
| r−Rq|

|χm〉 (14.39)

is evaluated analytically, since the matrix element of 1/r between two Gaussians
is analytic, i.e.,

〈gm|ĥ|gl〉 =

(
tml −

NNUC∑
q=1

ZqG
q
ml

)
(14.40)
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and therefore:

tml ≡ −
1

2me
〈gm|∇2|gl〉 (14.41)

Gqml ≡ 〈gm|
1

| r−Rq|
|gl〉 (14.42)

are both evaluated analytically, so

hml =

M∑
m′,l′=1

dmm′dll′〈gm′ |ĥ|gl′〉 (14.43)

is calculated readily.
In addition, (vH)lm is also calculated readily (but expensively) from

(vH)lm = 〈χl|vH |χm〉 = 2

N
2∑
i=1

ˆ
χ∗l (r)

|φi(r′)|2

|r − r′| χm(r)dr′dr′, (14.44)

i.e., plugging φi =
∑
n Cniχn, we get

(vH)lm = 2

M∑
n,p=1

C∗niCpi

ˆ
χ∗l (r)

χ∗n(r′)χp(r
′)

|r − r′| χm(r)dr′dr′, (14.45)

i.e., (in a non-universal notation!!)

(vH)lm = 2

M∑
n,p=1

(χlχn|χmχp)Pnp, (14.46)

where the density-matrix is

Pnp =

N
2∑
i=1

C∗niCpi, n, p = 1, .., N (14.47)

while (note the order of indices)

(χlχn|χmχp) ≡
ˆ
χ∗l (r)χ∗n(r′)χm(r)χp(r

′)

|r − r′| dr′dr′, (14.48)

is calculable since the corresponding (glgm|gmgp) matrix element is calculable
analytically, and we can “transform” basis using the “d” matrix to go from the
set of (glgm|gngp) to the set of (χlχm|χnχp), as we did earlier

(χlχn|χmχp) =

M∑
l′m′n′p′=1

(gl′gm′ |gn′gp′)dll′dmm′dnn′dpp′ . (14.49)
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Finally, we similarly get for the exchange operator (I bold the exchanged indices
in the matrix element, “m” and “p”)

(k̂)lm = −
M∑

n,p=1

(χlχn|χpχm)Pnp (14.50)

We thus have a well-defined prescription for solving HF in a basis.
Step I: Calculate analytically the 4-index and 2-index matrices involving the

Gaussians (g).
Step II: Transform to make 4-index and 2-index involving χ’s. Calculate the

matrix elements of h.
Step III: Start with a simple guess to the M ×M density-matrix , e.g., with

all elements vanishing except

Pii = 1 if i ≤ N

2
(14.51)

Step IV: Do the SCF loop until convergence:

• From the density-matrix P calculate the matrices of the operators vH and
k̂, from which get the Fock matrix.

• Diagonalize the Fock matrix f and from its lowest N
2 eigenvectors C cal-

culate the new P .

The density matrix in Hartree-Fock

The density matrix in a basis-set P is fundamental in Hartree-Fock calculations
(and in modern DFT), so let’s talk about it for a second. It is clear that P
is the matrix representation of the density-matrix in coordinate space (prove
this relation!):

Pkl = 〈χl|
ρ

2
|χl〉 =

ˆ
χ∗l (r

′)
ρ(r, r′)

2
χl(r)drdr′ (14.52)

In fact, because of this proximity we often use the same label “density-
matrix” to both, even though one is basis-dependent and the other refers to
coordinate

The M ×M P matrix has N
2 eigenvalues of “1”, and the rest (M − N

2 ) will
be 0. It is thus a projection operator, i.e., P 2 = P, i.e., we can rewrite the
defining equation Pkl =

∑N
2
i=1 C

∗
kiCli as

P = CθC+ (14.53)

where the diagonal occupation matrix fulfills:

θij =

{
δij i = j ≤ N

2

0 otherwise.
(14.54)
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Modern QM techniques often aim at getting P directly, without finding all
the eigenstates, so that the Hartree-Fock exchange operator can be calculated
efficiently, although this is easier said than done (except for specialized cases
where P is very much “near-diagonal” in the proper localized basis set, like in
simulations of water).

In DFT the density matrix has similar role and properties.

Hartree-Fock efficiency (improvable) and accuracy (not very
good)
The Hartree-Fock equations for a basis, as presented above, are very expensive
as they scale as O(N4) with the number of electrons. Solving them on a grid,
i.e., getting directly φi(r) without using a Gaussian basis, is more efficient for
large molecules due to a gentler scaling, O(N3) or even better. There are also
techniques that mix basis sets and grids.

More crucially, however, Hartree-Fock does not get good chemical results.
For example, the bond-breaking energy of H2 is predicted to be ≈3.5eV rather
than the experimental 4.5eV.

Improvement is possible in several directions:

• Modifying the Fock matrix by “magic” (justifiable) terms – this is the
essence of what DFT does, we’ll see shortly.

• Applying perturbation theory, where H1 ≡ H −H0, and H0 is a solvable
Hamiltonian that we get from Hartree-Fock. Later we’ll calculate the 2nd
order perturbation theory expression (MP2)

• Using more numerically expensive approaches, such as Configuration In-
teraction, or Coupled Cluster – we’ll glance over both.
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15 Pre-DFT: Homogeneous Electron Gas (HEG)
Notation:

• Starting this chapter “n” is the electron density n(r) so it is a continuous
variable; the only integers would be labeled by “m” (and occasionally
“i, j”).

• Also, my notation to the energy-per-volume as ε (and not as nε) differs
from most books, so beware when using the formulae here.

HEG eigenstates
The simplest system in electronic structure is HEG. From HEG we’ll derive a
lot of the motivational and practical parts of DFT.

Imagine a uniform charge system – uniform positive and uniform negative;
the positive and negative charge (using e=1) per volume will be constant as
n(r) = n = fixed. Assume the charges are in a box of length L, volume V = L3.
We’ll use periodic boundary conditions (b.c.)

1D

If space was 1D, the 1-electron w.f.’s (see discussion soon) are periodic

ψ(x+ L) = ψ(x)

and would be formally

ψkx(x) =
eikxx√
L

(15.1)

with

kx =
2π

L
m, m = −∞, ...,−1, 0, 1, 2, ....∞. (15.2)

Such functions are of course orthogonal. Proof: If kx 6= k′x then

〈ψkx |ψk′x〉 =

ˆ L

0

ψ∗kx(x)ψk′x(x)dx =
1

L

ˆ L

0

ei(k
′
x−kx)xdx

=
ei(k

′
x−kx)L − 1

i(k′x − kx)
=
ei

2π(m′−m)L
L − 1

i(k′x − kx)
= 0 (15.3)

while for kx = k′x , 〈ψkx |ψk′x〉 = 1
L

´ L
0
ei·0·xdx = 1.
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3D

In 3D, the extension is obvious:

ψk(r) =
eik·r√
V

=
eikxx+ikyy+ikzz

√
V

(15.4)

and

kx =
2π

L
mx, ky =

2π

L
my, kz =

2π

L
mz, (15.5)

with mx,my,mz integers. Note the spacing between the momenta: dkx = 2π
L ,

so

d3k = dkxdkydkz =

(
2π

L

)3

. (15.6)

HEG eigenstates clarification

Where will these HEG eigenstates be eigenstates of something? In two cases:

• Non-interacting electrons: if we were to ignore the electron electron inter-
action, replacing it by a constant that negates the effect of the positive
background, our Hamiltonian would be kinetic only (with the periodicity
constraint)

• Another interesting case is Hartree-Fock for HEG. Here we don’t know
yet (we’ll partially calculate) the Hartree-Fock energies, but we do know
that due to the transnational symmetry the eigenstates have to be those
ψk.

In either case, we can imagine that the electrons are in a closed-shell Slater
determinant, where all eigenstates ψk with |k| below a certain maximum value
kF (F for “Fermi”) are “filled”, i.e., are part of the Slater determinant. Let’s find
this:

Fermi Momentum kF

Label the (constant) density n. In a big box of volume V, we have

N = nV = nL3 (15.7)

electrons. The electrons fill all states till kF , so (the “2” below for spin)

N = 2
∑

mx,my,mz

Θ
(
k2
F − k2

)
, k2 = k2

z + k2
y + k2

z (15.8)

and the k’s and the integer m’s are related by Eq. (15.5).
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Since the k’s are closely spaced (they’re proportional to 1/L, and L is big),
we replace the sum by integral, i.e., multiply by d3k

d3k , where d
3k =

(
2π
L

)3
.

N =
2
´

Θ
(
k2
F − k2

)
d3k

d3k
=

2
´ k=kF

0
d3k(

2π
L

)3 =
L3

4π3

ˆ kF

0

4πk2dk =
V

π2

k3
F

3
(15.9)

so

n =
N

V
=

k3
F

3π2
(15.10)

i.e.,

kF =
(
3π2n

) 1
3 (15.11)

i.e., kF = O
(
n

1
3

)
.

Note that the associated Fermi energy is

EF ≡
k2
F

2me
=

(
3π2
) 2

3

2me
n

2
3 . (15.12)

Hartree-Fock calculation of an HEG
Kinetic energy per volume

The total kinetic energy is labeled 〈T 〉 = 〈Ψ|T |Ψ〉, and |Ψ〉 is the closed-shell
determinant made from all occupied eigenstates (with spins up and down), i.e.,
those with |k| < kF .

We further label the kinetic energy per volume as t = 〈T 〉
V , and calculate it

trivially by noting that t/n is the average kinetic energy per electron (since “t”
is the average kinetic energy per volume and “n” the average # of electrons per
volume).

t

n
= Average

(
k2

2me

)
=

´ kF
0

k2

2me
d3k´ kF

0
d3k

=
1

2me

´ kF
0

k2 · k2dk´ kF
0

k2dk
=

1
2me

k5
F

5

k3
F

3

=
3

10me
k2
F .

(15.13)
Note that

t

n
=

3

5
EF , (15.14)

which makes sense since the average kinetic energy per occupied electron is
smaller than the maximum kinetic energy.

Note that by its definition, t
n depends only on the density. Also, for com-

pleteness note that

t =
3

10me
nk2

F =
3

10me
n(3π2n)

2
3 =

3

5
CTn

5
3 , (15.15)
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where

CT ≡
3(3π2)

2
3

10me
, (15.16)

i.e., the kinetic energy density scales as the density to the 5/3 power.

Electron-nucleus and Hartree electron-repulsion energies cancel each
other.

Each electron sees an overall zero background charge, so that the (classical)
Hartree repulsion potential cancels the attraction from the positive background.

Density matrix in HEG (for the exchange energy)

But the exchange energy does not vanish for an HEG!
Calculating it will all constants is quite painstaking, but we can get its

scaling with n. For this we first need the density matrix

ρ(r, r′) = 2
∑
k

θ(k2
F − k2)ψk(r)ψ∗k(r′) = 2

∑
k

θ(k2
F − k2)

eik·re−ik·r
′

V

=
2

V

∑
k

θ(k2
F − k2)eik·s, s = r − r′ (15.17)

(here “s” is unrelated to spin). Recalling that ρ(r, r′ = r) = n(r), we avoid
recalculating the constants (pi’s, etc.) by noting that

ρ(r, r′)

n
=

´ kF
0

ei·k·sk2dk´ kF
0

k2dk
≡
´ 1

0
ei·u·qu2du´ 1

0
u2du

= g(q) = g(kF s)

where : u ≡ k

kF
, q ≡ kFs (15.18)

and g(q) is defined by the equation above (from isotropy it clearly depends only
on q = kF s, the length of q, not on its direction). It can be calculated explicitly
(see Baer’s 2017 book, Eq. 3.2.4) and is falling off with q (oscillating as it falls
off), so it is tiny by the time that kF s > 3 .

Side note : The density matrix exhibits interesting oscillations due
to the abrupt separation of occupied from non-occupied states. The
oscillations of the density matrix are formally (and distantly) related
to Friedel Oscillations in the density of metals near the edge of
the metal – i.e., the electron wavefunctions near surfaces oscillate as
they oscillate in vacuum – see class.
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Exchange energy for HEG

The total exchange energy is then

K = −1

4

ˆ
|ρ(r.r′)|2

|r − r′| dr dr
′ = −n

2

4

ˆ
|g(kF s)|2

s
dsdr, (15.19)

where we converted the integral over r,r′ to an integral over s, r. We get rid
of the integral over r by defining the exchange energy per volume. (at times we
write a 3-d integration volume as ds, at times as d3s):

εX ≡
K

V
= −n

2

4

ˆ
|g(kF s)|2

s
d3s = −n

2

4

ˆ
|g(q)|2

q
kF

d3q

k3
F

= − n2

4k2
F

B, (15.20)

where B ≡
´ |g(q)|2

q dq is some purely-numerical constant (independent of n).
And of course “X” stands here for exchange.

Therefore, since kF = n
1
3 , the exchange energy scales as O(n2− 2

3 ) = O(n
4
3 ),

i.e.,

εX = −3

4
CXn

4
3 (15.21)

where a careful calculation, including that of B from above, shows that

CX =

(
3

π

) 1
3

. (15.22)

Total energy

We saw that the H.F. energy for an HEG is made from only two parts: kinetic
and exchange. Let’s write the total energy for our volume V as

EH.F. =

ˆ
t[n]dr +

ˆ
εX [n]dr (15.23)

where we included an [] to denote the formal of the two terms on the density.
It turns out that the total energy for an HEG can be calculated exactly, in

a beyond-HF method called Quantum Monte Carlo, and when we do it there is
a correction to the energy, labeled “C” for correlation

EC = E − EH.F. =

ˆ
εC [n]dr (15.24)

where εC [n] has been numerically tabulated (since the late 1970’s).
The reason for this correlation energy is that the Hartree-Fock method, by its

nature, ignores most correlation, while in the true many-electron wavefunction
we expect that the w.f. will be very small if any two electrons get close to
each other. Put differently, the true w.f. would have what we labeled “Coulomb
Hole”, not just the “Fermi Hole” (see in previous chapters).
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Let’s now include in the total energy the explicit form of the electron-
(positive-background) and electron-electron interaction, even though they can-
cel for an HEG, and end up with the full expression for the total energy

E[n] =

ˆ
t(n(r))dr+

ˆ
n(r)v(r)dr+

1

2

ˆ
n(r)n(r′)

|r − r′| dr
′dr′+EXC [n] (15.25)

where the attractive potential due to the positive-charge background is labeled
here v(r) (i.e., just like the potential for nuclei in Chemical systems – we assume
that an HEG has “completely smeared nuclei”) and we denoted the dependence
on the local density even though at this stage it is uniform. Further, define the
exchange-correlation energy as:

EXC [n] =

ˆ
εX(n(r))dr +

ˆ
εC(n(r))dr (15.26)

Note the symbol E[n] – it implies that E is a functional of n(r)
i.e., given the density over all space, {n(r) at all r}, a final (single
number) for the energy is outputted.

Generalizing to non-uniform backgrounds

The expression for the energy above is very enticing, once we stipulate that
we will apply it to ANY system, not just one with constant back-
ground. This is formally justifiable ONLY in the limit that the electron den-
sity varies slowly in space, so around each region we can approximate that it
is locally constant, but we can try to apply it for general systems, even heavy
atoms where the density varies a lot from core to valence.

If you’re horrified with applying expressions derived from constant-n
to a general n(r), remember that in practical thermodynamics we
always apply the concept of temperature even to regions where it
varies from one place to another, even though temperature is for-
mally defined only in equilibrium, i.e., where it is constant in space.

In fact, within a year or two after the advent of QM, Thomas and Fermi realized
this, and tried to apply the energy formula (but without εX which came in the
1930’s and εC which came in the 1960’s-1980’s) to atoms and molecules.

Specifically, they looked to extremize the energy subject to the constraint
that N=fixed, i.e., define

L[n] = E[n]− µ
(ˆ

n(r)dr −N
)

(15.27)

Then, functional differentiation w.r.t. n gives

0 =
δL

δn(r)
=

δE

δn(r)
− µ (15.28)
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i.e.,
δE

δn(r)
= µ (15.29)

This is the main equation also in DFT. Let’s put in the terms in E a little more
explicitly (and change at times the dummy r to r′′ so we don’t confuse with
n(r)).

µ =
δ

δn(r)

(ˆ
t(n(r))dr +

ˆ
n(r)v(r)dr +

1

2

ˆ
n(r′′)n(r′)

|r′′ − r′|
dr′dr + EXC [n]

)
=
d(t(n(r)))

d(n(r))
+ v(r) + vH(r) + vXC(r) (15.30)

where we defined

vXC(r) =
δEXC
δn(r)

. (15.31)

Question for you: for the local-exchange expression we use, i.e.,
εX(r) = − 4

3CXn(r)
4
3 , what will be the exchange contribution to

vXC(r) ?

Plugging the previous result of t = 3
5CTn

5
3 , and the definition of the Hartree

potential (the classical repulsion by the other electrons) we get

µ = CTn
2
3 + vtot(r), (15.32)

where we defined the total potential:

vtot(r) = v(r) + vH(r) + vXC(r). (15.33)

(and I remind you that in the original Thomas-Fermi approach there was no
vXC .) Another way to put it is:

n(r) = (µ− vtot(r))
3
2 . (15.34)

Note: in a way, this equation should remind you of the relation
between the potential and kinetic energy for a regular classical
particle, where a particle cannot be in a region where the poten-
tial is higher than the energy.

And here, in the Thomas-Fermi model, the density is non-zero only
in regions where the potential is lower than the chemical poten-
tial.

End of Note.
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Thomas and Fermi solved this model for an atom, where v(r) = −Zr . The
solution is interesting; it shows that the total energy is proportional to Z7/3

(see Baer’s book, Eq. (2.4.10), and Figure 2.4.1, reproduced below) . Further,
for positive ions the density terminates at a finite distance.

Indeed, the total atomic energy is quite close, percentage wise, to the Thomas-
Fermi energy (see Baer’s figure, below)

Unfortunately, the Thomas Fermi by itself predicts no chemical bonding.
Adding the exchange part helps, but the results are not of chemical accuracy.

In the last 30 years Thomas-Fermi methods have enjoyed a renaissance,
since they can handle giant molecular systems with millions of atoms; the key
to make them more numerically useful is to add a new correlation term which,
by construction, reproduces the response of a Homogeneous Electron Gas to
external fields that oscillate in space. Further, one mixes in other kinetic energy
terms that reproduce to a single-electron system (the von-Weizsacker term).

But by and large, DFT took a different route; the crucial point was 1965,
when Kohn and Hohenberg first proved that such energy expressions based on n
could be taken formally seriously; and then, Kohn and Sham realized that they
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can formally merge this density-dependent energy approach with Hartree-Fock
techniques, taking the best of each. This is in the next chapter.
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16 DFT
Note: Some of the discussion below is non-historical. Also, here F denotes a
functional of the density.

The Kohn-Hohenberg Lemma
Let’s recall he Hamiltonian we know, using “hats” for some operators and explic-
itly writing the form of the one-body potential (the electron-nucleus attraction)
in terms of the density operator:

H = T̂ + V̂ + Û = T̂ +

ˆ
v(r)n̂(r)dr + Û (16.1)

Before proceeding, we need to prove something fairly obvious:

Different many-body potentials lead to different ground-state wave-
functions.

Lemma: the ground-state w.f. is a unique function of the overall potential. I.e.,
for a given overall potential there’s a Hamiltonian, which has a ground state Ψ.
We claim that two different potentials, Vtot(r1, r2, ..., rN ) and V ′tot(r1, r2, ..., rN )
must produce a different ground-state potential. (Note that in our case V̂tot =
V̂ + Û , i.e., the total potential is a sum of one-body and two-body terms, but
this is true for general potentials).

Proof of Lemma:
The many-electron Schrödinger eq. reads(

T̂ + Vtot

)
Ψ = EΨ (16.2)

and therefore, except at points where Ψ vanishes, we get:

Vtot = − T̂Ψ

Ψ
+ E (16.3)

so the potential is given uniquely by the w.f., except for an overall constant.

Different potentials must lead to different ground-state densities

Hohenberg and Kohn then proved something ostensibly similar, but actually
highly unintuitive.

Assuming non-degenerate ground-states, there’s a one-to-one match
between the density and the one-body potential.

One “direction” is obvious – for a given one-body potential (practically, for a
given set of nuclear charges and positions), there’s a Hamiltonian, which has a
ground state Ψ, from which the density is calculated.

But the other “direction” is very surprising:
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Given a density n(r), there’s only a single one-body potential v(r)
which could have produced it ! So in this sense, the potential is
a function (or a functional, be as mathematical as you want to
be) of the density! (Hohenberg-Kohn)

Note the superficial similarity to the lemma we just proved; however:

• There, different potentials must lead to different overall many-body w.f.,
which makes sense.

• But here, something much stronger – not only are the w.f. (which are a
function of N 3-d position variables) different, the densities (which are a
function of only a single 3-d variable) different!

Let’s prove by contradiction:
First, say that there were two such different one-body potentials, v(r) and

v(r′), that produced the SAME one-body density n(r).
Now note that we proved that the overall potential is different if the one-

body potential is different (we don’t modify the two-body potential, the e-e
repulsion).

So v and v′ lead to different many-electron wavefunctions, Ψ and Ψ′; the
first fulfills HΨ = EΨ, and the 2nd H ′Ψ′ = E′Ψ′ (where H ′ is different from
H in the one-body potential).

Then, the variational theorem states that

E = 〈Ψ|H|Ψ〉, (16.4)

and since we assume non-degenerate ground-state, then since Ψ 6= Ψ′ :

E < 〈Ψ′|H|Ψ′〉. (16.5)

But

H = H ′ + V̂ − V̂ ′ = H ′ +

ˆ
n̂(r) (v(r)− v′(r)) n̂(r)dr, (16.6)

so plugging together the last two equations gives:

E < 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|V̂ − V̂ ′|Ψ′〉, (16.7)

i.e.,

E < E′ +

ˆ
n(r) (v(r)− v′(r) dr, (16.8)

where we used 〈Ψ′|n̂(r)|Ψ′〉 = n(r), and 〈Ψ′|H ′|Ψ′〉 = E′.
The equation above could have also been analogously derived in the opposite

direction (starting from E′ < 〈Ψ|H ′|Ψ〉), which would give

E′ < E +

ˆ
n(r) (v′(r)− v(r)) dr (16.9)
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But now add the last two eqs., to obtain a contradiction:

E + E′ < E + E′ (16.10)

This proves that indeed, only one potential could give rise to the density. So: if
we know the ground state density, then the one–body potential that
gives rise to it (i.e., gives rise to a ground-state wavefunction which has this
density) is set.

Thus, we can say that v = v[n]. (v is a functional of n).
Note however that we don’t know what this functional is; further, not all

densities n(r) are actually ground-state densities associated with a one-body
potential! Formally, not all densities are what is called “v − representable”
(associated with a specific v(r).) I.e., all we know is that if they are associated
with one v(r), they can’t be associated with another v′(r).

The Levy functional
We circumvent the problem of v-representability by defining a universal func-
tional. Given a density, we search over all wavefunctions that have an associated
density n(r) (if there are any!) and calculate:

F [n] = min
Ψ→n
〈Ψ|T̂ + Û |Ψ〉, (16.11)

where the meaning of the subscript ”Ψ→ n” is that we sample all N-body wave-
functions which have a density n(r). Further, we only sample from normalized
“Ψ”, so therefore the density integrates to give N electrons.

This universal functional is independent of the one-body potential. Of
course, we don’t know yet what F [n] would be, but we’ll soon make approxima-
tions to it.

It is easy to see then that, for a given v(r), if we know F [n] then our work
is over; since the ground-state energy must minimize:

E[n] = min
n

(
F [n] +

ˆ
v(r)n(r)dr

)
(16.12)

where the minimum is taken only over densities that are associated with some
normalized Ψ, so Ψ→ n.

The proof is simple. The variational principle states

E = min
Ψ
〈Ψ|T̂ + Û + V̂ |Ψ〉. (16.13)

(where the minimum is done over normalized many-body w.f.’s) Let’s then do
the minimization in two stages; for each n search which (if any) many-body
wavefunction that has the (normalized) density n(r) gives the lowest energy,
and then minimize among all these densities, i.e.,
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E = min
n

[
min
Ψ→n
〈Ψ|T̂ + Û + V̂ |Ψ〉

]
= min

n

[(
min
Ψ→n
〈Ψ|T̂ + Û |Ψ〉+

ˆ
v(r)n(r)dr

)]
.

(16.14)
The last term depends only on “n” so we can take it out of the inner-parentheses,
i.e.,

E = min
n

[(
min
Ψ→n
〈Ψ|T̂ + Û |Ψ〉

)
+

ˆ
v(r)n(r)dr

]
= min

n

[
F [n] +

ˆ
v(r)n(r)dr

]
. Q.E.D.

(16.15)

The Kohn-Sham Approach
Independent-electron Kinetic Energy functional

So far, we advanced theoretically but not practically, since we don’t know yet
what F [n] is. We could try of course to plug the Thomas-Fermi approach (e.g.,
use Eq. (15.25)), but as we know that would be very approximate.

The key is then to replace the “big” quantity we don’t know F [n] by a known
“big” quantity and a “small” unknown part. That was Kohn and Sham’s idea.

The original Kohn-Sham approach was: Let’s replace F [n] by a similar
term for non-interacting electrons, plus the Hartree repulsion, plus a
correction – and the correction should (hopefully!) be small.

Specifcially, define

Ts[n] = min
Ψ→n
〈Ψ|T̂ |Ψ〉 (16.16)

i.e., the minimum-kinetic energy among all w.f. that are associated with the
density n(r). We’ll see right below that it is possible to get this Ts[n] from
a Slater determinant (i.e., from non-interacting electrons, i.e., electrons which
only interact with a one-body potential) when solving for the minimization of
the energy.

Then, we’ll write the unknown F [n] as

F [n] = Ts[n] + EH [n] + EXC [n] (16.17)

where as we defined earlier EH [n] = 1
2

´ n(r)n(r′)
|r−r′| dr dr′, and “XC” stand for

exchange-correlation.
In the section after the next, we’ll talk about EXC [n]; for now just accept

that it is a numerical functional of n that we can approximate reasonably.

Minimizing the overall functional

We’re looking to minimize the total energy, F [n] +
´
n(r)v(r)dr, subject to the

integrated-density constraint
´
n(r)dr = N . Based on the eq. above, we would
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like to extremize therefore the Lagrangian (containing a Lagrange multiplier µ
associated with the integrated density constraint)

L[n] = E[n]− µ (n(r)dr −N) , (16.18)

i.e., (recall that v(r) is the potential due to the nuclei):

L[n] = Ts[n] + EH [n] + EXC [n] +

ˆ
n(r)v(r)dr − µ (n(r)dr −N) (16.19)

Functional differentiation yields

0 =
δL

δn(r)
=

δE

δn(r)
− µ =

δTs
δn(r)

+ vH(r) + vXC(r) + v(r)− µ (16.20)

where we derived earlier

vH(r) ≡ δEH
δn(r)

=

ˆ
n(r′)

|r − r′|dr
′, (16.21)

and we also defined earlier

vXC(r) =
δEXC
δn(r)

. (16.22)

The Kohn-Sham equation for orbitals

It seems we have not done much, since we still have δTs
δn(r) to worry about. But

here comes the key: it could be proved that the lowest kinetic energy
is obtained, for a given n(r), from a closed-shell Slater-determinant
with N

2 occupied orbitals φi(r), i = 1, ..., N2 , such that

n(r) = 2

N
2∑
i=1

ni|φi(r)|2. (16.23)

where we introduced the occupation of the states (which for the present think
of it as 1 for occupied states and 0 for unoccupied states).

Note: the reason we introduce the occupation numbers at all is so we
can deal later with partially charged system, where the occupation
of the HOMO will be less than 1 – or that of the LUMO will be
more than 0).

Then, the kinetic energy of this set will be denoted as T [f, φ] (we should have
really wrote it as T [f, φ, {ni}], but that’s too long) and calculated as

T = − 1

2me
· 2

N
2∑
i=1

ni

ˆ
φ∗i (r)∇2φi(r) dr. (16.24)
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So instead of taking a functional derivative w.r.t n(r), take a derivative
w.r.t.φi(r) ! When we do it it is useful to remember that a derivative w.r.t.φi(r)
of a direct functional of n(r) is obtained by the chain rule

δ

δφ∗i (r)
=

∂n(r)

∂φ∗i (r)

δ

δn(r)
= 2niφi(r)

δ

δn(r)
(16.25)

where the “2” is due to the spin factor in the closed-shell density.
Further, we need to augment now the Lagrangian; instead of the constraint

being now only the total charge=N, it is now that the the eigenstates are or-
thonormal, or more precisely, that norm of each eigenstate times the occupation
of the state is 1 (for occupied states). We multiply by 2 the Lagrange multipliers
per convenience (the 2 is due to spin, since we consider closed-shell systems):

L[φ, f ] = E(φ, f)− 2
∑
ij

λij (ni〈φi|φj〉 − δij) (16.26)

where differentiating first w.r.t. the wavefunctions gives

0 =
δL

δφ∗i (r)
=

δE

δφ∗i (r)
− 2

∑
ij

λijniφj(r) =

δTs
δφ∗i (r)

+
δ

δφ∗i (r)

(
EH + EXC +

ˆ
n(r)v(r)dr

)
− 2

∑
ij

λijniφj(r), (16.27)

i.e.,

0 = −2ni
∇

2me
φi(r)+2ni

δ

δn(r)

(
EH + EXC +

ˆ
n(r)v(r)dr

)
φi(r)−2ni

∑
ij

λijφj(r),

(16.28)

So divide by 2ni and use the expressions for the potentials as functional deriva-
tives to get:

0 = − ∇
2me

φi(r) + (vH(r) + vXC(r) + v(r))φi(r)−
∑
ij

λijφj(r). (16.29)

We now do the same trick as we did in Hartree Fock, rotate the orbitals till
the Lagrange multipliers matrix is diagonal (with diagonal value εi) so we end
up with the so-called Kohn-Sham eqs.

− ∇
2

2me
φi(r) + vKS(r)φi(r) = εiφi(r), (16.30)

i.e., the phi’s are eigenstates of a Kohn-Sham Hamiltonian

f̂φ(r) = εiφi(r) (16.31)
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which involves a kinetic energy and a local potential

f̂ = − ∇
2

2me
+ vKS(r), (16.32)

and the Kohn-Sham potential is:

vKS(r) = vH(r) + vXC(r) + v(r). (16.33)

Note how we use the same symbol for the Kohn-Sham 1-electron
Hamiltonian here and the Fock-matrix in the Hartree-Fock approach!
This is because we ended up with what looks like Hartree-Fock equations, but
with a simple one-body Hamiltonian replacing the Fock-Hamiltonian; basically,
the exchange-operator was replaced by a local potential, vXC(r)!

The quality of the method depends of course then on the quality of the
exchange-correlation potential, which is what we’ll discuss (with extensions) in
the next few sections.

But we need one more step: differentiate w.r.t. the occupation.

The orbital energies as derivatives w.r.t. the occupations

Take the objective we had an differentiate it w.r.t. the occupations (and replace
the sum over λij by the sum over εi)

∂L

∂ni
=
∂E

∂ni
− ∂

∂ni

∑
i

εi (ni〈φi|φi〉 − δij) =
∂E

∂ni
− εi (16.34)

and if we set the orbitals to be normalized we get:

∂E

∂ni
= εi (16.35)

i.e., the derivative of the energy w.r.t the occupation is the orbital energy!
We can now understand, by analogy with thermodynamics, why

the occupations are 0 and 1 (or, if we deal with partially charged system, the
HOMO would be partially occupied and all states below would have occupations
of 1). Specifcially, if they were not 0 to 1, say one orbital was occupied at 0.7
and another at 0.3, and the second one had a higher ε, then we could lower the
energy by moving a little bit of charge from the second orbital to the first (so
the occupations would be 0.71 and 0.29, for example). We could continue the
process till the occupation of one of the orbitals is 1 (the maximum possible by
the Pauli principle) or the other would vanish.

This is the same as classical thermodynamics, where a material would be
moving from one phase with higher chemical potential to another, The role of
the chemical potentials is played by the orbital energies.

Of course, once a “phase” – in our case a specific level – is fully occupied,
ni = 1, nothing can move into it.

The proof that ni ≤ 1 is a little more difficult in practice, since we
have to consider the behavior of the one-body density matrix of the
full interacting wavefunction, but it is still valid.
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The XC potential (and operator)
The simplest exchange-correlation functional: LDA

What is EXC [n] (and from that vXC ) then? The simplest functional, labeled
LDA (Local Density Approximation) would be based directly on an HEG. Thus,
we separate

ELDAXC [n] = ELDAX [n] + ELDAC [n]. (16.36)

We encountered both terms (without putting the LDA superscript) when we
discussed the HEG. As a reminder, ELDAX [n] is simply the local HEG exchange
energy,

EX = −3

4
CX

ˆ
n

4
3 (r)dr

and the remaining ELDAC [n] is then

EC =

ˆ
εC (n(r)) dr,

where εC(n) is obtained by doing a high level (“Monte-Carlo”) calculation on a
HEG (as HEG is one of the few cases where we can obtain the energy numerically
exactly), i.e., for a spatially constant n, and fitting E vs. n to the exact result,
as described in the HEG chapter.

LDA gives reasonable but not outstanding results for crystals and fairly weak
results for molecules. Thus until the late 1980’s LDA was viewed in chemistry
circles as just a cheaper theory than HF (since the exact exchange was not
calculated), but not as an accurate (or even a more-accurate) alternative.

Beyond LDA: GGA

The first hopes to improve LDA came in the 1970’s-1980’s with the development
of GGA (“Generalized Gradient Approximation”) functionals. In GGA, the local
exchange-correlation energy per volume depends on the density AND also on
on the density-gradient, i.e., on the density shape:

EGGAXC [n] =

ˆ
εGGAXC (n(r),∇n(r)) dr. (16.37)

GGA functionals improve somewhat the description of the LUMO and gaps,
and are heavily used in solid-state, but are not good enough for chemistry either.

Hybrid functionals

The revolution that made DFT suitable for chemistry came in the late 1980’s-
early 1990’s, when Becke (based also on some earlier work) took these two
so-similar theories, Hartree-Fock and DFT, and mixed them.

Specifically, the optimal mixture was numerically found to be 25% H.F.,
and 75% DFT; these proportions are purely empirical and give the best fit to
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a high-level calculation and measurements for a series of tens of molecules (and
can be somewhat justified a-posteriori).

Specifically, Becke replaced the Kohn-Sham exchange-correlation functional
EXC by:

EXC → 0.75EXC + 0.25K (16.38)

whereK is the Hartree-Fock exchange. Therefore, the only change in the Hamil-
tonian is the incorporation of Hartree-Fock exchange:

ĥhybrid = − ∇
2

2me
+ v(r) + vH(r) + 0.75vXC + 0.25k̂ (16.39)

where vXC can be an LDA or a GGA potential (i.e., it depends on the local
density or also on its derivative).

The most famous such hybrid functional is B3LYP; it is very accurate for
reaction energies, especially for organic systems, and most organic chemists use
it routinely.

But B3LYP often does very poorly on charging energies (ionization energy
and electron affinities) with errors of a few eV, almost as bad as LDA. There
is a solution, long-range hybrids, that we’ll discuss later (once we discuss some
preliminaries). Before that we briefly review for completeness other functionals.

Some other functionals: Meta-GGA, Hybrids with MP2

You should be aware of some new developments in DFT. One class is inspired
by hybrid functionals but does not have those expensive summations that the
exchange-operator k̂ has. One writes instead again EXC =

´
εXC(r)dr, but

now

εXC(r) = εXC (n(r),∇n(r), τ(r)) , (16.40)

so the local exchange-correlation energy per volume, εXC , relies on the density
and its gradients, like in GGA; but, in addition, also on the kinetic-energy
density,

τ(r) ≡ 1

2me

∑
i

ni∇φ∗i (r) · ∇φi(r). (16.41)

Such meta-GGA functionals have excellent accuracy at fairly limited computa-
tional cost.

Another related set of functionals adds to hybrids other perturbation-energy
terms, i.e., the total energy is augmented by (a constant) times the MP2 energy,
which we will discuss in later chapters. Basically, this MP2 energy is just the
van-der-Waals interaction. The idea is that DFT has a hard time describing the
spontaneous polarization which is at the core of vdW interaction.

Still another set adds the vdW interactions empirically, via terms that de-
pend only on the positions of the nuclei (i.e., are modified classical nuclear
interactions). Those functionals do surprisingly well for giant biological sys-
tems.
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There are many other combinations, and a lot of fits of functionals with
many terms, which fit either specific sets of molecules (organics, TM’s, etc.) or
have enough terms to aspire to describe “all elements”.

In fact, looking at the literature of DFT, one sympathizes at times with
the quote attributed to Sir Rutherford (“Science consists only of physics and
stamp-collecting”)...

I will describe however in the next section a fundamental property that DFT
should fulfill which inspired some excellent functionals, to prove to you that DFT
can be on the fundamental side.

Piecewise linearity of the total Energy and implications for
DFT
To start, let’s discuss:

Energy differences rise with charging state

Our starting point is the realization (we won’t prove it, but it makes sense for
us as chemists) that in any molecular system, no matter how large or small,
the energy differences upon charging rise with the charging state (assuming of
course for simplicity, as we always do, that the nuclei are fixed).

For example, for a neutral system with N electrons, the ionization energy is
always higher than the electron affinity. In obvious notation

E(N)− E(N − 1) > E(N + 1)− E(N) (16.42)

This is true always, even if the system is not neutral.
Let’s use this to define:

Energy of a partially charged system

What should be the energy of, for example, benzene with 41.8 electrons, i.e.,
C6H

+0.2
6 ? (since neutral C6H6 has 42 e’s.)

Side note: in the specific case of benzene there would be problems
due to degeneracy, so let’s assume this is twisted benzene, where
the atoms are not in a perfect hexagon, so no state is degenerate,

We define the energy of C6H
+0.2
6 as the energy per benzene molecule

of an ensemble of, say, 1000 well-separated benzene molecules – of
which 800 are neutral and 200 are singly charged.

Also, to avoid writing so many C6H6 below, I abbreviate A ≡ C6H6.

E
(
A+0.2

)
≡

800 · E (A) + 200 · E
(
A+1

)
1000

, (16.43)

i.e.,
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E(N = 41.8) ≡ 800 · E(N = 42) + 200 · E(N = 41)

1000
. (16.44)

You may ask: is this prescription well defined? After all, we could have
other combinations of 1000 molecules with the same total number of electrons
(41.8*1000=41,800)!

For example, one benzene anion, 798 neutral molecules and 201 singly charged
benzenes (all well-separated!). Same total number of electrons. It is easy to see
however that this new configuration has a higher energy than the one we defined
above. Specifcially, define

∆E ≡
[
1 · E

(
A−1

)
+ 798 · E (A) + 201 · E

(
A+1

)
+
]

−
[
800 · E (A) + 200 · E

(
A+1

)]
(16.45)

so

∆E = 1·E
(
A−1

)
−2·E (A)+1·E

(
A+1

)
=
[
E
(
A+1

)
− E (A)

]
−
[
E (A)− E

(
A−1

)]
(16.46)

i.e.,
∆E = I.E. (A)− E.A. (A) > 0 as stipulated. (16.47)

For this reason, the fractional energy is always the weighted average of the
energy of the molecules/ions with an integer charge just below and above the
fractional charge. So in general

E(N + δ) = (1− δ) · E(N) + δ · E(N + 1) δ ∈ [0, 1] (16.48)

and of course

E(N − δ) = (1− δ) · E(N) + δ · E(N − 1) δ ∈ [0, 1] (16.49)

Corollary: I.E. = −εHOMO

As a corollary of the relation above,

− ∂E(N − δ)
∂δ

∣∣∣∣∣
δ∈[0,1]

= E(N − 1)−E(N) = I.E.(=ionization energy). (16.50)

i.e., the slope of the energy as function of N on the left side of an integer
occupation (i.e., the left-derivative near the neutral point) is the ionization
energy.

On the other hand, we explained that as you reduce the total charge slightly,
the occupation of the HOMO would be the only one affected (since it is the
highest energy one among the occupied states, .i.e., analogous to the highest
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chemical potential phase with non-zero occupancy). So this, as we saw earlier,
implies

∂E(N − δ)
∂δ

|δ∈[0,1] = εHOMO, (16.51)

and therefore, the “true” DFT must fulfill

I.E. = −εHOMO. (16.52)

Piecewise linear energy curves

The eqs. above indicate that the true molecular energy should be piecewise lin-
ear (see plot in class). However, most functionals won’t obey this automatically.

Specifically, we can always do an LDA (or other DFT) calculation with non-
integer occupations; for example, to calculate benzene with 41.8 electrons, we
could do a calculation with 20 closed-shell filled orbitals, and the HOMO orbital
with occupation of 0.9, i.e.:

nHOMO(i=21) = 0.9 (16.53)

ni = 1, i = 1, ..., 20 (16.54)

And when we do such calculations, we find that: LDA (and GGA) is
generally convex upward. This is the same as saying that in LDA and other
similar functionals I.E. 6= εHOMO.

Hartree-Fock has the opposite behavior (see figure in class to make sense
of this statement). In fact, one of the reasons for B3LYP’s success is that the
combination of Hartree-Fock and local-DFT (GGA or LDA) makes the energy
more piecewise linear than either method.

Some modern functionals have therefore built in this requirement of piecewise
linearity.

We will discuss in a later section one particular such functional where piece-
wise linearity can be imposed, long-range hybrids. But before, let’s see a related
problem:

LDA (and most local functionals) do not sufficiently attract a distant
electron

A severe fundamental problem in LDA (and other local DFT) is seen when we
consider an isolated molecule, large or small, and consider what does the valence
electron see when it is fairly far from the molecule.

This question is relevant for charge transfer, where A-B becomes A+B−. It
is also relevant for Rydberg states, where an excited electron circles an atom or
molecule from far away.

First, we know what the exact theory will say: if the valence electron is far
from the others (from the nuclei and the core), then it will see a net charge
of +1*|e| (or +1 in our e=1 notation), since the core-attraction of +Z|e| is
only partially canceled by the (Z−1) other electrons, and the electron does not
repel itself.
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But in LDA, since almost all the density is near the core and nucleus (in-
cluding the density of the valence electron), so far away the net electrostatic
attraction (due to the combination of the electron-nuclear v with the repul-
sive vH) would be close to 0! Further, the local vXC would be too small far
away (since it depends monotonically on the density, which is tiny at far-away
distances).

Note that this problem DOES NOT AFFECT Hartree-Fock! There, the
exact exchange has a term where the electron interaction with itself is removed.
Specifically, recall how we removed in Eq. (13.33) the restriction i 6= j since the
i = j term in the direct Hartree term (EH) was canceled by an equal amount
in the exchange term (K).

So, to recapture where we are:

• the problem emanates because in DFT an electron is repelled from its own
density (which, even for a valence electron, is located mostly close to the
molecule, not far away).

• In Hartree-Fock exchange cancels the spurious repulsion.

• This feature of Hartree-Fock is especially important for long-distance re-
pulsion.

• And we don’t want to keep the full Hartree-Fock, since Hartree-Fock the-
ory does not have the extra terms that DFT has which allow it to be very
accurate (in hybrids).

The solution (Savin, mid 1990’s) is then: keep 100% exchange, but only
for long-distances!

Specifcially, INSTEAD of taking 0.75EXC + 0.25K, one SEPARATES the
electron-electron interaction in the exchange to two terms: long-distance and
short-one. For example:

1

|r − r′| =
e−γ|r−r

′|2

|r − r′| +

(
1− e−γ|r−r′|2

)
|r − r′| . (16.55)

(Note that this separation is only done in the exchange term, not in the Hartree-
repulsion part.) In the equation above, the Gaussian in the first term (of the
RHS) ensures that this first term will decay off at long distances.

In the exchange term (“K”) then:

• The first, short-term part would be treated by DFT;

• The second, long-term part would be treated by Hartree-Fock, where the

“1/|r-r’|” part is replaced by
(

1−e−γ|r−r′|2
)

|r−r′| . This replacement affects both
the total energy and the Kohn-Sham Hamiltonian.

And how to determine the free-parameter γ? The best way would be
to impose the piecewise linearity, i.e., one varies γ until Eq. (16.48) is
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fulfilled, i.e., until the HOMO energy equals the ionization energy, and until the
LUMO energy equals the electron affinity.

Recall that the electron affinity is nothing more than the ionization
energy of the negative anion; and the LUMO energy is the HOMO
energy for the negative anion. See class for figure.

DFT Scaling
The scaling with number of electrons becomes an issue for hybrid functionals, so
that routine simulations cannot be done for systems with hundreds or thousands
of atoms, except for special cases (e.g., water, where the density matrix is very
localized in space). My research group, colleagues and I are working on methods
to reduce this scaling thus enabling large scale simulations for extended systems.

DFT conclusions
To conclude: DFT is the main method for doing electronic structure today. I
overviewed the main aspects, there are many more. One very important part
that will be covered in 115b is the response to static and especially dynamic per-
turbations, which affects spectroscopy, etc. It comes under the label: TDDFT
(time-dependent DFT).
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17 Beyond DFT: perturbation theory (MP2)
In the next three chapters we’ll deal with other methods for electronic structure.
The first is perturbation theory, and we’ll deal with its most basic and important
part, 2nd order perturbation theory, also called Moeller-Plessest 2nd order or
just MP2.

Notation
• For simplicity, in this and the next chapters we’ll consider open-shell, so
there are “N” orbitals, and we will not talk much about spins.

• Subscripts: In this section and henceforth i, j, k refer to general
indices; b, c, d, ...refer to occupied states (b, c, d ≤ N); and p, q, r, ...refer to
unoccupied states (N < p, q, r). (This is not a universal notation!)

DFT and Hartree-Fock: Separable Molecular Hamiltonian
Approximation
Specifically, in either Hartree-Fock or DFT (regular or hybrid) one solves, as we
saw, an eigenvalue equation,

f̂ηi = εiηi (17.1)

and f̂ is a one-electron operator.
We can therefore define a trivial many-electron operator from f̂ :

H0 ≡ c0 + f̂(1) + ...+ f̂(N) = c0 +
∑
i

f̂(i) (17.2)

i.e., just a sum of non-interacting-electrons Hamiltonians. Here “c0” is a constant
that we’ll tackle shortly.

This (many-electron) operatorH0 is what we call of course one-body operator,
since the many electrons don’t interact with each other.

The zero-order Slater-determinant

|Ψ0〉 = det{η1, ..., ηN} (17.3)

associated with the lowest-energy orbitals in DFT or Hartree-Fock is an eigen-
state of H0 :

H0|Ψ0〉 = E0|Ψ〉, (17.4)

where

E0 = c0 +

N∑
i=1

εi (17.5)
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Proof : a determinant is made from N ! different terms. Let’s for example
consider N = 3, a determinant of 3 orbitals. Take arbitrarily one of the N!=6
terms in the determinant, η2(1)η3(2)η1(3). Then

H0 (η2(1)η3(2)η1(3)) =
(
c0 + f̂ (1) + f̂ (2) + f̂ (3)

)
(η2(1)η3(2)η1(3))

= (c0 + ε2 + ε3 + ε1) (η2(1)η3(2)η1(3)) =

E0 (η2(1)η3(2)η1(3)) Q.E.D. (17.6)

Note that when we want to emphasize that we are talking about N electrons,
we’ll write this ground-state energy as:

E0(N).

The constant c0 in H0

c0 is best determined to give the same expectation value of the true Hamiltonian
and zero-order Hamiltonian for the |Ψ0〉

〈Ψ0|H|Ψ0〉 = 〈Ψ0|H0|Ψ0〉. (17.7)

But the LHS is just the DFT energy (EDFT ) or Hartree Fock energy, EH.F.

which we label as a generic 〈H〉; the RHS is, from above,
(
c0 +

∑N
i=1 εi

)
. So

together

〈H〉 = c0 +

N∑
i=1

εi (17.8)

so, by Eq. (14.31), adopted now for the general (not necessarily closed-shell)
case,

c0 = 〈H〉 −
N∑
i=1

εi = − (EH +K) . (17.9)

Excited states of H0 and modified Koopman’s theorem

Note that H0 is nothing more than the regular first-year chem. molecular or-
bital Hamiltonian; its excited states are determinants where occupied levels are
promoted from ground-states, a language you are familiar with.

For example, a singly-excited determinant where the occupied orbital ηb is
replaced by the excited orbital ηp (non-occupied in the ground-state, so N < p)
would be denoted here as |Ψp

b〉

|Ψp
b〉 ≡ det{η1, ..., ηb−1ηpηb+1, ..., ηN}, b ≤ N, N < p (17.10)

and is labeled either as
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• Singly-excited determinant (a notation some chemists use).

• a particle-hole excitation; here the “particle” is the electron in the excited
orbital “p”, and the “hole” is the removal of the electron from the occupied
orbital “j”. Physicists like this notation, as well as some chemists.

We similarly define doubly-excited (or two-particle, two-hole) determinants,

|Ψpq
bc 〉 ≡ det{η1, ..., ηb−1ηpηb+1, ..., ηc−1ηqηc+1, ..., ηN}, b < c ≤ N, N < p < q

(17.11)
etc. for triply excited determinants. Note that in this eq., we must order the
holes and the particles to avoid double counting.

It is not too hard to prove (prove yourself) that the associated excited-
state fulfill

H0|Ψp
b〉 = Epb |Ψ

p
b〉 (17.12)

where the b → p excited state energy is just Epb = E0 + εp − εb, i.e., the
excitation energy is just the orbital-energy difference between the occupied and
excited orbital:

Epb − E0 = εp − εb (17.13)

just like our intuition says.
This eq. above is called at times “Koopman’s theorem”, although Koopman’s

theorem really talks about the ionization energy to remove the HOMO being
equal to the energy of the HOMO; i.e., if we take the N-1 determinant by
removing the HOMO orbital,

|N−1Ψ0〉 ≡ |η1, ..., ηN−1〉 (17.14)

then the actual Koopman’s theorem states that (in obvious notation) the ion-
ization energy equals the HOMO energy

E0(N − 1)− E0(N) = εN (= εHOMO). (17.15)

and a similar theorem follows for the LUMO. We won’t prove this theorem in
Hartree-Fock, it is too long for us.

Note that, as we discussed in the DFT chapter, Koopman’s theorem would
have been exact if we had the true wavefunctions (or the true functional).

But with Hartree-Fock, Koopman’s theorem is approximate for both the
one-particle excitation (Eq. (17.13)) and for ionization, Eq. (17.15), for two
reasons:

• Hartree-Fock is an approximate theory

• Even with the Hartree-Fock picture, we could expect some orbital change
(“relaxation”) when an electron is excited from one-orbital to the next.
For example, in an A-B molecule, where A is more electronegative than
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B, we could excite am electron initially mostly on A to an excited state
that’s mostly on B, or even ionize it. Then, the other electrons could
“rearrange” (orbital relaxation) to respond to the change in the HOMO-
electron distribution.

Properly accounting for orbital relaxation takes us outside Hartree-Fock and
into what’s so-called RPA (also called in this context singles-CI, and also in a
sense part of TDDFT) or to Green’s functions theories, and will be tackled in
115b/215b.

Finally, obviously, we can repeat the steps to show that

Epqbc − E0 = εp + εq − εb − εc. (17.16)

Now that we haveH0 with its eigenstates, we just need the perturbation in order
to apply perturbation theory. For this, we’ll need some simple clarification:

Connection between the one-body, two-body, Fock operator
and the total Hamiltonian
The total Hamiltonian is, I remind you:

H = H1B + Û (17.17)

where H1B =
∑N
i=1 ĥ(i), where ĥ is, as I remind you, the kinetic plus electron-

nuclei interaction, so

H =

N∑
i=1

ĥ(i) + Û (17.18)

(We never put a “hat” above H, H0, H1B , but they are presumed to be opera-
tors.)

Similarly, as we saw, H0 = c0 +
∑N
i=1 f̂(i). Therefore, the perturbation

Hamiltonian is

H1 = H −H0 = Û − (H0 −H1B) = Û − c0 −
N∑
i=1

(
f̂(i)− ĥ(i)

)
(17.19)

Matrix elements of the perturbation
Brillouin’s theorem: no first-order matrix element with single-electron
single-hole determinant

When we apply perturbation theory, a pleasant surprise emerges: there’s no
matrix element between the ground-state Slater-determinant and singly-excited
determinants!

〈Ψp
b |H|Ψ0〉 = 0 (17.20)
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which, since |Ψ0〉 and |Ψp
b〉 are different eigenstate ofH0, and therefore 〈Ψp

b |H0|Ψ0〉 =
0 can also be written as

〈Ψp
b |H1|Ψ0〉 = 〈Ψp

b |H −H0|Ψ0〉 = 0 (17.21)

This is Brillouin’s theorem. We won’t prove it here, but with the machinery
we’ll study in the next chapter it could be tackled.

Matrix elements with two-electron excitation

Similarly, I’ll quote here (and prove in the next chapter):

〈Ψpq
bc |H|Ψ0〉 = (ηpηq|ηbηc)− (ηpηq|ηcηb) (17.22)

where I defined (reminiscent of Eq. (14.48), but now for the Hartree-Fock (or
DFT) molecular orbitals)

(ηpηq|ηbηc) ≡
ˆ
η∗p(1)η∗q (2)ηb(1)ηc(2)

|r1 − r2|
d1 d2. (17.23)

i.e., the matrix element of an excitation is just the antisymmetrized interaction
of the excited and occupied electrons!

Note in passing that the last matrix element will vanish unless the spin of
“p” and “b” match, and the same for the spins of “q” and “c”.

No matrix elements with more than two-electron two-hole excitations

We can prove (hopefully next chapter) that the matrix element of the ground-
state with three-electron excited determinants or higher excitations vanishes,〈Ψpqr

bcd |H|Ψ0〉 =
0, etc.

MP2 energy-correction
We are thus ready to apply the 2nd order perturbation theory.

As we saw, the 1st order correction vanishes by construction, i.e., 〈Ψ0|H −
H0|Ψ0〉 = 0.

So we need to go to 2nd order, i.e., apply Eq. (9.20). We need to sum over
all excited-states that couple to the ground-state, i.e., over all two-particle two-
hole Slater determinants, so the 2nd-order energy correction to the ground-state
reads in this context:

δEMP2 = −1

2

N<p<q∑
b<c≤N

|〈Ψpq
bc |H|Ψ0〉|2

Epqbc − E0
, (17.24)

and from the eq. above:

δEMP2 = −1

2

N<p<q∑
i<j≤N

∣∣∣(ηpηq|ηbηc)− (ηpηq|ηcηb)
∣∣∣2

εp + εq − εb − εc
. (17.25)
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This MP2-energy eq. is the highlight of this chapter. It is exactly what we
learn in first-year chem.; the van-der-Waals interaction has to do with spon-
taneous excitations (electron excited from orbital “b” to unoccupied orbital
“p”) interacting with other spontaneous excitations (“c” to “q”) – and in
this case, antisymmetrization imposes more terms.

Note that the MP2 expression is modified with numerical terms of 4 and 2
when we use closed-shell determinants, but this won’t be presented here.

Beyond MP2
We can continue to 3rd, 4th etc. perturbation theory. Unfortunately, the per-
turbation theory expression is asymptotic, not convergent, which means that in
some order of perturbation theory it will start exploding. Usually, stopping at
the level of MP2 gives very good results, and is not too expensive.

At present, as mentioned, a hot trend is to combine MP2 with DFT, as
explained in the previous chapter.

Finally, if one wants really accurate results other techniques are needed –
primarily full-CI or coupled-clusters; we’ll tackle these in the next chapters.
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18 2nd quantization: Creation and destruction
operators.

Notation and reminders
• Henceforth, |ηi1ηi2ηi3 ...ηiN 〉 ≡ det{ηi1ηi2ηi3 ...ηiN }refers to a Slater de-
terminant (with the 1/

√
N ! factor), i.e., the antisymmetrized prod-

uct of the states.

• Recall that
|...ηi...ηj ...〉 ≡ −|...ηj ...ηi...〉 (18.1)

and that as a result a determinant with the same two orbitals will vanish

|...ηi...ηi...〉 ≡ −|...ηi...ηi...〉 → |...ηi...ηi...〉 = 0 (18.2)

• We continue to use open-shell case, N separate states.

• We will use a complete basis of molecular orbitals, ηi, where i extends
from 1 to infinity; i.e., the first N such functions are the occupied M.O.
and the others are the unoccupied ones.

• We define the “vacuum” state, |vac〉 or simply |〉 as a state with no electron.
Note that this is not a null (zero) vector; it’s norm is 〈vac|vac〉 = 〈|〉 = 1.

• Finally, many of my definitions here are non-universal and/or non-
traditional.

Creation and destruction operators
These operators have resemblance to (and big differences from) the raising and
lowering operators in H.O., and we usually use the same symbol, but this time
with a subscript, ai and a+

i , as defined below.

Creation operator

The creation operator for the i’th state, a+
i , takes any Slater determinant with,

say, N electrons (where N is any integer, including 0) and turns it to a Slater-
determinant for N+1 electrons, with the extra electron in the i’th state:

a+
i |ηjηk....〉 = |ηiηjηk....〉. (18.3)

Note that you cannot put two electrons in the same orbitals, so acting with
the same creation orbital twice leads to a vanishing result,

a+
i a

+
i |ηjηk....〉 = a+

i |ηiηjηk....〉 = |ηiηiηjηk....〉 = 0 (18.4)

(Mathematically, this is because a determinant with two equal columns will
vanish.)
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So therefore we can write
a+
i a

+
i = 0. (18.5)

Similarly, for any determinant

a+
i a

+
j |....〉 = |ηiηj ....〉 = −|ηjηi....〉 = −a+

j a
+
i |....〉, (18.6)

so in general
a+
i a

+
j = −a+

j a
+
i (18.7)

We can therefore write in general{
a+
i , a

+
j

}
= 0,

where we defined the anticommutator

{A,B} = AB +BA. (18.8)

Destruction operator

The destruction operator for a state i , written as ai, takes a Slater determinant
with N electrons in which one is in the i’th states and turns it to a Slater
determinant for N-1 electrons where none is in the i’th state, i.e., it removes
the i’th orbital from the determinant (and lowers therefore the number of states
and electrons).

ai|ηiηjηk...〉 = |ηjηk, ...〉. (18.9)

If the i’th state is not in the determinant, then the result is 0. As a corollary,
if we apply ai twice, a determinant will vanish.

Example: a5a5|η3η5η2η9〉 = −a5a5|η5η3η2η9〉 = −a5|η3η2η9〉 = 0. Thus
aiai = 0. Similarly,

{ai, aj} = 0.

Proof (using colors!) –

{ai, aj}|ηiηjηk...〉 = aiaj |ηiηjη...〉+ ajai|ηiηjη...〉 =

− aiaj |ηjηiηk...〉+ ajai|ηiηjηk...〉 =

− ai|ηiηk...〉+ aj |ηjηk...〉 = −|ηk...〉+ |ηk...〉 = 0. (18.10)

The last proof was for for i 6= j , and for i = j we proved earlier.
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Anticommuting a creation and destruction operator:

We can prove along the same lines

{a+
i , aj} = 0 for i 6= j ( prove it!). (18.11)

A more interesting case is {
a+
i , ai

}
= 1.

Proof: let’s apply the anticommutator on a Slater determinant. There are
two possibilities: the determinant contains the ηi state, or it does not.

In the first case (presuming ηi is the first function in the determinant, if not
then permute the orbitals, perhaps getting an overall minus sign):{
a+
i , ai

}
|ηiηk...〉 = a+

i ai|ηiηk...〉+ aia
+
i |ηiηk....〉 = a+

i |ηk...〉+ 0 = 1 · |ηiηk...〉

so OK. In the second case:

{
a+
i , ai

}
|ηk...〉 = a+

i ai|ηk...〉+ aia
+
i |ηk....〉 = 0 + ai|ηiηk...〉 = 1 · |ηk...〉

so works again!
So summarizing:

{
a+
i , a

+
j

}
= 0 (18.12)

{ai, aj} = 0 (18.13){
a+
i , aj

}
= δij (18.14)

a+
i is indeed the conjugate of ai

So far we assumed it, let’s prove by example:

〈η3η2|a7|η3η7η2〉 = −〈η3η2|a7|η7η3η2〉 = −〈η3η2|ηη2〉 = −1

〈η3η7η2|a+
7 |η3η2〉 = 〈η3η7η2|η7η3η2〉 = −〈η3η7η2|η3η7η2〉 = −1, Q.E.D.

Slater-Determinants in terms of creation/destruction operators

It is easy to see that a general Slater determinant becomes the result of acting
successively with creation operators on the vacuum state. For example, for the
Hartree-Fock fully occupied determinant:

|η1...ηN 〉 = a+
1 a

+
2 ...a

+
N |〉 (18.15)
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The Hamiltonian in terms of creation and destruction op-
erators
The beauty of the 2nd-quantization approach (although it is a misleading name)
is that the difficult dealings with Slater determinants become trivial manipula-
tions of creation and destruction operators.

One-body Hamiltonian

Claim: I can replace T, or V, or H1B ≡ T +V , or of any-other one-electron op-
erator by a simple related term involving a pair of creation-destruction operator;
i.e.,

H1B =
∑
i,j

hija
+
i aj . (18.16)

To “prove” this (below, actually we’ll just exemplify, not prove) we will need to
apply this equation to an arbitrary Slater determinant

H1B |Ψ〉 =
∑
i,j

hija
+
i aj |Ψ〉. (18.17)

Note that the sum extends over all values of i and j from 1 to infinity. Here we
define the matrix element of the 1-electron operator in terms of the MO states
(both occupied and unoccupied),

hij = 〈ηi|ĥ|ηj〉 (18.18)

and we recall again the relation between H1B and the 1-electron operator; i.e.,
for an N-electron determinant:

H1B = ĥ(1) + ĥ(2) + ...+ ĥ(N). (18.19)

One-body form with creation/lowering operators: Proof by example

Let’s prove by example again, it’s more illuminating.
Recall first that for any operator, due to completeness

ĥ =
∑
ij

|ηi〉hij〈ηj |. (18.20)

Now use an N=2 example for simplicity, and be lax with notation.
First, the LHS of Eq. (18.17)

H1B |η4η6〉 =
(
ĥ(1) + ĥ(2)

) (η4(1)η6(2)− (1↔2 permutation)√
2

=(
ĥ(1)η4(1)

)
η6(2) + η4(1)

(
ĥ(2)η6(2)

)
− (1↔2 permutation)

√
2

, (18.21)
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and using ĥ|η4〉 =
∑
i hi4|ηi〉, we get

H1B |η4η6〉 =
∑
i

(hi4ηi(1)) η6(2) + η4(1) (hi6ηi(2))− (1↔2 permutation)√
2

.

(18.22)
But the permutation term is:

− (1↔2 permutation) = − (η6(1)hi4ηi(2) + hi6ηi(1)η4(2)) , (18.23)

so overall, collecting the last two equations

H1B |η4η6〉 =
∑
i

hi4 (ηi(1)η6(2)− η6(1)ηi(2)) + hi6 (η4(1)ηi(2)− η6(1)ηi(2))√
2

(18.24)
i.e.,

H1B |η4η6〉 =
∑
i

hi4|ηiη6〉+
∑
i

hi6|η4ηi〉. (18.25)

Now to the RHS of Eq. (18.17). It is∑
i,j

hija
+
i aj |Ψ〉 =

∑
i,j

hija
+
i aja

+
4 a

+
6 |〉, (18.26)

but {aj , a+
4 } = δj4, so aja+

4 = δj4 − a+
4 ai and similarly for aja+

6 , so∑
i,j

hija
+
i aj |Ψ〉 =

∑
i,j

hija
+
i

(
δj4 − a+

4 aj
)
a+

6 |〉

=
∑
i

hi4a
+
i a

+
6 |〉 −

∑
ij

hija
+
i a

+
4 aja

+
6 |〉 =

=
∑
i

hi4|ηiη6〉 −
∑
ij

hija
+
i a

+
4

(
δj6 − a+

6 aj
)
|〉 =

∑
i

hi4|ηiη6〉 −
∑
i

hi6|ηiη4〉+ 0 (18.27)

where we used aj |〉 = 0, i.e., you cannot remove an electron at any level “j” from
the vacuum. The RHS of Eq. (18.17) is therefore (since |ηiη4〉 = −|η4ηi〉):∑

i,j

hija
+
i aj |Ψ〉 =

∑
i

hi4|ηiη6〉+
∑
i

hi6|η4ηi〉, (18.28)

i.e., matches the LHS of Eq. (18.17). Therefore Eq. (18.17) is correct for this
2-electron case (N=2), and it turns out to be correct for any N as we asserted.
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Two-body Hamiltonian

Avoiding the even more tedious proof (or example) for the two-body term, we’ll
just quote the results. Note the order of indices (see the color)!

Û =
1

2

∑
ijkl

(ηiηj |ηlηk)a+
i a

+
j akal, (18.29)

where we defined earlier the 2-body matrix elements.

Two-body matrix elements

We can now prove Eq. (17.22), 〈Ψpq
bc |H|Ψ0〉 = (ηpηq|ηbηc) − (ηpηq|ηcηb), i.e.,

the overlap between a 2-particle 2-hole state and the ground-state is just the
antisymmetrized matrix element associated with the specific indices of the holes
and particles.

First, note that in our notation

|Ψpq
bc 〉 = a+

p a
+
q acab|Ψ0〉, (18.30)

i.e., we remove two electrons from orbitals “b” and “c” and add two electrons to
orbitals “p” and “q”. Note that I use a particular order of indices, but we could
have exchanged the order of ac, ab, and that would just give an overall minus,
so it is just a matter of definition.

Now overlap it:

〈Ψ0|H|Ψpq
bc 〉 = 〈Ψ0|H1B + U |a+

p a
+
q acabΨ0〉. (18.31)

The first term on the RHS, 〈Ψ0|H1B |a+
p a

+
q acabΨ0〉, vanishes sinceH1B =

∑
ih hija

+
i aj

can at most do a single hole-particle deexcitaton, so it cannot bring the two-
electron two-hole term to overlap back with Ψ0.

Side-note, if you prefer to see it in numbers, take N=5, and p, q, c, b =
6, 8, 5, 3. Then the associated 2-particle 2-hole excitation would
be a+

6 a
+
8 a5a3|Ψ0〉 = (±1)|η1η2η4η6η8〉, (I am too lazy to work

out the sign) and clearly no single a+
i aj term can take it back to

|η1η2η3η4η5〉 = |Ψ0〉. End of note.

So we only need to take matrix elements of U, i.e.,

〈Ψ0|H|Ψpq
bc 〉 = 〈Ψ0|U |a+

p a
+
q acabΨ0〉 =

1

2

∑
ijkl

(ij|lk)〈Ψ0|a+
i a

+
j akala

+
p a

+
q acabΨ0〉.

(18.32)
This looks horrendous, but is in practice quite easy. Let’s use colors:∑

ijkl

(ij|lk)〈Ψ0|a+
i a

+
j akala

+
p a

+
q acabΨ0〉. (18.33)

The only non-vanishing terms must have the brown-indices match and the
blue-indices match;
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(Proof: i.e., the acab term removes two occupied states, and of the
four creation-operators in the term, the a+

p a
+
q do not create elec-

trons in the occupied states of Ψ0, so a+
i a

+
j must do it., etc.)

Thus, we can restrict the summation to: i, j = b, c or c, b; and similarly to
k, l = p, q or q, p.

Let’s calculate:

• the 1st term: i, j = b, c and k, l = p, q (and note that all 4-indices (b, c, p, q)
must be different from each other). Therefore (I bold exchanged terms

〈Ψ0|a+
b a

+
c apaqa

+
p a

+
q acab|Ψ0〉 = (−1)〈Ψ0|a+

b a
+
c aqapa

+
p a

+
q acab|Ψ0〉 = −〈Ξ|Ξ〉 = −1

(18.34)
where |Ξ〉 = apa

+
q acab|Ψ0〉. Therefore, the first contribution to Eq. (18.33)

will be − 1
2 (pq|cb)

• The 2nd term i, j = c, b and again k, l = p, q gives + 1
2 (pq|bc)

• The 3rd and 4’th terms duplicate the 2nd and 1st term, respectively.

We therefore end up with

〈Ψ0|H|Ψpq
bc 〉 = −1

2
· 2 · (pq|cb) +

1

2
· 2 · (pq|bc) = (pq|bc)− (pq|cb). (18.35)

as stipulated in the perturbation-theory chapter!

Number-operator
It is interesting and at times useful to define the number operator,

N̂ =

∞∑
i=1

a+
i ai. (18.36)

It is easy to see that given a Slater determinant, applying N̂ on it amounts
to multiplying it by N , the number of orbitals in the determinant (prove it!).
Also, N̂ commutes with H, which makes sense (the Hamiltonian conserves the
number of electrons).

The number operator is very useful in statistical mechanics of fermions at
finite temperatures in the canonical ensemble, where one does not seek anymore
the ground-state energy at a fixed number of particles, but instead is aiming at
calculating the partition function,

Z = Tre−β(Ĥ−µN̂). (18.37)
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19 Higher Order theories – brief overview
There are many other higher order methods that get (or aim at getting) highly
accurate results. Most of those techniques aim at establishing size-consistency,
which means on a practical level that the method does not degrade as the sys-
tem size increases (or formally that if one takes two separate systems, A and B,
then E(A+B) = E(A) + E(B)).

A partial list is:

Lower-Accuracy approaches: Tight Binding
Let’s actually start by a lower accuracy approach, the Tight-binding (or “semi-
empirical”) family of methods. Here, one uses a minimal basis set (or close to
it) and simplifies the Hartree-Fock Hamiltonian (in a basis set) by throwing
out altogether the Hartree and exchange terms, or at most keeping a smaller
subset of such terms. Instead of these terms, one parametrizes the remaining
one-body term so they are not the true matrix elements of ĥ, but instead are
parameterized to fit small-molecules studies.

Tight-binding methods have been very important in the past, but as com-
puter power grows they are reserved now only for very large systems.

The most modern tight-binding approach is the DFT-TB method.

Coupled Cluster:
Here one assumes an ansatz to the true wavefunction |Ψ〉 as an exponential of
two or more (usually three) types of terms times a Slater determinant |Ψ0〉 =
det{η1η2...ηN}

|Ψ〉 = eO1+O2+O3...|Ψ0〉 (19.1)

where the operators are one-body, two-body and three-body operators:

O1 =
∑

b≤N<p<M

tpba
+
p ab, (19.2)

O2 =
∑

b<c≤N<p<q<M

tpqbca
+
q a

+
p acab, (19.3)

etc. Note that all the terms in O1 and O2 involve only destruction operators
over the occupied ηb states, and creation operators over the unoccupied states
ηp. This makes the math doable, though still very expensive O(N6)−O(N8) so
it can only be applied to small molecules, usually to gauge the quality of DFT
functionals.

The presence of the exponential term in the Coupled Clusters ansatz is what
makes it extremely accurate, although there are cases it can break too (severe
bond-breaking, and other cases where a single zero-order determinant is a bad
approximation to the underlying chemistry).
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The exponential term also makes Coupled Clusters size-consistent. It also
makes it invaluable to use the 2nd quantization language we learned in the
previous chapter

GW and other Green’s function methods (e.g., GF2).
Those methods are based on the use of the Green’s function (hopefully covered
in 115b/215b) and the concept of self-energy, an energy-dependent one-electron
operator which, if it was exactly known, would give the exact ionization energy
and electron affinity and even the optical spectra.

Stochastic GW: With our colleagues, our group was able to invent an ex-
tremely efficient (O(N)) GW approach that’s faster than the underlying DFT
for large systems (the “stochastic GW approach”) that does not require a Gaus-
sian basis so has no basis-set convergence issues, and works for thousands of
atoms. GW gives excellent charging energies, to about 0.1eV.

GF2: an up and coming approach, which, in lay terms, can be thought of
as self-consistent MP2. It also is amenable to stochastic treatments, and at
present we developed an O(N2) GF2 technique.

RPA techniques:
Akin to GW, and is complementary to TDDFT, as we’ll cover in the next
quarter. Gives excellent vdW energies and its scaling is not too severe.

Configuration Interaction methods
Restricted-CI and Full-CI (Configuration Interaction)

The brute-force electronic structure algorithm. In Restricted-CI one con-
structs all Slater-determinant up to a certain order of particle-hole excitations;
for example, in CI-doubles one will take the space made from the Hartree-Fock
determinant, one-electron excitation, and two-electron (i.e., two-particle, two-
holes) excitations

|Ψ0〉, |Ψp
b〉, |Ψ

pq
bc 〉 b, c ≤ N < p, q < M (19.4)

The problem with CI-doubles and similar approximations is that it is not
size-consistent. (A double excitation on systemA and a double excitation on
system B, would be a fourth-order excitation on a separated A+B).

In Full-CI one constructs all possible determinants. The method is self-
consistent but scales terribly (combinatorially). For example, if M = 50 and

N = 25 (a fairly tiny system) then there will be
(

50
25

)
possible determinants;

grouping them by the total spin helps only a little.
At present there are some new algorithm which aim at selecting only those

determinants that will be important, by either a random process or by a similarly
inspired (but deterministic) process; those can help but practically it is hard to
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see those methods scaling up to much more than a 10-heavy atom (not hydrogen)
systems.

CASSCF and PT2-CASSCF:

CASSCF (Complete Active Space SCF) is similar to full-CI but here one takes
a restricted set of valence orbitals. For example, if the basis set has M = 200,
and there are N = 50 electrons, then perhaps one would take all determinants
made from the first N − 5 = 45 orbitals (the “core”) and the last five electrons
would be placed in the ten orbitals 46, ..., 55 just below and above the HOMO.

Then, this set of
(

10
5

)
possible determinants is used as a basis in which

the Hamiltonian is diagonalized; a new density matrix is obtained, and a new
set of occupied and virtual (i.e., non-occupied) orbitals is calculated, and the
method is then iterated until convergence. This iteration procedure is why the
method has SCF in its name, CASSCF.

An even better method is PT2-CASSCF, (PT2 stands for Perturbation The-
ory of 2nd order) where the effect of the orbitals outside the CASSCF space (in
our case the first 45 and orbitals 55-200) is added perturbatively.

Variational techniques:
Here one multiplies the Slater determinant by a function of the electron coor-
dinate. This function is usually an exponential of another term, |Ψ〉 = eg.|Ψ0〉,
where g is usually a function of coordinates and is a sum of the electron-electron
distance, e.g.

g(r1, r2, ..., rN ) =
∑

i≤j≤N

w(|ri − rj |) (19.5)

and w is a function to be optimized which accounts for the modification of
the wavefunction due to correlation when a pair of electrons gets too close to
each other. Such a term, and many other possible ones, make the variational
wavefunction highly accurate, so 〈H〉 = 〈Ψ|H|Ψ〉 is an excellent variational
estimate to the true energy; but at the same time they preclude the simple
analytic evaluation of 〈H〉 as in Hartree-Fock and DFT.

Therefore, a Monte-Carlo technique needs to be employed, whereby one
chooses randomly (subject to a proper “guiding” function) the positions of the
N-electrons in space, r1, r2, ..., rN , and then calculate numerically

〈H〉 ≈ average {Ψ∗ (r1, r2, ..., rN )HΨ (r1, r2, ..., rN )} (19.6)

Diffusion Monte Carlo
An old and powerful technique which is continuously developed and is becoming
chemically relevant. Here, instead of solving the Schrödinger equation, one
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solves the so-called imaginary-time Schrödinger eq.,

∂|Ψ(τ)〉
∂τ

= −H|Ψ(τ)〉 (19.7)

This is a diffusion equation which formally results from the Schrödinger equation
if we replace τ by an imaginary time, −it (and this is the origin of the name),
although in practice we take real-valued τ.

The solution of this diffusion equation is easily shown to be, at long enough
τ, just a τ−dependent constant (e−βE(ground state)) times the ground-state of H.

The diffusion equation is solved by literally representing the wavefunction
by thousands of particles; for example, in a problem with N = 20 electrons each
of these “particles” would have 3N coordinates (x1, y1,z1,x2,, ..., zN ).

At each time-step the potential energy term in the Hamiltonian acts to
increase or decrease the weight of each of these particles, and the kinetic energy
causes them to randomly diffuse away from their present position.

The one caveat in the technique (in addition to requiring a larger number
of particles) is that it treats Ψ itself as a diffused density (not Ψ2). Therefore,
Ψ needs to be positive, or at least its nodes (region where it changes sign)
need to be known. But due to the Pauli principle we know that the electronic
wavefunction must have negative regions (and positive ones).

In practice, one therefore takes an approximate Slater determinant Ψ0, and
assumes that Ψ has the same nodes as Ψ0 (so their product, ΨΨ0 is never
negative). But this fixed-node approximation turns out to be quite accurate
and does not affect the energies much.

Other techniques
There are many other techniques that are becoming more and more important
in chemistry; a partial list includes:

• DMRG and tensor-methods;

• Auxiliary-Fields Monte Carlo (in the Shifted-Contour Nodeless approach)

• Two-body density-matrix methods

• Geminal approaches

and many other techniques.

Embedding and fragment-based techniques
For large systems, we often care more about a specific region and the rest could
be treated on a more approximate level. We then say that the inner region is
embedded in the larger region. Such embedding methods are prevalent now,
e.g.,

• QM-MM (important for biological simulations; an inner region treated
quantally and the rest of the atoms classically);
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• DFT region within a larger region treated Thomas-Fermi type methods
or by Tight-Binding approaches.

• Coupled cluster for the inner region and DFT for the external one;

• Or the related fragment-based methods, whereby a large system is frag-
mented to several smaller systems that are treated quantally each and are
“woven” together.
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Source:
Much of the notes is based on Schatz and Ratner’s Quantum Mechanics in
Chemistry (Dover edition).

General Notation:
We use generally atomic units,e = me = h̄ = 1. So the basic time unit would be

1a.u.(time) = h̄/Hartree = 24.18 · 10−18s = 0.02418fs = 24.18 as(i.e., attosec)

But there will be times where, for clarity, we keep the h̄.

20 Potential curves, the Born-Oppenheimer Ap-
proximation, Coupling matrices

Notation:
In this chapter we’ll use a different notation from the previous (115a/215a) set:
we denote by r the collection of all electron coordinates, both electron and spin
(not just a single-electron coordinate):

r = {r1, s1, r2, s2, ...rN , sN} (20.1)

Similarly the set of all nuclear coordinates are denoted by R. Of course, we may
switch back (or back-and-forth) the notation in the upcoming chapters.

The Nuclear-Electronic Wavefunction and Hamiltonian
The Schrödinger equation for the full wavefunction (of electrons+nuclei) is of
course HΨ = EΨ,where the full Hamiltonian is

H = TN +He (20.2)

where the nuclear kinetic energy operator is

TN ≡
NNUC∑
j=1

(−1)

2Mj

∂2

∂R2
j

(20.3)

and we introduced the number of nuclei and Mj is the mass of each nuclei (in
atomic units, NOT amu! – i.e. the mass of hydrogen is about 1837 in a.u., etc.).
Further, He is the electronic Hamiltonian that we dealt with in the previous
quarter,

He = T̂ + V̂ + Û =

N∑
i=1

(−1)

2me

∂2

∂r2
j

+ V̂ (r,R) + Û(r) (20.4)
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where, to remind you, T̂ , V̂ and Û refer, respectively, to the kinetic operator,
the electron-nuclei interaction, and the electron-electron repulsion.

Note thatHe depends parametrically onR. By this we mean that there are
no kinetic-energy (derivative) terms w.r.t. the nuclear coordinate R in the elec-
tronic Hamiltonian; for a different set of nuclear coordinates the potential will
change, but Hewill not change the nuclear positions (which is what a derivative
w.r.t R does).

We often denote this parametric dependence by writing

He(r;R). (20.5)

The full Schrödinger equation
The Schrödinger equation for the electron-nuclear wavefunction reads either as

HΨE(R, r) = EΨE(R, r) (20.6)

for time-independent solutions involving the full wavefunctions; or, for time-
dependent solutions, replace E by a time-derivative

HΨ(R, r,t) = i
∂

∂t
Ψ(R, r, t) (20.7)

We’ll usually consider the time-indep. version and omit the explicit E sub-
script, but everything carries to the time-dependent treatment.

Approximate Diabatic Expansion
The “chemically-intuitive” but approximate approach come when we expand the
full wavefunction Ψ(r,R) in terms of electronic states, ηj(r), that are orthogonal
for each electronic position

´
η∗j (r;R)ηl(r;R)dr = δjl and are assumed to have

a “specific character”
For example, in NaCl, at each nuclear distance (R, distance between the

atoms), we can limit ourselves to two such diabatic states; ηa would denote the
lowest-energy state where the atoms are neutral, while ηb designate the ionic
state. Then1 the eigenstates of the electronic Hamiltonian would be

ΦK(r;R) = ca,K(R)ηa(r;R) + cb,K(R)ηb(r;R). m = 1, 2 (20.8)

The ΦK are adiabatic nuclear states (K is an index, has nothing to
do with exchange or kinetic energy!) that are the eigenstates to the
Schrödinger equation,

HeΦK = EK(R)ΦK (20.9)
1I use graphics/discussion from http://www.chm.bris.ac.uk/webprojects2002/grant/webcomp/non-

crossing.html
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while the c′s are the “expansion coefficients of the diabatic states in the adiabatic
functions.” By multiplying with η∗a(r) or η∗b (r) and integrating w.r.t. r we get
a 2-by-2 matrix equation(

Haa Hab

Hba Hbb

)(
ca,K
cb,K

)
= EK

(
ca,K
cb,K

)
(20.10)

where

Haa =

ˆ
η∗a(r;R)Heηa(r;R)dr (20.11)

Hba =

ˆ
η∗b (r;R)Heηa(r;R)dr (20.12)

and analogously for Hab = H∗ba and Hbb. (In molecular calculations all the states
are actually real, but I keep the complex conjugate notation).

The formulae for the eigenstates of 2x2 matrices are well-known (you get
them by writing det(A − λI) = 0, where A is any 2x2 matrix and λ an eigen-
value). In this context

E1,2 =
Haa +Hbb

2
∓

√(
Haa −Hbb

2

)2

+ |Hab|2. (20.13)

We thus see that to get degeneracy, two conditions have to be fulfilled: the
diabatic states need to be degenerate, Haa = Hbb, and the coupling matrix
needs to be vanish Hab = 0.

In NaCl, since there’s only one important nuclear coordinate (the Na-Cl dis-
tance), it will be impossible to fulfill these two conditions. We see in the at-
tached figure (not to scale!) the “diabatic potential surfaces”, i.e.:

• Haa , the neutrals’ (“covalent”) potential that rises with decreasing dis-
tance due to repulsion,
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• and Hbb, the ionics’ potential, that at large distances is larger than Haa

by the difference between the ionization energy of sodium and the electron
affinity of chlorine:

Hbb(R→∞)−Haa(R→∞) =
(
E
(
Na+

)
+ E

(
Cl−

))
−(E (Na) + E (Cl))

= I.E (Na)− E.A. (Cl) = 5.1eV-3.6eV=1.5eV (20.14)

but at short distances Hbb will dive below the neutral’s I.E. due to the
stabilization of the ionic interaction.

The picture below shows the “adiabatic potential surfaces”, i.e., E1(R) and
E2(R) from the equations above:

Note the “avoided crossing” point; here, Haa = Hbb, so by the formula above
the difference between the potential energies is 2 ·Hab, i.e., twice the coupling
matrix element.

Conical Intersections
Things get much more interesting when we have more than one distance to vary.

Recall that we will have exact equality of the adiabatic energies if we fulfill
two conditions (equal energies and zero coupling matrix element).

Obviously, this is completely analogous to phase transition maps! Recall the
map for H2O, as a function of P and T – the triple point, where the chemical-
potential-equality conditions are fulfilled, µice = µwater, and µwater = µvapor, is
an isolated point.

Further, when we have more degrees of freedom we’ll have whole manifolds
of distances where the adiabatic eigenvalues are equal!

These points or manifolds where the eigenstates of He are degenerate (and
often not for symmetry reasons) are called conical intersections. They are
important for two reasons.
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• First, transitions from “excited states” to lower-lying states occur essen-
tially always at the conical intersections or near them.

• Second, and contrary to our intuition, they often have important effects
even at much lower energies! This fact, which we’ll explain later, is almost
depressing – e.g., if we have a collision where the atoms have thermal
energies we may need to model the adiabatic potential at much higher
energies (of a few eV) to correctly obtain the transition energies, even
though the nuclear wavefunctions of the particles never reach such high
energies.

The effects of the conical intersection have to do with phases – when we rotate
the nuclei slowly, so we get back to the same state, the electronic eigenstates
need not always come back with the same phase!

We saw something similar (and related) when we discussed spin last quarter.
Starting with a spin-up wavefunction along the x-axis, where a magnetic field is
pointing, we rotated the magnetic field and therefore the axis of the spin slowly
in the x-y plane till it pointed back to the x-axis. After rotation we got back
the same wavefunction, but it now has an overall minus! I.e., rotation by 360
degrees gave rise to a sign of -1.

For further details on conical intersection, a good resource is Michael Baer’s
book, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms
and Conical Intersections, Wiley (2006).

The Adiabatic Expansion
The need for adiabatic expansion

Now that we understand how important conical intersections are, let’s do a more
rigorous job in deriving the appropriate states. You see, the problem is that the
states we really know are only the adiabatic states, i.e., the eigenstates and
eigenvalues of He. We don’t actually have rigorously an electronic Hamiltonian
in the form of Eq. (20.10)!

Adiabatic expansion: the math

So let’s do the math correctly.
At each R, let’s assume that we can calculate the solution of the electronic

Schrödinger equation at that R. We showed how to do that in the last quarter,
at least for the ground state and we’ll talk later about ways to calculate excited
states – at least within the extension to DFT called TDDFT, and perhaps with
other methods too.

Thus, in the language of the previous part we calculate the solutions to

He(r)ΦK(r) = EKΦK(r)

in our previous notation, withR assumed implicitly. (20.15)
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at a specific set of nuclear coordinates R; we’ll now use the more detailed nota-
tion:

He(r;R)ΦK(r;R) = EK(R)ΦK(r,R) (20.16)

Here, K is an index to the states – K = 1 (or 0, or “G”), is the ground-state,
and K = 2, 3, ... are excited states.

These solutions to Eq. (20.16) fulfill orthogonality relations. Because for
each R the electronic Hamiltonian He is Hermitian, we get of course

ˆ
Φ∗K(r;R)ΦL(r;R)dr = δKL. (20.17)

(We will try to avoid the bra-ket notation so as not to confuse on whether the
bra-ket refer to integration over all coordinates or only the electronic ones).

Similarly, the completeness relation for the electronic coordinates is (remem-
ber that the nuclear coordinate is just “parametrizing”)∑

K

ΦK(r;R)Φ∗K(r′;R) = δ(r − r′). (20.18)

The full wavefunction for the electrons AND the nuclei can then be expanded
in terms of the electronic states :

Ψ(r,R) =
∑
K

ψK(R)ΦK(r;R). (20.19)

Here, the so called nuclear wavefunction ψK(R) are related of course to the
full-wavefunction as

ψK(R) =

ˆ
Φ∗K(r;R)Ψ(r;R)dr (20.20)

(prove this relation based on the eqs. above!).
This is called the adiabatic-states expansion (reason soon to be clarified).

There’s confusion in the literature – at times the ΦK(r;R) are called adiabatic
states; at times the ψK(R) are called that name. The latter are also called at
times adiabatic nuclear states, a name we’ll use.

Also note that the nuclear states, ψK(R), depend of course on the total
energy E, since the full wavefunction depends on it, but for brevity we do not
write them explicitly as ψK,E(R).

The Schrödinger equation for the adiabatic nuclear states
The Schrödinger equation for the full wavefunction, HΨ = EΨ, becomesNNUC∑

j=1

(−1)

2Mj

∂2

∂R2
j

+He

Ψ(r,R) = EΨ(r,R) (20.21)
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i.e.,

(TN +He)
∑
K

ψK(R)ΦK(r;R) = E
∑
K

ψK(R)ΦK(r;R). (20.22)

So, since He acts only on the electronic coordinates r (we use lower-case k
instead of K in the following, sorry for the confusion):

NNUC∑
j=1

(−1)

2Mj

∂2

∂R2
j

∑
k

ψk(R)Φk(r;R)+
∑
k

ψk(R)HeΦk(r;R) = E
∑
k

ψk(R)Φk(r;R).

(20.23)
Now recall that HeΦk = EkΦk, and the rule for differentiating a product, to get

∑
k

NNUC∑
j=1

(−1)

2Mj

(
∂2ψk(R)

∂R2
j

Φk(r;R) + ψk(R)
∂2Φk(r;R)

∂R2
j

+
∂ψk(R)

∂Rj

∂Φk(r;R)

∂Rj

)
=
∑
k

(E − Ek)ψk(R)Φk(r;R). (20.24)

Finally, dot product with Φ∗m(r;R) and integrate w.r.t. r to get

TNψm +
∑
k

Dmkψk(R) +

NNUC∑
j=1

τmk(j)
∂ψk(R)

∂Rj

 = (E − Em(R))ψm(R)

(20.25)
where we defined defined a matrix D and a set of matrices, τ(j) such that

τmk(j) = − 1

2Mj

ˆ
Φ∗m(r;R)

∂Φk(r;R)

∂Rj
dr (20.26)

and

Dmk =

NNUC∑
j=1

(−1)

2Mj

ˆ
Φ∗m(r;R)

∂2Φk(r;R)

∂R2
j

dr, (20.27)

and from the definition of the kinetic energy,

TNψm(R) ≡
NNUC∑
j=1

(−1)

2Mj

∂2ψm(R)

∂R2
j

(20.28)

The boxed equation above is the full Schrödinger equation for the elec-
trons+nuclei. The τ and D matrices are called the non-adiabatic coupling
terms. In principle they can be deduced from electronic-structure calcula-
tions when those yield the adiabatic electronic states, i.e., the Φk which are
eigenstates of the electronic Hamiltonian He
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The time-dependent Schrödinger equation

We could do exactly the same steps we did for the time-dependent Schrödinger
equation for the nuclei. I.e., replace the energy-dependent Schrödinger equation
for the full wavefunction by a time-dependent one

i
∂Ψ

∂t
= HΨ, (20.29)

and now label the full-Schroedinger equation as Ψ(r,R,t), and expand it in
terms of time-dependent nuclear states

Ψ(r,R,t) =
∑
k

ψk(R, t)Φk(r;R), (20.30)

and repeating the same steps we did before leads to the boxed-equation above,
with E being replaced by i ∂∂t .

The time-dependent Born-Oppenheimer equation
Since D and τ are proportional to the inverse of the large nuclear masses (large
in comparison to the electron’s mass), the simplest approximation is to neglect
them altogether and end up with a single-level Schrödinger equation

TNψm(R) + Em(R)ψm(R) = Eψm(R). (20.31)

This is the time-independent Born-Oppenheimer equation. It says that the
nuclei move on a potential surface , Em(R) which is simply the eigenstate of
the electronic Hamiltonian. Similarly we can replace E by a time-derivative and
end up with the time-dependent Schrödinger eq.,

i
∂

∂t
ψm(R, t) = TNψm(R, t) + Em(R)ψm(R,t) (20.32)

which has the same interpretation, in a time-dependent manner.

Another look at deriving the time-dependent Born-Oppenheimer equa-
tion

The Schrödinger equation for the adiabatic states, Eq. (20.32) can be re-derived
by writing:

i
∂Ψ(r,R,t)

∂t
= HΨ(r,R,t). (20.33)

Once we plug in the expansion above we get

i
∑
k

∂ψk(R, t)

∂t
Φk(r;R) =

∑
k

Hψk(R, t)Φk(r;R). (20.34)

We also recall that, when we neglect non-adiabatic terms, the 0-order Hamilto-
nian is just the kinetic energy for the nuclei plus the (diagonal) electronic energy
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for the adiabatic states (the latter contains the kinetic energy for the electrons
and their potential); i.e.,

Hψk(R, t)Φk(r;R) ' Φk(r;R) (TN + Ek(R))ψk(R,t) (20.35)

where the ” ' ” symbol refers to the neglect of the non-adiabatic term, i.e.,
no gradient w.r.t. the nuclei is taken for the electronic states Φk. Defining the
nuclear Hamiltonian associated with the k’th potential surface as

Hk = TN + Ek(R) (20.36)

gives

Hψk(R, t)Φk(r;R) ' Φk(r;R)Hkψk(R,t). (20.37)

Therefore

i
∑
k

∂ψk(R, t)

∂t
Φk(r;R) =

∑
k

Φk(r;R)Hkψk(R,t). (20.38)

Multiply the equation above times a “bra”, Φ∗m (r,R) , and integrate w.r.t., r,
to get

i
∂ψm(R, t)

∂t
= Hmψm(R,t), (20.39)

where we used
´

Φ∗m(r;R)Φk(r;R)dr = δk,m, and
Thus, the electronic energy (Em(R), within Hm) plays the role of a potential

surface for the nuclei, as we know from first-year chemistry. For example, in a
diatomic molecule, often the ground-potential state E1(R) will be bonding, and
the first excited surface (E2(R)) will be dissociative, see picture.

Time-independent Born-Oppenheimer equation
We wrote the equation above for the time-dependent Schrödinger equation,
but it is equally valid for a time-independent picture. In that case, replace
ψm(R, t) by a ro-vibrational state labeled χn,m(R) where “n” is an index over
the rovibrational-state, and “m” is the electronic state. The time-independent
Schrödinger equation is then

Hmχn,m(R) = εn,mχn,m(R). (20.40)

where εn,m is the energy of the n’th ro-vibrational state on the m’th potential
surface.
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Relation between conical intersections the Breakdown of the Born-
Oppenheimer equation.

The Born-Oppenheimer eq. is “intuitive” for us chemists. However, it breaks
down when the adiabatic nuclear states are degenerate or near degenerate, since
then we cannot neglect the “small” non-adiabatic terms. Then the effects of
couplings and conical intersections, as explained earlier, kick-in.

Epilogue: Couplings
Here we understood the Born-Oppenheimer (B.O.) approximation and how it
is derived from the exact analysis. We’ll use it to:

• First, in the next chapters, understand how light influences motion and
dynamics between electronic states

• In the last chapters, if time-permits, we’ll see how the non-B.O. coupling
terms we found can be used to study classical dynamics of nuclei that
will occasionally hop between B.O. states due to the coupling terms.
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21 Time-dependent perturbation theory: quick
derivation of Fermi’s Golden Rule

In this chapter we’ll do a quick derivation of time-dependent perturbation the-
ory. We’ll then re-tackle it in a more elegant fashion in the next chapter, where
we’ll also talk specifically about electronic absorption, i.e., promotion the elec-
tron from one electronic state to another.

A lot of the material in this and the next two chapters is repetitive, which
is fine since it is so important that we need to get at it from different angles.

The perturbation
Let’s ignore the non-adiabatic couplings, but add to the Hamiltonian the inter-
action with light, assumed to be at frequency ω.

We assume that the perturbation is small. (This is usually valid unless
the laser intensity is extremely high, higher than 1014W/cm

2
.)

That perturbation part can be written, to a good approximation as the dot
product of the electric field with the electronic dipole (We’ll derive that later
too). Thus, we write (r is the electronic coordinate):

V (r,t) = Efield(t)U(r) (21.1)

where we’ll explain the terms in sequence. (Note that we don’t write the coor-
dinate of the nuclei – that will become relevant in the next chapter.)

U(r) : Let’s assume that the electric field is polarized along the “x” axis,
then

U(r) = −ex,

and therefore the dipole is along x (including the electron’s charge). We’ll
try to keep using the form U(r) in this chapter, not just writing “−ex”. Our
results will therefore be general, regardless of the form of U , i.e., for any type
of perturbation. But in the next chapter we will be less general and call this
perturbation µ, the general symbol for a dipole moment. (And in the chapter
after that we’ll show that it actually originates more fundamentally from the
momentum operator...)

Efield(t): We introduced here the electric field Efield (I don’t call it E in this
chapter so as not to confuse with the symbol for the electronic energies). Then

Efield(t) = |Efield| cos(ωt− k · r + φ) =
|Efield|

2

(
ei(ωt−k·r+φ) + e−i(ωt−k·r+φ)

)
(21.2)

Here,

• |Efield| is maximum amplitude of the field, and

• φ is the phase of the field which in reality it not fixed but varies slowly
with time – we’ll talk about that phase later. For now we won’t put it
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into the calculation. The variation of the phase with time is associated
with the finite-time coherence of the laser making the electric field

• The phase also has a “spatial part”, k · r, which does not vary much on the
scale of the molecule since the wave-vector k,is proportional to the inverse
of the wavelength of the light – and the latter is thousands of angstrom.
So we can ignore it too.

Thus, combining the last equations and the dropping of the −k · r + φ phase,
the interaction is

V (r,t) =
eEfield

2
x
(
eiωt + e−iωt

)
(21.3)

It will turn out that in absorption we can safely retain only the e−iωt

term, which will “kick” from low-energy state to a higher energy one,
and for emission we’ll keep the eiωt. This is called the rotating wave ap-
proximation. It is valid unless the pulse times are extremely short, i.e., it
is valid as long as: t > h

δEtypical
∼ h

2eV ∼2fsec. So any typical laser field with
coherence of psec or more will lead to transitions that follow the rotating-wave
approximation.

Thus, for absorption, we’ll write

V (r, t) ' bU(r)e−iωt (21.4)

and for emission we’ll use V (r,t) ' bU(r)e+iωt. Here, for simplicity we defined
the scaled strength of the electric field:

b ≡ eEfield

2
. (21.5)

Time-dependent perturbation theory: “usual” derivation
Given a set of eigenfunction, |χj〉, j = 1, ...,∞, which are eigenfunctions of a
“zero-order” static Hamiltonian, H0, i.e.,

H0|χj〉 = εj |χj〉, (21.6)

let’s assume then that initially the system is in the n’th state |χn〉. The Hamil-
tonian will be the 0th order one plus the perturbation

H = H0 + V (r, t) = H0 + Efield(t)U(r) ' H0 + bU(r)e−iωt, (21.7)

where in the last equality sign we have put in the rotating wave approximation.
We’ll use whatever form is more convenient in the equations below.

Let’s label as ψn(r, t) (or as ket |ψn(t)〉 ) the wavefunction that starts
at χn and propagates according to the Schrödinger equation, i.e.,

i
∂|ψn〉
∂t

= H|ψn(t)〉, |ψn(t = 0)〉 = |χn〉 (21.8)
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and let’s expand it in terms of the eigenfunctions of H0 :

|ψn(t)〉 =
∑
j

ajn(t)|χj〉 (21.9)

where ajn(t) are time-dependent coefficients which tell us what’s the amplitude
of the j’th eigenstate of H0 in true solution of the full Schrödinger equation,
ψn(r, t). Obviously ajn(t = 0) = δjn.

Further, for convenience let’s define new coefficients, cjn(t) = eiεjtajn(t), so
therefore ajn(t) = e−iεjtcjn(t), so

|ψn(t)〉 =
∑
j

e−iεjtcjn(t)|χj〉. (21.10)

Let’s plug it into the Schrödinger equation:

i|∂ψn
∂t
〉 = H|ψn(t)〉 →

i
∑
j

∂
(
e−iεjtcjn(t)

)
∂t

|χj〉 =
∑
j

e−iεjtcjn(t)H|χj〉 =
∑
j

e−iεjtcjn(t) (H0 + V (t)) |χj〉

(21.11)

(where V (t) is an abbreviation to V (r, t)), i.e.,

∑
j

e−iεjt
(
εjcjn(t) + i

∂cjn(t)

∂t

)
|χj〉 =

∑
j

e−iεjtcjn(t) (εj + V (t)) |χj〉.

(21.12)
Now remove the identical (colored) term from the LHS and RHS, resulting in

i
∑
j

e−iεjt
∂cjn(t)

∂t
|χj〉 =

∑
j

e−iεjtcjn(t)V (t)|χj〉. (21.13)

Let’s now dot product with the l’th eigenstate of H0:

i〈χl|
∑
j

e−iεjt
∂cjn(t)

∂t
|χj〉 = 〈χl|

∑
j

e−iεjtcjn(t)V (t)|χj〉. (21.14)

Now in the LHS, due to the overlap 〈χk|χj〉 = δkj , only the k’th term contributes
so

ie−iεlt
∂cln(t)

∂t
=
∑
j

e−iεjtcjn(t)〈χl|V (t)|χj〉 (21.15)

i.e.,

∂cln(t)

∂t
= −i

∑
j

ei(εl−εj)tcjn(t)〈χl|V (t)|χj〉 (21.16)
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and when we integrate from 0 to t we get

cln(t)− cln(t = 0) = −i
∑
j

ˆ t

0

ei(εl−εj)τ cjn(τ)〈χl|V (τ)|χj〉dτ. (21.17)

i.e.,

cln(t) = δln − i
∑
j

ˆ t

0

ei(εl−εj)τ cjn(τ)〈χl|V (τ)|χj〉dτ. (21.18)

Because of the presence of V in the integral, all the coefficients cjn(t)
will be small (1st order) except for the l=n term. I.e., the 0th order
approximation will be:

c0ln(t) = δln. (21.19)

Then, the 1st order term are obtained on the LHS by plugging into the RHS
the zeroth-order term (since the RHS, except for the delta function,has already
the 1st order term, “V”):

c1ln(t) = −i
∑
j

ˆ t

0

ei(εl−εj)τ c0jn(τ)〈χl|V (τ)|χj〉dτ (21.20)

i.e., since c0jn(τ) = δjn, then for any state “l” that’s not the initial state,

c1ln(t) = −i
ˆ t

0

ei(εl−εn)τ 〈χl|V (τ)|χn〉dτ, l 6= n (21.21)

This equation is valid, in perturbation theory, regardless of the form of V
(as long as it is small). We’ll omit the “1” superscript henceforth but remember
that this equation is only valid to 1st order.

For the type of oscillating perturbation that we usually have, under the
rotating wave approximation, we’ll replace V by an oscillating term, V (r, τ) '
bU(r)e−iωτ resulting in a separation to the matrix element of the spatial
part of the perturbation, times a time-dependent factor.

cln(t) = −ib〈χl|U |χn〉
ˆ t

0

ei(εl−(εn+ω))τdτ, l 6= n (21.22)

i.e., the absorption probability after time t,

Pl←n(t) ≡ |cln(t)|2 (21.23)

can be written as

Pl←n(t) = b2|〈χl|U |χn〉|2f(t) l 6= n (21.24)
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where we defined

f(t) =

∣∣∣∣ˆ t

0

ei∆τdτ

∣∣∣∣2 , (21.25)

where

∆ = εl − (εn + ω) (21.26)

is the deviation from resonance. Obviously, there will be a significant ab-
sorption if the initial energy, εn, plus the frequency of the perturbing
radiation, ω, matches or almost matches the final energy, εl, i.e. ∆ ' 0.

Laser Fluctuations

Before proceeding, however, we need to incorporate an important physical
factor: the frequency of the laser undergoes random fluctuations. The simplest
way to incorporate these are by multiplying the laser field, e−iωτ ,by a fluctuating
phase, eiφ(τ),

f(t) = |
ˆ t

0

eiφ(τ)ei∆τdτ |2, l 6= n, (21.27)

where the relative phase will decay after a while, i.e., the average of
ei(φ(τ)−φ(τ ′)) will be a decaying function of the time difference,

average of ei(φ(τ)−φ(τ ′)) = exp
(
−γ2 (τ − τ ′)2

)
, (21.28)

i.e., if τ = τ ′, then the phase cancel perfectly in the exponent, while if |τ−τ ′| �
γ−1 the exponent of the relative phase will cancel. Note that for lasers, the
values of γ−1 (the coherence time) will typically be quite long compared with
the usual dynamics (i.e., more than a picosec).

Transitions with Fluctuations

Let’s calculate now the transition probability, i.e., f(t):

f(t) =

(ˆ t

0

eiφ(τ)ei∆τ
′
dτ ′
)∗(ˆ t

0

eiφ(τ)ei∆τdτ

)
=

ˆ t

0

ˆ t

0

ei∆(τ−τ ′)ei(φ(τ)−φ(τ ′))dτ dτ ′.

(21.29)
Let’s change variables

t′ =
τ + τ ′

2

t′′ = τ − τ ′.

So:

f(t) =

ˆ t

0

(ˆ t′

−t′
e−i∆t

′′
ei(φ(τ)−φ(τ ′))dt′′

)
dt′. (21.30)
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Further, let’s replace ei(φ(τ)−φ(τ ′)) by its average, e−Γ2(τ−τ ′)2

, i.e., e−Γ2t′′2 !!

Note: the reason for this replacement is that we do an additional
integral, over t′. Physically, what we are saying is that if our total
time t, of, say, 1000 psec, and we consider two times, τ and τ ′ that
are separated by, say, 20 psec, then we can get many such time –
e.g., τ = 110 and τ ′ = 130; or τ = 250 and τ ′ = 270 (all in psec.),
etc. .; so the exponential of the phase difference, ei(φ(τ)−φ(τ ′)),will
effectively average and can be replaced by its average.

So then:

f(t) =

ˆ t

0

(ˆ t′

−t′
e−i∆t

′
e−γ

2t′2dt′′

)
dt′. (21.31)

Now let’s consider very long times, t, so that most of the inner integral (over
t’) would be associated with long times (much longer than γ−1); therefore, we
can replace the inner limits by −∞ to ∞, getting

f(t) =

ˆ t

0

(ˆ ∞
−∞

e−i∆t
′
e−γ

2t′2dt′′
)
dt′ =

(ˆ t

0

dt′
)
·
(ˆ ∞
−∞

e−i∆t
′
e−γ

2t′2dt′′
)

= t

(ˆ ∞
−∞

e−i∆t
′
e−γ

2t′2dt′′
)
.

(21.32)
Let’s do the Gaussian integral:

f(t) = t ·
√
πe
− ∆2

4γ2

γ
(21.33)

The Gaussian factor looks strange; but in fact, in the limit that γ is tiny
(long coherence times – but still the coherence time needs to be much smaller
than the total time, i.e., γ−1 � t), the Gaussian factor is essentially a
Dirac-delta function:

√
π
e
− ∆2

4γ2

γ
' 2πδ(∆) (21.34)

Proof: the LHS is obviously very narrow if γ is small, and looks “pointed
up”; so we just need to prove that its integral is “2π”

√
π

ˆ ∞
−∞

e
− ∆2

4γ2

γ
d∆ = 2π

ˆ ∞
−∞

e−z
2

√
π
dz = 2π

(
z ≡ ∆

2γ

)
. Q.E.D.! (21.35)

Transition Rate: Fermi’s Golden rule (state-to-state)

Thus, collecting from the definition of f(t) we get

Pl←n(t) = b2|〈χl|U |χn〉|2 · t · 2πδ (εl − (ω + εn)) (21.36)
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i.e., the transition rate, i.e., probability PER TIME to transfer from
state “n” to another, “l”,

Γl←n ≡
1

t
Pl←n (21.37)

is

Γl←n = |b2|〈χl|U |χn〉|2 · 2πδ (εl − (ω + εn)) (21.38)

This is Fermi’s Golden rule (derived by Heisenberg, not Fermi...). In this
form it is valid for state-to-state transitions.

Summing over final states: Fermi’s Golden rule (total transfer rate).

Now we want to move to summing over final states, for total absorption
rates at a given photon frequency ω.

Thus, define a frequency-dependent absorption rate:

Γn ≡
∑
l

Γl←n = 2π
∑
l

|b2|〈χl|U |χn〉|2δ (εl − (ω + εn)) (21.39)

Interpreting Fermi’s Golden Rule with Density of States

What do we mean by “delta” function here?
For a non-disosociated small molecule with few states the delta function

just means a sum of isolated transitions. (see class for figure)
For a big molecule (or even a small dissociating molecule), the “smeared”

delta functions overlap. To understand what happens, we’ll need to replace the
matrix element |〈χν′,m|µmg|χν,g〉|2 by some kind of an averaged transition rate.
To do it properly we first need to note that

Γn = 2π
∑
l

|b2|〈χl|U |χn〉δ (εl − (ω + εn)) 〈χn|U |χl〉

= 2π
∑
l

|b2|〈χl|U |χn〉〈χn|Uδ (εl − (ω + εn)) |χl〉

= 2π
∑
l

|b2|〈χl|U |χn〉〈χn|Uδ (H0 − (ω + εn)) |χl〉 (21.40)

i.e., since the sum over a complete number of states is a trace we write

Γn = 2π|b|2Tr (U |χn〉〈χn|Uδ (H0 − (ω + εn))) (21.41)

A side note: Recall

Tr (A|χn〉〈χn |) = 〈χn |A|χn〉

(to prove, consider summing over the orthogonal basis we have,
where χn is one of the basis-members). In our case then:
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Γn = 2π|b|2〈χn|Uδ (H0 − (ω + εn))U |χn〉 (21.42)

This equation will be very important later when we view it in
the time picture.

End of side-note.

Back to Eq. (21.41). We’ll end then at:

Γn ≡ 2π|b|2Ū2ρ(E), (21.43)

where

E = ω + εn

is the final energy (=ω+initial energy) , and we defined the averaged squared-
transition matrix

Ū2 ≡ Ū2(E) =
〈χn|Uδ (H0 − E)U |χn〉

ρ(E)
, (21.44)

and the density of states that the system transfers to:

ρ(E ) ≡ Tr (δ (H0 − E))

A note on the density-of-states:

Let’s see why we call it that name. For a given zero-order static Hamiltonian,
H0 define first the cumulative density of states:

N(E) = number of states with energy below E =
∑
j

θ(E − εj)

(21.45)
where the θ function is defined as:

θ(x) =

{
1 x < 0

0 x > 0
(21.46)

For example, for the electronic Hamiltonian of Hydrogen, N(E) will
be 1 between the ground state and the n=2 states i.e.,

N(E) = 1 for -13.6eV< E < −13.6eV
22

= −3.4eV,

and similarly N(E) = 5 between the n=2 and n=3 states,
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N(E) = 5 for -3.4eV< E < −13.6eV
32

= −1.5eV,

etc. See plot in class.

We will rewrite

N(E) =
∑
j

θ(E−εj) =
∑
j

〈χj |θ(E−εj)|χj〉 =
∑
j

〈χj |θ(E−H0)|χj〉 = Tr (θ(E −H)) .

The density of states is defined as the derivative of N(E) w.r.t. E:

ρ(E) =
dN(E)

dE
, (21.47)

i.e., the number of states per unit energy.
We need to recall now a mathematical fact,

dθ(x)

dx
= δ(x). (21.48)

Proof: both the LHS and RHS are zero when x 6= 0. So we just need
to prove that their integral is the same, i.e., that the integral of the
LHS is 1:

ˆ ∞
−∞

dθ(x)

dx
dx = θ(x = +∞)− θ(x = −∞) = 1− 0 = 1, Q .E .D .

(21.49)

so:

ρ(E) =
dN(E)

dE
=

d

dE
Tr (θ(E −H)) = Tr

(
d

dE
θ(E −H)

)
= Tr (δ(E −H)) . Q.E.D.

(21.50)
This concludes the main Fermi Golden rule, except that we’ll need several

addenda. The first is: Partial absorption Cross-Sections. More specifically, so
far we considered two extremes:

• Starting at one state and ending up at one other state

• Starting at one state and being absorbed to any other state.

There are important in-between cases. Primarily:

• Starting in one electronic state and asking what’s the absorption proba-
bility from one state to a specific group of states.
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The primary example is electronic spectroscopy. We usually start
from a state (or many state) on the ground-electronic state and ask
what’s the probability to transfer to another, specific, elec-
tronic state (rather than others).

The formulae are very similar then; basically we now have a formula
that looks like Γ ≡ 2πŪ2ρ(E),but now the density of states refers
to only states in the specific desired electronic state (and all
associated ro-vibrational level), and the same thing for the averaging.

We’ll see more details in the next chapter.

Transitions without an electric field.
Finally, once we’re familiar with all the math, we need to consider the case of
transfer without an electric field. The primary example is starting in
one electronic state, and then moving to another electronic state. For
example, if due to sun-light, lasers, or collisions, an electron is excited and is on
one electronic state, it could move to another state.

An example is the figure above. If a laser already excited the molecule from
ground to an excited state (in red in the figure), it will transfer to a charge
transfer state with an electron on the gold and the molecule positively
charged (the state in blue).

Another example is predissociation. Again, a molecule is excited to an elec-
tronic state (“A”) and then the vibrational state are excited to the dissociating
ro-vibrational states on “B”
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Luckily, the same methodology works. The only difference is that in-
stead of the photon-associated disturbance of V (r, t) ' bU(r)e−iωt,we will have
a coupling matrix element, which in the language of the previous chapter
we label as, for example per the figure above, as : “HAB(R)” for transfer from
an initial electronic state “A” to a final electronic state. “B”

And the density of states will be not the total density of states, but the
density of states on the final electronic state.

Finally, let’s ask a question:

Why is dephasing necessary and shift in absorption type
A qualitatively interesting issue is how the transfer rate changes from very short
times to the more usual long-time.

I remind you that we saw

cln(t) = −i〈χl|U |χn〉
ˆ t

0

ei(εl−εn−ω)τdτ l 6= n.

Therefore, at very short times (shorter than 1/∆ ≡ 1/ (εl − εn − ω)) the inte-
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grand will be fairly constant, so

cln(t) ∼ −i〈χl|U |χn〉
ˆ t

0

dτ = −i〈χl|U |χn〉t (for t small), l 6= n, . (21.51)

Therefore, for short times the amplitude of transfer will rise as t2 :

Pln(t) = |cln(t)|2 ∝ t2 (21.52)

while, as we saw, at long time Pln(t) ∝ t (since the rate is fixed).
Thus, at short time the transfer is coherent and the probability of

transfer rises rapidly (like t2),but at long times the transfer is “inco-
herent” and rises much slower, linearly in time.

The reason of course is the incoherent dephasing – either due to the laser,
and/or due to other degrees of freedom, i.e., the fluctuating environment.
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22 Time-dependent perturbation theory: corre-
lation function picture.

We will next use a very instructive correlation function approach to under-
stand electronic spectroscopy and spectroscopy in general.

Consider the expression we studied in the fairly-dry Fermi’s Golden rule
description. We can rewrite this expression in a much livelier time-picture.
We will do it in two ways in the chapter, and then specialize to electronic
spectroscopy.

We’ll use a lot of similar techniques to the previous chapter, so when needed
we can skip derivations.

Quick derivation of correlation function-based rate from
Fermi-Golden rule
The simplest derivation starts with the relation

δ(x) =
1

2π

ˆ
e−itxdt (22.1)

(we didn’t prove it, but it make sense and is needed for Fourier transforms).
Integrals are generally from −∞ to ∞ unless specified differently.

Insert this relation in Eq. (21.42), replacing ”x” by δ (H0 − (ω + εn)), to get

δ (H0 − (ω + εn)) =
1

2π

ˆ
e−i(H0−(ω+εn))tdt (22.2)

So the expectation value in Eq. (21.42) becomes

Γn = |b|2
ˆ
〈χn|Ue−i(H0−(ω+εn))tU |χn〉dt (22.3)

i.e.,

Γn = |b|2
ˆ ∞
−∞

C(t)ei(ω+εn)tdt, (22.4)

where we defined the correlation function

C(t) ≡ 〈χn|Ue−iH0tU |χn〉 = 〈gn|e−iH0t|gn〉 (22.5)

where we defined a new state

|gn〉 ≡ U |χn〉. (22.6)

Further, define
|gn(t)〉 = e−iH0t|gn〉. (22.7)

we see that

C(t) = 〈gn|gn(t)〉. (22.8)
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Thus, we see a physically interesting picture: we start with the initial state,
χn, then convert it to a new state, gn(r) = U(r)χn(r),and then propagate
the new-state with time (using the unperturbed Hamiltonian). The
correlation function of this new function at t with itself at the start
time, is then Fourier transformed to give the absorption frequency as a function
of frequency.

Two things remain:

• The derivation above is not elegant. The Fermi Golden rule starts with
the time-picture and then goes an energy picture. Then we go back to
time. There should be a more elegant way that talks only about time. We
will do this derivation next

• Then, we’ll exemplify (with a few modification) the correlation function
picture for electronic spectroscopy.

Absorption from time-dependent correlation functions: a
time-based derivation.
Recall that we try to solve the Schrödinger equation

i
∂|ψn〉
∂t

= H(t)|ψn(t)〉, |ψn(t = 0)〉 = |χn〉.

Write it explicitly:

i
∂|ψn〉
∂t

= (H0 + V (t))|ψn(t)〉, (22.9)

where recall that V (t) stands for V (r, t).
Claim: we can write the exact solution to the Schrödinger equation as

|ψn(t)〉 = e−iH0t|χn〉 − i
ˆ t

0

e−iH0(t−τ)V (τ)|ψn(τ)〉dτ. (22.10)

Proof: to prove we’ll need to differentiate the form on the RHS, which has an
integral.

Recall that 1st-year calculus tells us that when we differentiate an
integral that depends on time, we get two terms – the integrand at
the upper limit, and an integral where you differentiate the integrand
with respect to time, i.e.,

d

dt

ˆ t

0

f(t, τ)dτ = f(t, τ = t) +

ˆ t

0

∂f(t, τ)

∂t
dτ.
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Therefore

i
∂|ψn〉
∂t

= i(−i)H0e
−iH0t|χn〉−i2e−iH0(t−t)V (t)|ψn(t)〉−i2

ˆ t

0

(
∂

∂t
e−iH0(t−τ)

)
V (τ)|ψn(τ)〉dτ

= H0e
−iH0t|χn〉+ V (t)|ψn(t)〉 − iH0

ˆ t

0

e−iH0(t−τ)V (τ)|ψn(τ)〉dτ

= H0

(
e−iH0t|χn〉 − i

ˆ t

0

e−iH0(t−τ)V (τ)|ψn(τ)〉dτ
)

+ V (t)|ψn(t)〉. (22.11)

But the “magenta” colored part is simply our ansatz for the wavefunction, so
we proved that

i
∂|ψn(t)〉

∂t
= H0|ψn(t)〉+ V (t)

∂|ψn〉
∂t

= H(t)|ψn(t)〉, Q.E.D. (22.12)

Perturbation expansion
We’ll write

|ψn(t)〉 = |ψ0
n(t)〉+ |ψ1

n(t)〉 (22.13)

The boxed-equation above is a good starting point for perturbation. Thus, the
0th order expression is

|ψ0
n(t)〉 = e−iH0t|χn〉 (22.14)

while in the 1st-order expression, we replace the w.f. in
´ t

0
e−iH0(t−τ)V (τ)|ψn(τ)〉dτ

by |ψ0
n(τ)〉 , i.e.,

|ψ1
n(t)〉 = −i

ˆ t

0

e−iH0(t−τ)V (τ)|ψ0
n(τ)〉dτ (22.15)

so combining the two equations above gives:

|ψ1
n(t)〉 = −i

ˆ t

0

e−iH0(t−τ)V (τ)e−iH0τ |χn〉dτ. (22.16)

Now let’s recall that we assume that the initial state is an eigenstate
of the zero-order-Hamiltonian, i.e., H0|χn〉 = εn|χn〉. Therefore, we can
simplify

|ψ1
n(t)〉 = −i

ˆ t

0

e−iH0(t−τ)V (τ)e−iεnτ |χn〉dτ = e−iH0t

ˆ t

0

ei(H0−εn)τV (τ)|χn〉dτ

(22.17)
now recall that we’ll use the rotating wave approximation V (r,t) = be−iωtU(r),to
give
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|ψ1
n(t)〉 = e−iH0t|ηn〉, (22.18)

where we introduced a new function

|ηn〉 = −ib
ˆ t

0

ei(H0−ω−εn)τU |χn〉dτ = −ib
ˆ t

0

ei(H0−ω−εn)τ |gn〉dτ, (22.19)

where recall that gn ≡ Uχn

Absorption probability
Let’s assume that the perturbation has no diagonal matrix element, i.e., 〈χn|U |χn〉 = 0.
Then, |ψ1

n〉,the first order perturbation, is orthogonal to the ground state

Proof:

〈χn|ψ1
n〉 = −ib〈χn|e−iH0t

ˆ t

0

ei(H0−εn−ω)τU |χn〉dτ =

〈χn|e−iεnt
ˆ t

0

ei(εn−εn−ω)τU |χn〉dτ = e−iεnt
ˆ t

0

e−iωτ 〈χn|U |χn〉dτ = 0

(22.20)

Therefore, the absorption probability is simply the squared amplitude of the
non-ψ0 part, i.e., of ψ1 :

Pn(t) = 〈ψ1
n|ψ1

n〉 = 〈ηn|ηn〉 =

|b|2
(ˆ t

0

ei(H0−ω−εn)τ ′U |χn〉dτ ′
)†(ˆ t

0

ei(H0−ω−εn)τU |χn〉dτ
)

=

|b|2
ˆ t

0

ˆ t

0

〈χn|Ue−i(H0−ω−εn)τ ′ei(H0−ω−εn)τU |χn〉dτ ′dτ (22.21)

i.e.,

Pn(t) = |b|2
ˆ t

0

ˆ t

0

e−i(ω+εn)(τ−τ ′)C(τ − τ ′)dτ ′dτ (22.22)

This is almost the form we need. Recalling how we broke earlier the double
time integral to a factor of “t” times an integral over the time difference, we do
the same here , i.e., again write

t′ =
τ + τ ′

2

t′′ = τ − τ ′,

so
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Pn(t) = |b|2
ˆ t

0

(ˆ t′

−t′
C(t”)dt′′

)
dt′, (22.23)

and again extending the inner limits to ±∞ and dividing by t we get

Γn =
Pn(t)

t
= |b|2

(ˆ ∞
−∞

e−i(ω+εn)t′′C(t”)dt′′
)
, (22.24)

so changing back the variables t′′ → t gives

Γn = |b|2
(ˆ ∞
−∞

e−i(ω+εn)tC(t)dt

)
. (22.25)

This is exactly the equation we had before!

Actually, there’s a cheating in the argument that C(t) decays if the
transition is to an electronic state with very few ro-vibrational states,
since then there could be infinitely many recurrences in C(t), see
figures in Chapter 3.

But even if that’s the case, the laser used to excite the system will
generally have fluctuations which will cause the correlation function
to damp – i.e., if the coherence time of the laser is, say, 1ns, then
the “effective” correlation function will decay within that time.

So the more precise statement we should make is that we are look-
ing at times that are long compared with either the decay
time of the correlation function, or longer than the coher-
ence time of the laser or the environment (if we’re looking at
spectroscopy in liquids, where there are many collisions).

Example for using time-dependent correlation function: elec-
tronic spectroscopy.
The derivation of absorption from correlation function is very similar in the case
where nuclei (coordinate R) and electronic states are considered.

Specifically, in a previous chapter, we converted the Schrödinger equation for
the nuclei and molecules (ignoring non-adiabatic effects!) to an equation that
involves electronic-potential surfaces, i.e., Eq. (20.39). Let’s follow the same
steps, but now add the potential to the Hamiltonian. I.e., modify Eq. (20.38)
to read:

i
∑
K

∂ψK(R, t)

∂t
ΦK(r;R) =

∑
K

ΦK(r;R) (HK + V (R, r, t))ψK(R,t). (22.26)

and again multiplying the equation above times a “bra”, Φ∗m (r,R) , and inte-
grating w.r.t., r, to get

178



i
∂ψK(R, t)

∂t
= HKψK(R,t) +

∑
K

VK,L(R, t)ψL(R, t) (22.27)

where we defined the matrix element of the perturbation, which generally is

VK,L(R, t) =

ˆ
Φ∗K(r;R)V (r,R,t)ΦL(r;R)dr (22.28)

and in a bra-ket notation

i
∂|ψK(t)〉

∂t
= HK |ψK(t)〉+

∑
L

VKL(t)|ψL(t)〉 (22.29)

In the particular case had above (rotating wave approximation, sinusoidal
interaction, field polarized along x) becomes:

VKL(R, t) = be−iωtµK,L(R), (22.30)

where we defined the dipole-matrix (or more properly the matrix of the dipole
along x):

µK,L(R) =

ˆ
Φ∗K(r;R) xΦL(r;R)dr. (22.31)

Note that in the bra-ket notation we don’t write theR-dependence of VK,L(R, t)
but is still there.

Analogies with the earlier derivation of the correlation function

Consider the earlier derivation, which was more general, the Schrödinger equa-
tion was then i∂|ψ(t)〉

∂t = H0|ψ(t)〉 + V (t)|ψ(t)〉, and in the rotating wave ap-
proximation we wrote V (r, t) = be−iωtU(r) . By inspection, therefore, when we
consider electronic states:

• The role of the “zero” order Hamiltonian H0 is taken over by HF , the
Hamiltonian for the nuclei on the “F” ’th electronic state. (F stands for
final state, i.e., we are asking how much of the initial wavefunction (on
electronic state G, for “ground”) ended up on state F.

• The role of the initial state χn(r) is taken over by χν,G(R),the ν′th ro-
vibrational state on the starting electronic state, G.

• The role of the dipole moment operator U(r) is taken over by the dipole-
matrix element, µF,G(R) between the initial “G” and final “F ”electronic
states.

Then, the correlation function expression for the absorption of radiation
from an initial state χν,G(R) on the G’th electronic state to ANY
ro-vibrational state on the final electronic state F is:

C(t) = 〈g|e−iHF t|g〉 = 〈g|g(t)〉
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where now
g(R) = µFG(R)χν,G(R) (22.32)

is the product of the dipole from G to the final state F, times the initial wave-
function. Further, as before,

|g(t)〉 = e−iHF t|g〉 (22.33)

And finally, from the correlation function we get, as before, the absorption rate
to the final (F th) electronic state,

ΓF←(ν,G)(t) =

ˆ
C(t)ei(ω+εν,G)t (22.34)

Also, below we usually (not always!) abbreviate µFG(R) as µ(R) to
avoid plethora of indices. But recall that it will refer to transitions
between two specific states.

Interpretation
We are finally ready for interpretation.

Electronic absorption can be interpreted as

• We “kick” the original wavefunction from the ground to the excited elec-
tronic state; the “kicked” function,g, is, in R-space, simply the product
of the dipole matrix element and the initial ro-vibrational state on the
ground electronic state.

• We let this “kicked” function move under the influence of the electronic
Hamiltonian for the state we kicked to, HF , making |g(t)〉. We calculate
the overlap of the the “moved” function with the initial kicked function,
g(R)

• We then Fourier transform the correlation function at the energy of the
initial state+photon. Any peak denotes an absorption at that frequency,
i.e., indicates that there’s a final ro-vibrational state with an energy that
equals ω + εν,G.

The following figures show an example (a diatom, with one important nuclear
coordinate) of a propagating wavepacket (“g(R,t)”) which is the result of exci-
tation from the ground-states to a: bound electronic state; and a dissociating
electronic state (photo-dissociation), and then its evolution in time.

See the following figures from Schatz and Ratner:
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and the associated correlation function:
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In the bound-excitation case, the wavefunction oscillates, and the absorption
lines will then be sharp (widened by the laser fluctuations or by collisions with
the environment.
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For photo-dissociation, however, the wavepacket immediately “dissipates” so
it looks like a short blob in time, which corresponds to a wide-absorption peak.

Emission
There are two types of emission: Stimulated and Spontaneous.

Stimulated Emission

Is exactly like absorption, we just reverse in Eq. (21.26) the sign of ω → −ω,
since the final-state energy will be lower than the initial one. This can be traced
back to Eq. (21.3) where there were two terms, eiωt and e−iωt,where due to the
rotating-wave approximation we retain only the e−iωt ; while for emission we
need to keep eiωt. Note that stimulated emission is what it says – the more
there’s light, the more there will be emission.

Spontaneous Emission:

Exists even if there’s no light. We’ll describe in more detail in a latter chapter.

Thermal rates

We are now ready for thermal rates – when we can start from several initial
vibrational states;

Recall the main equation of our previous section, the initial-rovibrational-
state-selected rate of transition from one electronic state to another:

ΓF←(ν,G) = 2|b|2
ˆ ∞
−∞

ei(ω+εν,G)t〈χν,G|µe−iHF tµ|χν,G〉dt (22.35)

Now let’s assume that there’s a thermal distribution of the initial ro-
vibrational states on the ground electronic state. I.e., the states are distributed
by the Boltzmann distribution, so the probability for an initial ro-vibrational
state to be “ν” is

pν =
e−βεν,G

Q
, Q =

∑
ν

e−βεν,G (22.36)

(and recall that Q is defined this way so that
∑
ν pν = 1.) Here, β ≡ (kBT )−1.

Also, we’ll assume for simplicity that the higher electronic states are sufficiently
high so that thermally they are not excited, i.e., only ro-vibrational states on
the ground-electronic state have non-vanishing population.

We then define the thermal transition rate to an electronic state “m”

ΓF←G ≡
∑
ν

pνΓF←(ν,G) (22.37)

so
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ΓF←G =
|b|2

Q

∑
ν

e−βεν,G
ˆ ∞
−∞

ei(ω+εν,G)t〈χν,G|µe−iHF tµ|χν,G〉dt. (22.38)

Note that we colored two terms in blue. This is because we can insert them
into the bra-ket, using

e−βεν,Geiεν,Gt|χν,G〉 = e−βHgeitHG |χν,G〉 (22.39)

(since HG|χν,G〉 = εν,G|χν,G〉). Thus,

ΓF←G =
|b|2

Q

ˆ ∞
−∞

eiωt
∑
ν

〈χν,G|µe−iHF tµe−βHGeitHG |χν,G〉dt.

Now I colored the summation over terms in brown, because I want to use the
definition of a trace – the sum over a complete basis of the expectation value.

I.e., since the ground-state wavefunctions are a complete set over the ro-
vibrational coordinates, we can write for any operator A∑

ν

〈χν,g|A|χν,g〉 = Tr (A)

i.e., again

ΓF←G =
|b|2

Q

ˆ ∞
−∞

eiωtC(t)dt (22.40)

where now however

C(t) ≡ Tr
(
µe−iHF tµe−βHGeiHGt

)
. (22.41)

This is a very elegant expression. It says that the correlation function has
to do with motion back-and-forth, eiHGt and e−iHF t, on two different
surfaces, where the motion on the ground state surface is “weighted” by the
Boltzmann factor.

Importance for Approximations
An advantage of correlation-function expressions is that they are a convenient
starting point for approximations. Basically, most approximations are
good at short times and fail at long times, so by having a time expressions
we can limit the time (by putting a convergence factor, e−t

2Γ2

, multiplying
the correlation function, where Γ is an energy-width parameter) thereby only
including contributions from early times when the approximations will be valid.
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Other expressions with correlation function
So far we talked about linear absorption from one electronic state to another.

Similar expressions follow for other absorptions. These include

• Absorption on the same electronic state

• Raman Scattering (a two-photon process)

• Scattering of radiation (rather than absorption).

• And, without reference to lasers, Flux-Flux expressions for chemical reac-
tions.

• And related to that, electron-transfer rate

Check, for example, the book of Tannor (David Tannor, Introduction to Quan-
tum Mechanics: A Time-Dependent Perspective) for an expanded view of this
correlation-function picture.

Other Spectroscopies: Vibrational Spectroscopy (without
electronic transitions).
The correlation function methods we introduced are applicable to other spectro-
scopies – vibrational, rotational, NMR, and also non-linear spectroscopies (e.g.,
Raman).

To see, start from the expression we derived earlier, C(t) ≡ Tr
(
eiHF tµe−iHGte−βHGµ

)
.

And we recall that a Fourier transformation of the correlation function will give
the absorption frequency.

Now imagine that the motion is on the same surface, i.e., ro-vibrational
spectroscopy (where the electronic state does not change).

We’ll remove the “F” and “G” subscript therefore.

But we’ll also need to be careful about the dipole moment, µ(R)
(i.e., µgg(R)). Let’s write it as a constant plus a non-constant
part, with the latter approximated by its first-derivative part:

µ(R) ' µ(Req) + (R−Req) · µ′ (22.42)

We should consider only transitions from the initial state; if the
final state is on the same electronic potential surface (our present
case), we’ll need to consider only the non-constant part of µ,
since the constant part will not cause transitions (i.e., if we start on
the 3rd ro-vibrational state of the ground electronic state, applying
the constant part of mu will keep us on the same ro-vibrational
state).
In practice, it is OK to keep the constant term, but then we should
subtract from the correlation function its non-zero value at
t=0.
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The correlation function becomes then very simply:

C(t) ≡ Tr
(
eiHtµe−iHte−βHµ

)
(22.43)

A very interesting expression then emerges when we go to the Heisenberg
picture (or really to the interaction picture, but let’s not dwell on that). Then
we can write:

µ(t) = eiHtµe−iHt (22.44)
so then

C(t) ≡ Tr
(
e−βHµ(t)µ(t = 0)

)
. (22.45)

This is a classical-like expression: absorption in classical mechanics is
the Fourier-transform of the dipole-dipole correlation function, i.e., just this
expression!

Also, note that µ(t) is an operator in R. (For t=0 it is a local operator,
µ(t = 0) ≡ µ(R), but it will not be local for latter times.)

Spontaneous Emission: Prequel
Our discussion so far assumed a classical electric field. That discussion ex-
plained then stimulated absorption and emission but not spontaneous one.

Physically, spont. emission happens since the true “system” is not just the
molecule, but the molecule+radiation modes. Put differently, there are many
“modes” the light can have. These (i.e., each allowed momentum) is associated
with modes of the electromagnetic field. In a given box of lengths L ·L ·L
(and volume V = L3) – and this L has nothing to do with angular momentum
– the allowed modes of the periodic electromagnetic field are labeled by the
“wavevector”.

These modes are exactly the same as the modes of the electron w.f. that we
saw when we considered in 115a/215a the electron modes in the Homogeneous
Electron Gas, i.e., these modes, which are the momentum of the modes
(i.e., “momentum of the photons”), are similarly labeled as k = (kx, ky, kz),
with kx = 2π

L × integer. Each electromagnetic mode is also labeled by another
parameter – the polarization.

Within each mode, there could be an electric field oscillating at that mode
(with that momentum, i.e., wavevector, k,and frequency, ω = c|k|). We’ll see
that for each mode, the amplitude of the electric field at that mode
can be thought of as as an independent Harmonic oscillators. The
state of that harmonic oscillator (n = 0, 1, 2, etc.) is the number of photons
in that mode.

Thus, spontaneous emission means that we go from a mode without photons
(i.e., with n = 0) to a mode with n = 1. (It is more general than this, actually,
and we’ll explain later.)

To understand spontaneous emission, we’ll thus need to understand light as
a quantum object. This will be the topic of the next chapter.
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23 Electromagnetic Fields and interaction with
them: proper-classical derivation and quan-
tum derivation (for spontaneous emission).

We have already seen the Fermi Golden rule applied with external fields. Now
we need to do a more “proper” derivation, explaining about electric and mag-
netic fields, and eventually landing in quantum description of the electric fields.
This is important for spontaneous emission and also for modern studies of light
interacting with matter, at times non-perturbatively.

A and φ : vector potential and scalar potential: Classical
treatment
Maxwell’s equations are for the electric and magnetic fields, E(r, t) and B(r, t).
But for quantum mechanics it’s easier to work with the electromagnetic vector
potential A(r, t) and scalar potential ϕ(r, t); you probably saw them but a
reminder – they’re defined so that the electromagnetic fields derive from them,
i.e.,

E = −∇ϕ− 1

c

∂A

∂t
(23.1)

B =∇×A. (23.2)

Note that the E,B have 6 components together that are highly constrained
by the Maxwell equations; A and φ have only 4, and therefore are easier to work
with.

Gauge transformation

Further: we have still some freedom in choosing A, ϕ; the electric and magnetic
fields don’t change when we do a gauge transformation, i.e., pick an arbitrary
scalar function χ (r, t) and modify A, ϕ as follows:

A→ A+∇χ

ϕ→ ϕ− 1

c

∂χ

∂t
. (23.3)

(prove that the electric and magnetic fields do not change when we do this
transformation, using the fact that the curl of a gradient is zero!).

Note: Gauge transformations are very important when coupling to
quantum mechanics, see later.

Three plausible gauges are:
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• One would be ϕ = 0, i.e., given some ϕ, negate it by a gauge transforma-
tion χ(r,t) = c

´ t
0
ϕ(r, t′)dt′, and end up with only A.

• A physically better one would be the Coulomb gauge, ∇ ·A = 0. (That
means that A is “not-longitudinal”.) That’s the one we will generally use.

• Yet another one is the Lorenz gauge, where A and ϕ are treated equally.

Choosing the Coulomb gauge, then in empty space (what we usually care about,
the effects of atoms on the light for us are small so we for now ignore to 0-th
order their effects on the electromagnetic waves which essentially “see” an empty
space) then ϕ = const. and the Maxwell eqs. become a single wave equation
for A

∇2A− 1

c

∂2A

∂t2
= 0. (23.4)

More generally, when we are not in empty space, than in the Coulomb (and
to some extent the Lorenz) gauge, the scalar potential has similar properties
to the electrostatic potentials we’re used to – the Hartree potential and the
electron-nuclear potential, while the effects of moving charges cause magnetic
fields and the emergence of the vector potential. But that’s not for now.

Plane waves:

As presented earlier in the classical discussion of fields, we’ll deal in this course
with the simplest form of electromagnetic fields, plane waves (the discussion
here is repetitive for completeness).

A (r, t) = ε̂A0 cos (k · r − ωt+ φ0) =
A0

2
ε̂ei(k·r−ωt+φ0) +

A0

2
ε̂e−i(k·r−ωt+φ0).

(23.5)
Here, the unit-vector ε̂ (not related to the dielectric constant – we don’t have
enough symbols!) is the polarization of the wave. φ0 (omitted in many books)
is the phase; A0 is (up to

√
2 factors) the amplitude; and ei(k·r−ωt) corresponds

to a wave moving in the +k direction, with a velocity:

ω

k
= c. (23.6)

It is actually quite more complicated in the general case. The ex-
pression above is the phase velocity, vphase = ω

k . A general wave
really moves with the group velocity, vgroup = dω

dk (we may prove
it later, or you may have seen it). For electromagnetic waves in
vacuum the two are identical, due to the linear relation between
ω = kc, where k ≡ |k| , so we omit the subscript. But for other
waves it isn’t:
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1. For “Schrödinger” waves of free particles with mass
in vacuum, the group velocity is twice the phase
velocity (since ω = E

h̄ = p2

2Mh̄ = h̄2k2

2Mh̄ , i.e., ω ∝ k2;
when we differentiate ω w.r.t k we get a factor of
2, i.e., dωdk = 2ωk )

2. For electromagnetic waves in a medium, the phase
velocity is often higher than speed of light.

3. One can make “crazy” meta-material circuits where
the wave goes forward (i.e., the group velocity points
forward) but the phase velocity is backward!

Electromagnetic waves are transverse (in the Coulomb gauge).

Since ∇ (k · r) = k (prove it!) the Coulomb gauge implies

0 = ∇· A = −(ε̂ · k) ·A0 sin (k · r − ωt+ φ0) (23.7)

i.e.,

ε̂ · k = 0. (23.8)

This is what we call a transverse wave – the polarization is perpendicular to
the direction of motion.

For example, if the wave moves along the k||z direction, then it will oscillate
within (i.e., ε̂ will be within) the x− y plane. In contrast, of course, to sound-
waves that are longitudinal,i.e., oscillate along the direction of the wave motion.

Note that as mentioned you can make crazy electromagnetic waves
that have longitudinal components using so called meta-materials
(especially “active ones”, where you pump energy into them con-
tinuously).

Plane wave intensity and # of photons per volume

It is easy to see (see Schatz and Ratner 5.3 for details, we’ll just skim over)
the relation between the amplitude of the vector potential, A0, and the # of
photons per volume. Specifically, the energy density (per volume) is classically
the average (that’s what the over-line stands for), over different times, of the
squared fields:

Energy density=
E2 +B2

8π
= 2

E2

8π
(23.9)

where we used the fact that in average, for a plane wave, the electric and
magnetic fields have the same intensity. Further, for a plane wave E2 =
ω2

c2 A
2
0 sin2 (k · r − ωt+ φ0) (prove it!) and since the average of sin2 is 1

2 , we
get
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Energy density= 2
E2

8π
= 2

ω2

8πc2
A2

0 ·
1

2
=

ω2

8πc2
A2

0 (23.10)

Now, the flux of radiation in an electromagnetic wave, i.e., the amount of
energy carried per time per area, is shown in E&M classes to be (in the CGS
units we use):

P =
c

4π
E ×B = c

E2

4π
=

ω2

8πc
A2

0 (23.11)

(Usually the Poynting vector is denoted by S, but I use P ). So the final expres-
sion is

A2
0 =

8πc

ω2
P. (23.12)

Coupling electromagnetism to the particle motion in clas-
sical dynamics
Classically, we know that the force for an electron (with charge −e , and note
that Schatz and Ratner use a charge of +e) in electric and magnetic fields is

F = −e
(
E +

v ×B
c

)
(23.13)

This is labeled the Lorenz force. Turns out that we can get this force law from
the following Hamiltonian

H =
1

2m
(p+

e

c
A)2 − eϕ (23.14)

where the vector and scalar potential, A, φ are what we saw earlier, i.e., such
that we can get the electric and magnetic potential from them.

An important point: typically we divide the potentials such that the scalar
potential is static – not time-dependent – and is due to the nucleus (and if there
are other electrons and we treat them in a “mean-field” manner, than it will
be due to the other electrons too). The vector potential would be due to an
external electromagnetic field, e.g., a laser pulse. This splitting is feasible with
the Coulomb gauge we use.

Hamiltonian Dynamics

I presume you saw Hamiltonian dynamics. But if not, here’s a quick review.
A Hamiltonian is a function of coordinates and momenta, from which you can
derive the force law. Given a Hamiltonian, the equation of motion are

dr

dt
=
∂H

∂p
(23.15)

dp

dt
= −∂H

∂r
(23.16)
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In our case, the Lorentz force is known so what was done was to back-
track, i.e., search for a Hamiltonian that yields, from the previous equations,
the Lorenz force law, m r̈ = F .

It turns out that with some painful algebra we can prove that indeed these
last two Eqs., (23.15)-(23.16) yield, when applied to the Hamiltonian, Eq.
(23.14), the Lorenz force, Eq. (23.13). See Ratner and Schatz.

Hamiltonian as a tool for quantization

It turns out, and this will be important later, that given the Hamiltonian of a
classical system it is “easy” to find the associated quantum Hamiltonian. Specif-
ically, we replace p by −i∇. That’s it! This will be useful later.

Side note: p is not m*v here!

The coupling to electromagnetic fields Hamiltonian exemplifies something in-
teresting: p is not necessarily mass*velocity! Specifically, since H = 1

2m (p +
e
cA)2 − eϕ,then

velocity ≡ dr

dt
=
∂H

∂p
=
p+ e

cA

m
, (23.17)

i.e.,

p = m ∗ velocity − e

c
A. (23.18)

Hamiltonian of QUANTUM particle in presence of CLASSICAL elec-
tromagnetic fields.

Knowing the Hamiltonian is a nice feature in classical mechanics, but is crucial
in quantum mechanics. Replacing p by −ih̄∇ (and setting h̄ = 1), gives

H =
1

2m

(
−i∇+

e

c
A
)2

− eϕ (23.19)

Let’s expand (reverting back to p):

H =
p2

2m
+

e

2mc
(A · p+ p ·A) +

e2

2m
A2 − eϕ. (23.20)

This expression is easily extended to many-particle systems, see Schatz and
Ratner (Eq. 5.26).

There’s a simplification in the Coulomb gauge (∇· A = 0). Specifically, the
difference between the two terms in the parentheses is just (proportional to)
∇ ·A, so it is zero in the Coulomb gauge.

p ·A−A · p = pxAx + pyAy + pzAz −Axpx − ...

= [px, Ax] + [py, Ay] + ... = −i∂Ax
∂x
− i∂Ay

∂y
− ... = −i∇ ·A = 0 (23.21)
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Therefore, A · p+ p ·A = 2A · p.
Now, divide the Hamiltonian to the static part and two disturbances: H =

H0 + V + V̄

H0 =
p2

2m
− eφ (23.22)

V =
e

mc
A · p (23.23)

V̄ =
e2

2mc2
A2. (23.24)

In the shifted Hamiltonian, Eq. (23.14), the e
cA term is typically much

smaller than p so V̄ � V � H0 (see the discussion in Schatz and Ratner,
Section 5.3.3). So we typically ignore V̄ .

An exception is large length scales, over which A changes so much (since it is
an integral over a distance) such that V̄ , which is a potential (i.e., a function of
position, V̄ = V̄ (r)) can be large; this is the situation in optical traps, where
one prepares the electromagnetic field so that V̄ (r) will be small in some region
and large in others, so that the particle will be attracted to the small-V̄ (r)
regions.

Dipole approximation
We can now give a derivation of the dipole approximation, i.e., V = −µ ·E (we
don’t label the field anymore as Efield.).

Inserting the equation for A in e.m. waves, Eq. (23.5), and throwing out an
unimportant phase, we get that the disturbance is (for an x-polarization)

V =
e

mc
Axpx =

e

2mc

(
A0(ω)ei(k·r−ωt) +A0(ω)e−i(k·r−ωt)

)
px (23.25)

where A(ω) is the intensity of the wave.
We note that kr = 2π

λ r. So for atomic optical transitions where r <
1nm, λ ∼ 100 − 1000nm, then kr � 1. We often make therefore the dipole
approximation, where the eik·r term is replaced by 1.

Then

V =
eA0(ω)px

2mc

(
e−iωt + eiωt

)
. (23.26)

Clearly, this looks like the equation we had long ago, Eqs. (21.1)-(21.3)
except that instead of the spatial factor of −ex |Efield|

2 we now have eA0(ω)px
2mc .

I.e., we replaced −x|Efield | by A0(ω) pxmc .
We can easily show that the matrix elements of the two terms are,

however, equal, so they are interchangeable. Specifically, given an initial state
χi with energy (i.e., eigenvalue of H0) εi and a final state χf with energy εf ,the
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matrix element of px will be 〈φf |px|φi〉.Here comes a trick: look at the
commutator of H with the position operator

[x,H0] =
1

2m
[x,p2

x + p2
y + p2

z] + [x, V (r)] =

[x, p2
x]

2m
=

[x, px]px + px[x, px]

2m
= i

px
m
. (23.27)

and similarly for y and z. Thus:

px = −im[x,H0], (23.28)

so the matrix element of px is

〈φf |px|φi〉 = −im〈φf |[x,H0]|φi〉 = −im〈φf |xH0 −H0x|φi〉, (23.29)

and using H0|φi〉 = εi|φi〉, 〈φf |H0 = 〈φf |εf , and ω = εf − εi, gives

〈φf |px|φi〉 = −im〈φf |xεi − εfx|φi〉 = −imω · 〈φf |x|φi〉, (23.30)

On the other hand, since we are talking about plane wave and we ignore the
static potential, ϕ,then E = − 1

c
∂A
∂t ; differentiating A w.r.t time gives a factor

of ω,so |Efield| = ω
cA0.

Thus, up to an overall factor of ”i” (since we were not careful on phases) we
get that, as far as matrix elements, −x|Efield | and A0

px
mc are equal.

Quantum electromagnetic fields
Next we’ll consider quantum treatment of electromagnetic fields, important for
stimulated emission and for modern treatments of molecules in cavities. We’ll
follow here Schatz and Ratner, Sec. 6.2.3-6.2.4, with abbreviations.

Classical Hamiltonian for electromagnetic field

Thus, we recall that classically the electromagnetic field in free space satisfies
the wave equation:

∇2A =
1

c

∂2A

∂t2
(23.31)

We know what the solutions to these equation are, a plane wave. But we
should not use that equation when we derive!

So if we can’t use the classical wave equation, what can we use? The an-
swer is that we need to start from the classical Hamiltonian for the fields
themselves (in addition to the field-particle Hamiltonian that we had earlier).
We mentioned above that the “energy density” is E

2+B2

8π ,so the energy, i.e., the
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Hamiltonian (we wont distinguish between the two, you need to take analytical
mechanics classes to clarify that) is

H =

ˆ
E2 +B2

8π
dr. (23.32)

And relating to the electric and magnetic field gives (again, free space and we
ignore ϕ), we get the Hamiltonian of an electromagnetic field in free
space

H =
1

8π

ˆ ((
1

c2
∂A

∂t

)2

+ (∇×A)
2

)
dr. (23.33)

Now let’s write the electromagnetic field in free space as sum of modes,
i.e., a temporal form times a spatial function (times a convenient factor for later)

A(r, t) =

√
4π

V
c
∑
i

qiσ(t)uiσ(r) (23.34)

without yet “telling” ourselves that qk,σ(t) should be e±iωt. The spatial modes
should be ones that when inserting to the Hamiltonian expression give a simple
expression (not mixing the modes).

It is easy to guess that the spatial form is a plane-wave, i.e., replace the
spatial index “i” by the 3-dimensional index of the plane wave k, so

ukσ(r) = eik·r (23.35)

for this homogeneous case.2 Here, “k” stands for the allowed modes (i.e., for a
cavity of lengths L×L×L and volume V = L3, they will be k = 2π

L (mx,my,mz),
where the m’s are integer – as we saw for the HEG), and σ is the polarization
mode (perpendicular to k).

Inserting the last two equation to the Hamiltonian we get indeed a simple
form, as promised; the math details are in Schatz and Ratner, eqs. 6.17-6.20,
and the final results are:

H =
1

2

∑
k

((
dqk
dt

)2

+ c2k2q2
k

)
=

1

2

∑
k

((
dqk
dt

)2

+ ω2
kq

2
k

)
(23.36)

where we define here of course ωk = |k|c. We suppress the polarization
index, i.e., for each k there are really two such oscillators associated with the
two transverse directions.

This still classical form looks just like a Harmonic Oscillator! (with a
“mass” of 1). I.e., a classical electromagnetic wave in a uniform free space has a
Hamiltonian (or energy) that is just that of a sum of Harmonic oscillators.

It is exactly this form which we can now quantize!
2It will be different if we were to consider constrained geometries, which is a very hot topic

in today’s physical chemistry, since we can then induce things like fast spontaneous emission,
etc.
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Quantization of the electromagnetic field

We first note that, since the “mass” of each mode in the equation above is 1
(this is not the mass of the photon, just an arbitrary constant reflecting the fact

that there’s no constant dividing
(
dqk
dt

)2

in the energy), the momentum of the
mode is

pk = mass ∗ dqk
dt

=
dqk
dt

. (23.37)

(Recall that this momentum-velocity relation is not always valid, but it is
true for Harmonic oscillators). Then quantum mechanically, [pk, qk] = −i (we
set henceforth h̄ = 1).

All we have to do now for quantization is define quantum annihilation
and creation operators for each mode of the electromagnetic field.

bk =
1√

2h̄ωk
(ωkqk + ipk) (23.38)

b+k =
1√

2h̄ωk
(ωkqk − ipk) (23.39)

and they fulfill of course [b+k , bk] = δk′,k, just like what we learned about regular
Harmonic oscillators.

For later, let’s express the q’s and p’s in terms of the b’s, setting h̄ = 1 :

qk =
b+k + bk√

2ωk
(23.40)

pk = i
√
ωk
b+k − bk√

2
(23.41)

Remembering what we learned about regular H.O., we get then

H =
∑

ωk

(
b+k bk +

1

2

)
. (23.42)

Reminder: the number operator.

Recall that the number operator for a Harmonic oscillator is N = b+b. Put
differently, given the n’th eigenstate of a single Harmonic Oscillator, we proved
in 115a/215a (we used “a” rather than “b” then)

b|n〉 =
√
n|n− 1〉 (23.43)

from which follows

b+|n− 1〉 =
√
n|n〉. (23.44)

(Note: prove the equivalence of the last two lines!)
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Therefore:

N |n〉 = b+b|n〉 = b+
√
n|n− 1〉 =

√
n ·
(
b+|n− 1〉

)
=
√
n ·
(√
n|n〉

)
= n|n〉.

(23.45)
This was for a single Harmonic oscillator; for our case that there are many H.O.,
each labeled by k, then the number operator for each mode, that measures how
many oscillations (i.e., photons) are in that mode, is

nk = b+k bk. (23.46)

Therefore,

H =
∑

ωk

(
nk +

1

2

)
. (23.47)

Let’s # the modes (i.e., the k’s ) from 1, 2, etc. (so “1” may be associated
with a momenta 0, “2” with a slightly higher momenta, etc.)

The overall state of the photons are then denoted as:

|ψ〉 = |n1, n2, ...nk, ...〉. (23.48)

Here, “n1, n2, ...” means: n1 photons in the 1st mode; n2 photons in the 2nd
mode, etc.

A better way to write it is

|ψ〉 = (b+1 )n1(b+2 )n2(b+3 )n3 |〉, (23.49)

where |〉 implies the vacuum state without photons;
I.e., the overall state of the radiation will be associated with creating n1

photons in the 1st mode; n2 photons in the 2nd mode, etc. (Note that the b+j
commute so it does not matter which order we use, b+1 on the left or the right
of b+2 ,etc.)

A photon is just an excitation of a specific mode; for example, if the 20th
mode has 3 photons, it means that its state is n20 = 3, i.e., the full wavefunction
of all the modes has a component (b+20)3 in it.

The vector potential in terms of the mode-oscillator creation/annihilation(Schatz
and Ratner 6.2.4)

Recall that we expanded above A(r, t) =
√

4π
V c
∑
k qk(t)eik·r.

We will use henceforth the Schrödinger approach, where A is taken at t=0
(the w.f. change, including the photon modes, but the operators don’t change).
So

A(r) =

√
4π

V
c
∑
k

qke
ik·r (23.50)
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Now recall, using qk =
b+k +bk√

2ωk
. So the field becomes (now we’re un-hiding

the polarization part ε)

A(r) =

√
4π

V
c
∑
kε

b+kε + bkε√
2ωk

eik·rε (23.51)

Thus the vector potential is made of photon creation and photon annihi-
lation operators for each mode.

Coupling radiation to matter: the fully quantum expression (Schatz
and Ratner 6.2.4)

We explained above that the perturbation potential in the Hamiltonian of a
particle due to the interaction with the field is, to first order in the field, just
V = − e

mcA · p. Therefore, based on the expressions above we see that

V = − e

m

√
2π

V

∑
k

1
√
ωk

(
b+kεe

ik·r + bkεe
ik·r) ε·p (23.52)

where the c’s canceled. For later convenience, we now change k to −k in the
1st summation (permissible, since it is a dummy index and we have really two
different summations here), so

V = − e

m

√
2π

V

∑
k

1
√
ωk

(
b−kεe

−ik·r + b+kεe
ik·r) ε·p (23.53)

Note that the full Hamiltonian is then:

H = H0 + V (23.54)

where the non-coupled matter+interaction 0-order Hamiltonian is now

H0 = Hmolecule +Hfield (23.55)

(Note that we didn’t include in the last two equations a 2nd order term in A
in the coupling of the field to the molecule, i.e., we ignore the V ′ ∝ e2

2mc2A
2

second-order term that comes from expanding (p+ e
cA)2

2m ).
The eigenstates of the 0th-order Hamiltonian are products of matter and

field states:

|ψM 〉 = ψm,n1n2,... = |m〉|n1, n2, ...〉. (23.56)

where “M” is a label of the combined matter/photon states, M ≡ m,n1, n2, ...

Note: this “m” has nothing to do with mass, so don’t confuse with
the 1

m below. Also don’t confuse V for potential and V for volume,
appearing in the denominator too!
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We’ll talk in the next subsection about transition from this state “M” of the
full system (matter + radiation-modes) which is an eigenstate of H0 to another
state “J” that its “bra” will be denoted as

〈ψJ | = 〈n′1, n′2, ...|〈j|. (23.57)

Fermi’s Golden Rule for Stimulated AND spontaneous emission TO-
GETHER (Schatz and Ratner 6.2.5, almost verbatim)

Fermi’s Golden rule states that the transition rate (from the initial state M of
the full system to the final state J of the full system) is a product of a density-
of-state (which we’ll deal with later) and a transition matrix-squared:

ΓJM = 2πρ(EJ)|VJM |2 (23.58)

where EJ is the energy of the full system, radiation+matter.
So start with he matrix elements of the interaction:

VJM = 〈ψJ |V |ψM 〉 =

− e

m

√
2π

V

∑
kε

〈n′1, n′2, ...|〈j|
(
b−kεe

−ik·r + b+kεe
ik·r) ε ·p |m〉|n1, n2, ...〉.

(23.59)

Further, each term can only have one “k” contributing

e.g.. if state “J” is different from state “M” by having an occupation
of the mode kspecific being larger or smaller by 1, then only the
bkspecific term, or its Hermitian conjugate, will contribute. so that
for each matrix element only one “k” can contribute.

So we’ll consider then each transition separately. So then the squared matrix
element becomes, for each transition associated with a photon k,

|VJM (k)|2 =

∣∣∣∣〈n′1, n′2, ...|〈j| 1
√
ωk

(
b−kεe

−ik·r + b+kεe
ik·r) ε ·p |m〉|n1, n2, ...〉

∣∣∣∣2 .
(23.60)

We’ll now assume the dipole approximation, i.e., assume e−ik·r = 1. Since the
V term is a product of two terms, one associated with the matter (p) and a
term from the field, the matrix element breaks to two parts; so for absorption,
where the number of photons in the final state is less t

|V absorption or emission
JM (k)|2 = |V (matter)|2 ·

∣∣〈V absorption or emission(radiation)
∣∣2

(23.61)
where
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|V (matter)|2 =

(
e

m

√
2π

V

1
√
ωk

)2

|ε · 〈j|p|m〉|2 = (23.62)

and using, as we saw,

1

m
〈j|p|m〉 = 〈j|[H, r]|m〉 = (Ej − Em) 〈j|r|m〉 = ωk〈j|r|m〉 (23.63)

(note that we use “m” here for two different thing, the electron mass and the
quantum mechanical state of the system), we get

|V (matter)|2 =
2πe2

V
ωk |ε · 〈j|r|m〉|2 (23.64)

For the radiation, in absorption the k’th mode has one less photon in the
final state; no change in the other photons, so the matrix element becomes (we
only denote the # of photons associated with the k’th mode)”

|V absorption
JM (k)|2 = |〈nk − 1 (b−kε) |nk〉|2 = |

√
nk|2 = nk (23.65)

But for emission, where the final radiation state has one more electron, then

|V emission
JM (k)|2 =

∣∣〈nk + 1|
(
b+kε
)
|nk〉

∣∣2 =
∣∣√nk + 1

∣∣2 = nk + 1 (23.66)

so the final transition rate is proportional to the occupation (which is propor-
tional to the intensity) for absorption, but in emission the occupation nk is
supplemented by 1 – i.e., is non-zero even if there’s no field intensity
– and this “1” is spontaneous emission!

Density-of state factor,

The density of states with ρ(EJ): it is density-of-state of the final state of the
FULL system, i.e., it is a product of the density of state of the system (we’ll
label the system energy as εj , and that of the radiation:

ρ(EJ) ' ρmatter(εj)ρradiation(ωk) (23.67)

(Not exactly, but let’s not get to details).
The radiation density of states is proportional to ρradiation(ωk)dωk ∝ V ω2

kdωk.
(i.e., ρradiation(ωk) ∝ V ω2

k.)We saw a similar expression when we considered the
density of states for electron in a HEG, where the density of states rose like k2.

Merging all the terms above us shows that the final expression has no
V(=volume), like it shouldn’t – for a molecule which is much tinier than the
volume, it doesn’t matter how big the volume is; but it has a factor of ω3 (one
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ω from the transition matrix element squared, two from the density of states of
the radiation), and the dipole moment; i.e.

ΓJM =
ω3
k

2πh̄c3
|ε · 〈j|r|m〉|2 ρ(εj)dΩ ·

{
nk absorption
(nk + 1) emission

(23.68)

where the “dΩ” factor refers to the angle of the beam of photons we consider
(absorption or emission)

Relative importance of stimulated and spontaneous emission

For the same laser intensity, if we compare UV vs. IR, then in UV there will
be many more modes (since ρdω ∝ ω2dω = dω3).

So the intensity per mode will be smaller, i.e., nk will be smaller. So the
“1” in nk+ 1 will dominate, i.e., at high frequencies spontaneous emission
dominates; at low frequencies (IR) stimulated emission will, unless the laser
intensity is very weak.
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24 Electron Transfer

24.1 Introduction: 2 electronic states and a single nuclear
coordinate

Electron transfer is a fascinating subject where we pull a lot of what we learned
and get unexpected results.

A generic system is three atoms(or molecules) on a line, A—B—C, for exam-
ple a positviely charged system; and electron transfer proceeding A+B + C →
A+BC+, which we label states “1” and “2” (so 1 is a state where C is postively
ionized, and 2 where A is). (For example, A and C can be transition metals,
and B a ligand.) Let’s further assume that A and C are locked in place, but B
can move along the line connecting them.

The key is that in states 1 and 2 the equlibrium bond-distances will be
different. The equilbirum distances in electronic state 1 are schematically :

A+ − B − − − C

and in state 2 the equilibrium configuration is

A − − − B − C+.

Define a difference-distance

x = distance(BC)− distance(AC). (24.1)

In eletctronic state 1 the equilbirum atomic configuratin is at positive x,labeled
x.1 –positive since the BC distance is larger than the AB distance. (Similarly,
for state 2 the equlirbrium will be at a negative x, labeled x2. )

In electronic state 1 we’ll call the energy of the electrons V1(x) ; the label is
“V” since, as we learned talking about Born Oppenheimer systems, the electronic
energy (including the nucleus-nucleus repulsion) is the potential energy which
the nuclear coordinates feel.

Now near a minimum, every function looks like a parabola; so the energy
when the system is in electronic state “1” is approximated as a parabola in x

V1(x) = ε1 +
κ

2
(x− x1)2, (24.2)

where κ is the force constant, and V1eq the electronic energy of state 1 in its
equilibrium configuration. Similarly, if the electronic configuration is “2” then

V2(x) = ε2 +
κ

2
(x− x2)2. (24.3)

Note that we assume that the force constant is the same in both cases, but the
potential minima do not have to match when the system is heterogenous.
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The Figure below (taken from Schatz and Ratner, Chap. 10) exemplifies
the equations (note that V1(x) and V2(x) are labeled in the figure as VL(x) and
VR(x).

In the figure, note, for example, that when the system is in electronic state
“1” (i.e., A is in its cation form, A+) but the position is x2 (so B is close to C)
then the potential is large, i.e., the electronic energy V1(x2) is high, much more
positive than V1(x1),

V1(x2) > V2(x2). (24.4)
In our previous notation (see the chapter on non-adiabatic dyamics), the

V1(x) and V2(x) are the diagonal elements of the diabatic potentials.
The combined wavefunction has two degrees of freedom associated with it,

the electronic state and the nuclear coordinate x, so it is labeled as Ψi(x), i =
1, 2. The full Hamiltonian contains therefore both the electronic two-state part
from and also a part associated with the kinetic.

The part of the Hamiltonian associated with the two electronic states (for
a fixed nuclear coordinate, x) is just the 2-2 diabatic matrix from Eq. (20.10)
which becomes now, for every given atomic configuration (i.e., every given
x) (

H11 H12

H21 H22

)
≡
(
V1(x) J
J V2(x)

)
(24.5)

(Note that “a” and “b” from before are replacted here by “1” and “2”). Here,
J is the coupling matrix element between the electronic states, J ≡
H12 = H21 . We’ll assume it is distance independent (i.e., independent of x).
Further, we’ll consider the case the Γ is small, i.e., very little coupling between
the electronic states. This is labeled as “non-adiabatic” case.

In addition to this matrix (coupling the electronic states) the Hamiltonian
also contains a kinetic energy term, associated with x; this term is p2

2m where
“p” is the mometnum associated with x,and “m” is generally a “reduced-mass”.
Here it is related to the mas of atom B (there’s a factor of 2 we wont discuss).
So the total Hamiltoian is then
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H =
p2

2m
+

(
H11 H12

H21 H22

)
=

p2

2m
+

(
V1(x) J
J V2(x)

)
. (24.6)

Let’s plug in the expression for V1(x), V2(x) :

H =
p2

2m
+

(
H11 H12

H21 H22

)
=

p2

2m
+

(
1
2κ(x− x1)2 0

0 1
2κ(x− x2)2

)
+

(
ε1 J
J ε2

)
.

(24.7)
Now let’s define as usual for harmonic oscilators ω ≡

√
κ/m, so κ = mω2;also

let’s define the equilibrium shift as xd = x2 − x1 and shift the coordinate x →
x− x1. Then

H =
p2

2m
+
mω2

2

(
x2 0
0 (x− xd)2

)
+

(
ε1 J
J ε2

)
(24.8)

This Hamiltonian is almost, but not yet, ready for perturbation theory.
That’s because in perturbation theory we need to have a solvable zero-order
Hamiltonian, and a perturbation. Due to the “x − xd” term even the 0-order
Hamiltonian (i.e., without Γ, no coupling) is not yet a simple addition of an
x-related part and an x-independent electronic state part.

So we’ll need an insert to introduce a transformation that will do the job:

24.2 Insert: Canonical Transformations
Canonical transformations: general

We explained earlier that in QM only expectation values are measurable. There-
fore, we can “rotate” wavefunctions and “rotate” operators such that the expec-
tation value will be the same.

Specifcially, given a wavefunction |Ψ〉,we can define a “rotated” wavefunction,

|Ψ′〉 = D|Ψ〉 (24.9)

where D is any unitary operator. The new wavefunction will have the same
norm as the old one, since D is unitary (prove!). Note that from the definition
of a conjugate operator, the associated bra is

〈Ψ′| = 〈Ψ|D+. (24.10)

Operators are transformed similarly. Any operator Z will become now

Z ′ = DZD+ (24.11)

Note that the physical quantity, expectation values, are indeed conserved

〈Ψ′|Z ′|Ψ′〉 =
(
〈Ψ|D+

)
DZD+ (D|Ψ〉) = 〈Ψ|D+DZDD+|Ψ〉 = 〈Ψ|Z|Ψ〉,

(24.12)
Q.E.D.
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Reminiscient of the transformation from Schrödinger to Heisenberg
represenations

If the previous discussion looks familiar, there’s a good reason for it. We used a
particular canonical transformation earlier when we talked about moving from
the Schrödinger to the Heisenberg representations. To remind you, first recall
that the Schrödinger wavefunction is by definition (assuming a time-independent
Hamiltonian): |Ψ(t)〉 = e−iHt|Ψ(0)〉. We will define in this case D = eiHt. Then

|Ψ′(t)〉 = D|Ψ(t)〉 = eiHt|Ψ(t)〉 = eiHte−iHt|Ψ(0)〉 = |Ψ(0)〉 (24.13)

i.e., as we recall, the wavefunction does not change in the Heisenberg repre-
setantion; but in the Heisenberg representaiton operatrs do, Z ′ = DZD+ =
eiHtZe−iHt.

Time-independent D

The subscection above was an insert relating to stuff you learned earlier. Hence-
forth, we’ll only consider canoncial transformation operators (D) that are time-
indepdent.

If D is time-independent, then the Schrödinger equation for |Φ(t)〉 will be-
come a Schrödinger equation for |Ψ(t)〉,but with a rotated Hamiltonian,

H ′ = DHD+. (24.14)

In other words, conviniently, the original Schrödinger equation is converted to
an analogous equation for the rotated funciton:

i
∂|Ψ〉
∂t

= H|Ψ〉 → i
∂|Ψ′〉
∂t

= H ′|Ψ′〉. (24.15)

Proof: multiply the original Schrödinger Eq. by D

i
∂|Ψ′〉
∂t

= i
∂D|Ψ〉
∂t

= iD
∂|Ψ〉
∂t

= DH|Ψ〉 = DHD+D|Ψ〉 = H ′D|Ψ〉 = H ′|Ψ′〉
(24.16)

That’s it.

Translation operator

Why would we even want to do a canonical transormation? Since in some cases
it can simplify the form of the Hamiltonian, or at least of some parts of it.

To warm-up, let’s consider not an electron transfer but a simpler example
of a single electronic state (that depends on x). The transformation we will use
often isD = eiαp where α is a constant and p is the momentum operator. I claim
that this transformation gives a very nice result: it translates the wavefunction
by a constant:

|Ψ〉 = eiαp|Φ〉 → Ψ(x) = Φ(x+ α) (24.17)
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Proof (omiting the “ket” symbols):

Ψ(x) = eiαpΦ = eiα(−i ddx )Φ(x) = eα
d
dxΦ(x) =

(1 + α
d

dx
+
α2

2

d2

d2x
+ ...)Φ(x). (24.18)

i.e.,

Ψ(x) = Φ(x) + α
d

dx
Φ(x) +

α2

2

d2Φ(x)

d2x
+ ... = Φ(x+ α) (24.19)

where the last equality is simply the Taylor expansion theorem. Q.E.D!
So we saw what does D = eiαp does to a wavefunction. Next, we need to

do the canonical transformation on operators. Intuitviely, we know the answer:
doing a canonical transformation with the translation operator, will modify any
operator so that it now refers to a shifted coordinate, i.e., x→ x+ α,i.e.,

x′ = x+ α (Intuitively). (24.20)

Let’s prove this assertion. First, the definition:

x′ ≡ DxD+ = eiαpxe−iαp. (24.21)

Next, differentiate the operator x′ w.r.t. α (since x′ depends on α) :

dx′

dα
=
deiαpxe−iαp

dα
=
deiαp

dα
xe−iαp + eiαpx

de−iαp

dα

= ieiαppxe−iαp − ieiαpxpe−iαp = ieiαp[p, x]e−iαp = ieiαp(−i)e−iαp (24.22)

i.e.,
dx′

dα
= 1 (24.23)

and since x′(α = 0) = x,it follows that

x′ = x+ α. (24.24)

Translating a parabolic potential energy (still for 1 electronic state)

Next, let’s apply the canonical transformation to a potential energy of the form

V =
mω2

2
(x− xd)2. (24.25)

After the transformation, the potential will be

V ′ =
mω2

2
D(x− xd)2D+ =

mω2

2
D(x− xd)D+D(x− xd)D+

=
mω2

2
(x′ − xd)2 =

mω2

2
(x+ α− xd)2 (24.26)
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where we used

D(x− xd)D+ = DxD+ − xdDD+ = x′ − xd.

So far α was arbitrary, let’s choose α = xd. Then

V ′ =
mω2

2
x2. (24.27)

I.e., the canonical transformation shifted the potential minimum, as expected.

Finally: applying the canonical transformation to the electron-transfer
problem.

Recall that for the electron-transfer problem:

H =
p2

2m

(
1 0
0 1

)
+
mω2

2

(
x2 0
0 (x− xd)2

)
+

(
ε1 0
0 ε2

)
+

(
0 J
J 0

)
(24.28)

where we now split the coupling term, since it is the “perturbation” that couples
the two electronic state. Further, the x-kinetic energy term p2/2m, is multiplied
by the identity matrix as far as the electronic states, i.e.,

p2

2m
≡ p2

2m

(
1 0
0 1

)
(24.29)

We now need to shift the potential minimum so that it is the same for both
states. Therefore, D should be now a 2*2 operator-matrix

D =

(
1 0
0 eipxd

)
(24.30)

so

D+ =

(
1 0
0 e−ipxd

)
and recall that here p is an operator and xd is a constant.

Side-note: this transformation matrix (and the associated math) is called
in the literature the polaron transformation, since it depends on the vibra-
tional shift associated with changing electronic state, which is essentially what
a polaron it.

To continude Let’s apply:

H ′ =
p2

2m
D

(
1 0
0 1

)
D+ +

mω2

2
D

(
x2 0
0 (x− xd)2

)
D+

+D

(
ε1 0
0 ε2

)
D+ +D

(
0 J
J 0

)
D+ (24.31)
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i.e., since D and D+ are diagonal, then two of the four terms are unchanged,

H ′ =
p2

2m

(
1 0
0 1

)
+
mω2

2

(
1 ∗ x2 ∗ 1 0

0 eipxd(x− xd)2e−ipxd

)
+

(
ε1 0
0 ε2

)
+D

(
0 J
J 0

)
D+ (24.32)

Now by construction eipxd(x − xd)2e−ipxd = x2. We’re left with the coupling
term:

D

(
0 Γ
Γ 0

)
D+ =

(
1 0
0 eipxd

)(
0 J
J 0

)(
1 0
0 e−ipxd

)
=

(
0 J

Jeipxd 0

)(
1 0
0 e−ipxd

)
=

(
0 Je−ipxd

Jeipxd 0

)
, (24.33)

and therefore the shifted Hamiltonian is now:

H ′ =
p2

2m

(
1 0
0 1

)
+
mω2

2

(
x2 0
0 x2

)
+

(
ε1 0
0 ε2

)
+

(
0 Je−ipxd

Jeipxd 0

)
(24.34)

which gives the final form, with the rotated Hamiltonian being a sum of sepa-
rable and perturbation terms:

H ′ = H0 + JH1, (24.35)

where the 0-order Hamiltonian is a combination of a vibrational part and two-
level constant diagonal part

H0 = Hv +

(
ε1 0
0 ε2

)
(24.36)

Hv =
p2

2m
+
mω2x2

2
, (24.37)

while the perturbation operator (multplied by J, the coupling strength) is

H1 =

(
0 e−ipxd

eipxd 0

)
. (24.38)

In this form, we can finally apply perturbation theory.
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24.3 Perturbation theory applied to electron-transfer.
Eqs. (22.40),(22.41), (22.45) were the highlight of perturbation theory as dervied
in an earlier chapter. We can adopt them here, with the role of b (the strength
of the perturbation) taken by J , the coupling matrix element, and F and G,
the initial and final states, replaced by “1” and “2”, and “H” replaced by H0

Γ2←1 =
|J |2

Q

ˆ ∞
−∞

eiωtC(t)dt (24.39)

and µ, the coupling matrix element, replaced by S ≡
(

0 0
eipxd 0

)
, the exchage

operator coupling the states (and its conjugate):

C(t) ≡ Tr
(
S(t)S+e−βH0

)
= Tr

(
eiH0tSe−iH0tS+e−βH0

)
(24.40)

i.e.,
C(t) = Tr

(
eiHvteipxde−iHvte−ipxde−βHv

)
ei(ε1−ε2)t. (24.41)

Note that the electronic state part comes out of the expression; this is because in
the trace in the previous equation, the eiH0t operator acts on the starting state,
“1”, so the electronic state part gives eiε1t and due to the exchange operator
S acting in front of e−iH0t,this exponential refers to the ending state, “2” so a
factor of ei(ε1−ε2)t is picked up. This would have been apparent if we did a more
careful derivation, but there’s so much math already so I skipped a step.

Note: S has nothing to do with “S-matrix”, we dont have enough
letters.

The trace in the last equation is written solely in terms of a Harmonic oscillator.
I’ll just start the derivation it up to you to work out (with guidance) some part
of this trace, and just quote the final result.

The math derivation starts from

Hv = ω

(
b+b+

1

2

)
(24.42)

where
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25 Path Integrals and Green’s functions

Short time propagator
We’ll now do a break from “traditional chemical physics” to a very important
topic that grew even more important in chemical physics in the last two decades,
as we’ll see later.

To understand path-integrals, consider the time-dependent Schrodinger equa-
tion, for a general particle (for now a single 3-dimensional of mass “m”, but it
could be a wavefunction of N particles, i.e., a function of 3N coordinates):

∂|ψ(t)〉
∂t

= −iH(t)|ψ(t)〉 (25.1)

where we’ll use later H(t) = p2

2M + V (r,t), i.e., a kinetic plus a potential (which
can be time-dependent in the general case). Let’s discretize the Schrödinger
equation as

∂|ψ(t)〉
∂t

' |ψ(t+ dt)〉 − |ψ(t)〉
dt

(25.2)

(where “dt” is assumed tiny but fixed, i.e., not smaller and smaller). So putting
together the last two eqs. gives:

|ψ(t+ dt)〉 − |ψ(t)〉 = −iH(t) · dt · |ψ(t)〉 (25.3)

i.e.,

|ψ(t+ dt)〉 = (1− iH(t) · dt) |ψ(t)〉 (25.4)

which we rewrite to first order in dt (valid since dt is small) as

|ψ(t+ dt)〉 = e−iH(t)dt|ψ(t)〉 (25.5)

Note that we already saw this relation when we talked about time-independent
Hamiltonian, when H was not dependent on time, but it is valid in general.

There are two intertwined ways to proceed from this simple yet fundamental
relation: path integrals and Green’s functions. We’ll derive first Green’s
functions.

Recall the completeness relation
ˆ
|r0〉〈r0|dr0 = 1 (25.6)

where r0 is a 3-dimensional coordinate, or a 1-dimensional one, or even a 3N
dimensional one. Insert it to the equation above, to get

|ψ(t+ dt)〉 =

ˆ
e−iH(t)dt|r0〉〈r0|ψ(t)〉dr0 (25.7)

Not surprisingly, we’ll now dot product with a bra of a general position, that
will be labeled 〈r1| . Then:
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〈r1|ψ(t+ dt)〉 =

ˆ
〈r1|e−iH(t)dt|r0〉〈r0|ψ(t)〉dr0. (25.8)

By writing ψ(r0, t) ≡ 〈r0|ψ(t)〉 we get the general relation relating the
value of a wavefunction in a general grid point after time dt to its
value at the starting time

ψ(r1, t+ dt) =

ˆ
G(r1, t+ dt; r0, t0)ψ(r0, t0)dr0, (25.9)

where we introduced the time-dependent Green’s function, i.e., the “Ker-
nel” which relates the wavefunction at later times and a different position to all
the values of the wavefunction at the earlier time. You can think of this last
equation as the definition of the Green’s function. (Its value of course
is: G (r1, t+ dt, r0, t) = 〈r1|e−iH(t)dt|r0〉 which we’ll evaluate later.)

Time-dependent Green’s function in general
Let’s digress a little to discuss the time-dependent Green’s function. In gen-
eral, i.e., not only for a short time difference, the Green’s function is
defined as the Kernel relating the value of the function at one time
point to another at an earlier time, i.e., in general

ψ(r1, t1) =

ˆ
G(r1, t1; r0, t0)ψ(r0, t0)dr0. (25.10)

A (time-dependent) Green’s function G(r1, t1, r0,t0) can be thought of
as: what will be the value of the wavefunction at a time t1 and a
position r1 if at time t0 it is a delta-function localized at r0.

Proof: if ψ(r, t0) = δ(r − r1), then (we now use r as dummy index):

ψ(r1, t1) =

ˆ
G(r1, t1; r, t0)ψ(r, t0)dr =

ˆ
G(r1, t1; r, t0)δ(r − r0)dr = G(r1, t1; r0, t0).

(25.11)

Another interesting property expresses mathematically Huygens principle, which
states that any given (intermediate) moment we can imagine that a “sends” am-
plitude forward from any given point.
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Mathematically:

G(r2, t2, r0, t0) =

ˆ
G(r2, t2, r1, t1)G(r1, t1; r0, t0)dr1 (25.12)

i.e., the Green’s function is an accumulation of propagation to an interme-
diate time step, and propagating from that time-step to a later time. See more
pictures in class.

Proof: Let’s assume again that ψ (r, t0) = δ(r − r0),and insert to the defs.
(we replace again r0 by r as the dummy variable):

ψ (r2, t2) =

ˆ
G(r2, t2; r, t0)ψ(r, t0)d r =

ˆ
G(r2, t2; r, t0)δ(r − r0)dr = G(r2, t2; r0, t0)

(25.13)
And similarly,

ψ (r1, t1) = G(r1, t1; r0, t0). (25.14)

But we know that, by definition,

ψ (r2, t2) =

ˆ
G(r2, t2; r1, t1)ψ(r1, t1)dr1. (25.15)

so inserting the last equation gives

ψ (r2, t2) =

ˆ
G(r2, t2; r1, t1)G(r1, t1; r0, t0)dr1 (25.16)

The Magenta-colored terms all match, which proves the Huygens principle.

Back to Short-time propagator: toward path integrals.
As we saw earlier, the value of the Green’s function is:
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G(r1, t+ dt; r0, t) = 〈r1|e−iH(t)dt|r0〉. (25.17)

Let’s evaluate it. We know that (we suppress the “t” dependence of V and
H):

e−iHdt = e
−i

(
p2

2M +V
)
dt ' e−iV dt

2 e−i
p2

2M dte−iV
dt
2 +O(dt3) (25.18)

where the meaning of this last O(dt3) is that we can break the exponential
to separate exponentials, and the error order will be much tinier than linear in
dt (i.e., if we make dt smaller by 10, the error in the expression above goes down
by 1000). We saw similar relations in 115a/215a, and if you don’t believe me
expand both sides to 2nd order and match the 0th, 1st and 2nd order term one
by one.

BTW, the symmetric splitting which we did, (where we did an
exponential of −iV dt/2 to the left and the right of the kinetic-energy
exponential) leads to an excellent third-order-error expression; if we
did a non-symmetric splitting the order would not be so tiny, i.e.,

e
−i

(
p2

2M +V
)
dt ' e−i

p2

2M dte−iV dt +O(dt2)

Inserting we get

G(r1, t+ dt; r0, t) = 〈r1|e−iV
dt
2 e−i

p2

2M dte−iV
dt
2 |r0〉 =

〈r1|e−iV (r1) dt2 e−i
p2

2M dte−iV (r0) dt2 |r0〉 =

e−i
V (r1)+V (r0)

2 dt〈r1|e−i
p2

2M dt|r0〉. (25.19)

Let’s calculate the generic matrix element by introducing a resolution of
identity:

´
|p〉〈p|dp (note: p here is a dummy index showing the eigenvalue of

the momentum operator; in the equation above p2/2M indicated the momentum
operator squared):

〈r1|e−i
p2

2M dt|r0〉 =

ˆ
〈r1|p〉〈p|e−i

p2

2M dt|r0〉dp

=

ˆ
e−i

p2

2M dt〈r1|p〉〈p|r0〉dp =
1(

(2π)
3/2
)2

ˆ
eip·r1e−i

p2

2M dte−ip·r0dp

=
1

(2π)
3

ˆ
eip·(r1−r0)e−i

p2

2M dtdp (25.20)

But we learned before about the Gaussian integral (all integrals go from
minus infinity to infinity), which in 3D reads:
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ˆ
e−

ay2

2 eib·ydy =

(
2π

a

)3/2

e−
b2

2a . (25.21)

We can then apply it to our formula, setting b = (rt+dt − rt),a = idt
M , and

y = p, to get (using − 1
i = i):

〈r1|e−i
p2

2M dt|r0〉 =
1

(2π)
3

(
2π

a

)3/2

e−
b2

2a = Cei
M(r1−r0)2

2 dt (25.22)

where

C ≡
(
iM

2πdt

)3/2

(25.23)

You may worry that there’s a mathematical problem in applying the
Gaussian-integral formula due to the “i” in e−i

p2

2M dt, which means
that for large p the exponential doesn’t fall to 0 but just oscillates
faster and faster,; luckily it all works out.

Together we get

G(r1, t+ dt; r0, t) = 〈r1|e−iH(t)dt|r0〉 = Ce−i
V (r1)+V (r0)

2 dtei
M(r1−r0)2

2 dt

=Ce
i

(
V (r1)+V (r0)

2 −M(r1−r0)2

2 dt2

)
dt

(25.24)

where in the last term we divided and multiplied by dt.
Further, let’s think of (r1, t+ dt), (r0, t) as a single segment (see Figure);

then the velocity in the segment will be

v(t→ t+ dt) ' r1 − r0

dt

Therefore, we write

〈r1|e−iH(t)dt|r0〉 = CeiS(t→t+dt) (25.25)
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where we defined the action of the segment as

S(t→ t+ dt) =

((
V (r1) + V (r0)

2

)
− M

2
v2

)
dt (25.26)

i.e., it is essentially the average potential along the segment minus the
kinetic energy. Those of you who took analytical mechanics will recognize
it as the Lagrangian of the segment times dt, which is the action of the
segment. We’ll see more soon.

Path Integrals
Let’s now use the formula we learned to break a finite-time Green’s function
to a product of many intermediate ones. Specifically, assume we start at a time
“t0” and end up at a time “t′” and break the time-difference into N segments dt
such that t′ − t = N · dt, i.e., define

t0 = t, t1 = t+ dt, t2 = t+ 2dt, ...tN = t′ = t+N · dt (25.27)

Let’s further assume for simplicity that the potential is time-independent;
the formulae trivially generalize to the the time-dependent case, as we’ll present
later.

Then, the Green’s function between two space-time points, label r0, t0 and
r′, t′, becomes

G(r′, t′; r0, t0) = 〈r′|e−iH(t′−t0)|r0〉 = 〈rN |e−iH(N ·dt)|r0〉
= 〈r′|e−iHdte−iHdt...e−iHdt|r0〉. (25.28)

Now comes the crucial part. Insert N − 1 times the resolution of identity,
1 =
´
|r〉〈r|dr, into the expression above (each time labeling it differently, OK

since it is a dummy index). Further, label the position r′ as rN :

〈rN |e−iH(t′−t)|r0〉 =ˆ ˆ
...

ˆ
〈rN |e−iHdt|rN−1〉〈rN−1|e−iHdt|rN−2〉〈rN−2|...|r1〉〈r1|e−iHdt|r0〉dr1 dr2...drN−1

(25.29)

Note: we can think of the relation above as nothing more than a
multi-step representation of the Huygens principle, i.e.,

G(rN , tN ; r0, t0) =ˆ ˆ
...

ˆ
G(rN , tN ; rN−1, tN−1)G(rN−1, tN−1, rN−2, tN−2)....G(r1, t1; r0, t0)dr1 dr2...drN−1

(25.30)
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End of note.

The expression above the note can be reworked using the single time-step rela-
tion we proved above (the Green-color equation) to be

〈rN |e−iHT |r0〉 = CN−1

ˆ ˆ
...

ˆ
eiSdr1 dr2...drN−1 (25.31)

where we defined the action of the trajectory as

S =

(
V (r0)

2
+ V (r1) + ...+ V (rN−1) +

V (rN )

2

)
dt

− M

2

((
rN − rN−1

dt

)2

+

(
rN−1 − rN−2

dt

)2

+ ...+

(
r1 − r0

dt

)2
)
dt (25.32)

Now let’s think of the whole set (r0, t0), (r1, t1), (r2, t2)..., (rN−1, tN−1), (rN , tN )
as a (multi-segment) trajectory, see the attached figure. Then the veloc-
ity of each segment is simply, as we saw, the position difference over dt,
vtj−1→tj = (rj−rj−1)/dt, so

S =

(
V (r0)

2
+ V (r1) + ...+ V (rN−1) +

V (rN )

2

)
dt

− M

2

(
v2
t0→t1 + v2

t1→t2 + ...+ v2
tN−1→tN

)
dt (25.33)

i.e., it is made from summation (i.e., integration) over potential terms minus a
summation (integration)of the kinetic energy.

Formally,the “action” S is then the integral over time of this multi-
segment expression

S '
ˆ tN

t0

(V −K) dt =

ˆ t+T

t

Ldt (25.34)

where the Lagrangian, as we mentioned, is defined here as the potential minus
the kinetic energy (in other cases it is more complicated, but the relation S =´ t+T
t

Ldt is always valid).

Note: that the Lagrangian and therefore the action depends on the
trajectory; we write it as

L = L (r(t), ṙ(t)) = V (r(t))−K (ṙ(t)) = V (r(t))− M

2
ṙ(t)2

(25.35)
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We end up with a very enticing expression:

G(rN , tN ; r0, t0) = C ′
ˆ
ei
S
h̄Dr (25.36)

where we reinserted h̄, and where Dr is an abbreviation for an integral over the
trajectory that starts at r0, t0 and ends at r;t′, i.e.,

D r ≡ dr1 dr2...drN−1 (25.37)

Thus, the quantum mechanical transition amplitude from one point
r0 at a starting time to a final point r′ at a later time t′ is the sum of
the exponentials of the action of all possible trajectories between these
points.

Note: you may be unhappy that we considered non-smooth multi-
segment trajectories; the theory is as easily written in terms of
smooth trajectories, but we wont dwell on it.

The important thing to note is that this is the sum over all possible trajecto-
ries, that in general will not not fulfill Newton’s relation (will not conserve
energy even if the potential is time-independent, etc.).

Time-dependent Potentials

Our derivation was for a time-independent potential, but it is valid in general,
i.e., the potential appearing in the Lagrangian can depend on time explicitly
(e.g., as in lasers). We then write:

L = V (r(t), t)− M

2
ṙ2 (25.38)

Classical mechanics and path integrals

Unfortunately it is impossible to numerically sum the exponential of the action
of each trajectory, due to the “i” in the exponent. In fact, the more refined time
step we become, the worse the oscillations become!
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Thus these so-called “real-time” path integrals (we’ll explain the name below)
have become in practice primarily a tool to build approximations from.

The simplest such approximation is classical mechanics of course, and its
“semi-classical” extensions.

Specifically, it is possible to show (see an analytical mechanics course) that a
classical mechanics trajectory (i.e., fulfilling Newton’s equation) that starts
and ends at the required points will extremize the action. Therefore, the
contribution of trajectories that are close to a classical trajectory will
add up in phase. Therefore, in many cases classical trajectories dominate
the Green’s function. This is the reason that the limit of quantum mechanics
is classical mechanics. The field explaining (and building on) this is called semi-
classical quantum mechanics.

I don’t want to spend too much time on this, so I just show you some figures
to help understanding this concepts. But this is a very rich field (that many a
brilliant scientist sank their career in...) so if it interests you I’ll be happy to
give some references.

Temperature-Based Path Integrals
Interestingly (and very importantly) the path integral concept carries to ther-
modynamics. You may have seen it is you took/are taking statistical mechanics,
but the more times you see the merrier.

Specifically, the temperature Green’s function is defined as

G(r′, r0;β) = 〈r′|e−βH |r0〉 (25.39)

where β = 1/(kBT ). Thus, it looks just like the quantum mechanics expression,
except that we replaced it by β.

This is often called imaginary time expression, since e−βH =
e−iτH , if we define t̄ = iβ, i.e., this “time” t̄ is imaginary.
(And therefore the expressions we had earlier are called real-time
expressions.

We can repeat the math from the previous section and we’ll end up with a very
similar (but numerically much better!) expression,

G(r′, r0;β) = C ′
ˆ
e−SEDr (25.40)

where SE is the Euclidean action,

SE =

ˆ β

0

(
V (r(τ)) +

1

2M

(
dr

dτ

)2
)
dτ (25.41)

i.e., the Euclidean action is the integral of the local kinetic energy plus local po-
tential energy, i.e., the local total energy, when averaged over the full trajectory
r(τ) where τ is an intermediate “time” that goes from 0 to β.
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Numerically, since all contributions are positive, the “boxed” equation above
is very convenient and can be sampled by Monte-Carlo techniques.

Note that the reason the kinetic energy has the same sign as the
potential energy in the Euclidean action can be traced back to the
Gaussian integral, which is the analog of Eq. (25.21), but without
the i, i.e., the matrix element of 〈rt+dt|e−

p2

2M dτ |rt〉.

Qualitative example for a matrix element with the Euclidean action:
tunneling through a barrier.

Let’s consider a simple exam, tunneling through a barrier in a double-well system
(see figure). This could represent the potential for proton transfer, or organic
reactions, etc.

Let’s consider a “transfer” matrix element of a generic form

G(rR, rL;β) = 〈rR|e−βH |rL〉 = C ′
ˆ
e−SEDr (25.42)

where rL, rR are generic positions on the right and left well. This matrix element
is a sum over all trajectories that start at the left well position and end up at
the right well position (and therefore transfer over the barrier at least once).

Let’s see qualitatively which trajectories will have the least action, i.e., the
least average energy.

• The least “kinetic energy” trajectory is one that over “β” transfers, at the
same pace, from left to right (see Figure XXX) i.e., a constant “velocity”
trajectory.

rleast KE(τ) = rL +
τ

β
(rR − rL) (25.43)

Note that rleast KE(τ = 0) = rL, and rleast KE(τ = β) = rR, as required.
The problem with the least-kinetic-energy trajectory is that the particle
spends too-long-a-time in the middle near the barrier peak, where the
potential energy is very high
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• It is possible to get much lower action if we take a trajectory where the
particles spend a lot of time near the left and right well, and
quickly transfer from one well to the other in a short time (see
figure below). The particles will have a higher kinetic energy then the
“constant-velocity” trajectory, but this is well compensated by the reduc-
tion of time that the particle spends in the high-potential region.
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26 Some Interesting topics:
Here’s a list of some interesting topics, which if time permits we’ll discuss one
or two of them, but you should pursue yourself otherwise:

• Ring-polymer molecular dynamics

• Electron transfer

• Time-dependent Hartree-Fock

• Density matrices, Redfield equations (Lindblad approach)

• Green’s functions, GW, Bethe-Salpeter

• Raman Scattering and correlation functions

• Scattering

Conclusions
Overall, research in quantum chemistry is active and there is continuous progress
on many of these methods. As new computational tools and techniques are
developed, the balance shifts among the different approaches, and I urge you to
study and keep up with the developed methodology, and hopefully you can also
contribute to it one day!
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