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Mean-field dynamics with stochastic decoherence „MF-SD…: A new
algorithm for nonadiabatic mixed quantum/classical molecular-dynamics
simulations with nuclear-induced decoherence
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The key factors that distinguish algorithms for nonadiabatic mixed quantum/classical �MQC�
simulations from each other are how they incorporate quantum decoherence—the fact that classical
nuclei must eventually cause a quantum superposition state to collapse into a pure state—and how
they model the effects of decoherence on the quantum and classical subsystems. Most algorithms
use distinct mechanisms for modeling nonadiabatic transitions between pure quantum basis states
�“surface hops”� and for calculating the loss of quantum-mechanical phase information �e.g., the
decay of the off-diagonal elements of the density matrix�. In our view, however, both processes
should be unified in a single description of decoherence. In this paper, we start from the density
matrix of the total system and use the frozen Gaussian approximation for the nuclear wave function
to derive a nuclear-induced decoherence rate for the electronic degrees of freedom. We then use this
decoherence rate as the basis for a new nonadiabatic MQC molecular-dynamics �MD� algorithm,
which we call mean-field dynamics with stochastic decoherence �MF-SD�. MF-SD begins by
evolving the quantum subsystem according to the time-dependent Schrödinger equation, leading to
mean-field dynamics. MF-SD then uses the nuclear-induced decoherence rate to determine
stochastically at each time step whether the system remains in a coherent mixed state or decoheres.
Once it is determined that the system should decohere, the quantum subsystem undergoes an
instantaneous total wave-function collapse onto one of the adiabatic basis states and the classical
velocities are adjusted to conserve energy. Thus, MF-SD combines surface hops and decoherence
into a single idea: decoherence in MF-SD does not require the artificial introduction of reference
states, auxiliary trajectories, or trajectory swarms, which also makes MF-SD much more
computationally efficient than other nonadiabatic MQC MD algorithms. The unified definition of
decoherence in MF-SD requires only a single ad hoc parameter, which is not adjustable but instead
is determined by the spatial extent of the nonadiabatic coupling. We use MF-SD to solve a series of
one-dimensional scattering problems and find that MF-SD is as quantitatively accurate as several
existing nonadiabatic MQC MD algorithms and significantly more accurate for some problems.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2131056�
I. INTRODUCTION

One of the interesting features that distinguishes
condensed-phase chemical reactivity from that in the gas
phase is that condensed-phase systems often show strong
coupling between solute electronic states due to nonadiabatic
effects induced by motions of the solvent. This breakdown of
the Born-Oppenheimer approximation means that quantum-
mechanical dynamics must be governed by the time-
dependent Schrödinger equation �TDSE�, which is unfortu-
nate because fully quantum-mechanical calculations that
would allow us to understand the dynamics of such
condensed-phase systems are not yet computationally fea-
sible. This makes it desirable to develop computational strat-
egies that eliminate as many of the quantum-mechanical de-
grees of freedom as possible without sacrificing information
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about the physics of interest. The most common approach
lies in mixed quantum classical �MQC� simulations, which
treat most of the particles classically but maintain quantum
information about important degrees of freedom such as the
valence electrons or relevant vibrational modes of a solute
engaged in a chemical reaction �throughout this paper, we
will interchangably refer to quantum degrees of freedom as
“electronic” and also refer to classical degrees of freedom as
“nuclear” without loss of generality�. To this end, several
MQC molecular-dynamics �MD� algorithms for studying
condensed-phase nonadiabatic dynamics have been devel-
oped over the last 15 years.1–11

If the entire system �bath included� were treated quan-
tum mechanically, then dynamics calculated via the time-
dependent Schrödinger equation would be exact. However,
the presence of classical particles induces nonadiabatic cou-
pling that causes the TDSE to evolve pure wave functions
into quantum-mechanical superpositions, which are inher-

ently incompatible with classical mechanics: Mixed quantum
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states produce unphysical dynamics for the classical par-
ticles, leading to apparent paradoxes such as “Schrödinger’s
Cat.”12 Thus, in the asymptotic limit, only pure quantum
states are consistent with the presence of classical particles.
The act of collapsing a quantum superposition state to a pure
state is often viewed as a “measurement” of the quantum
subsystem by the classical subsystem; the measurement re-
solves the superposition into a pure state, and the classical
particles play the role of the observer. The fact that the pres-
ence of classical particles must eventually cause the reduc-
tion of the quantum wave function to a pure state is known
as quantum decoherence; von Neumann has pointed out that
decoherence is not time reversible,13 and Zurek has argued
that decoherence is caused only by the interaction of a quan-
tum superposition with a classical observer.14 How exactly
this process is introduced at the boundary of classical and
quantum mechanics is the key question facing nonadiabatic
MQC methods, which fundamentally rely on coexisting
quantum and classical subsystems.

Although we know of no formal way to derive decoher-
ence from the TDSE, we can justify why the classical de-
grees of freedom are what control quantum decoherence. If
we assume that the total system wave function at time
t , ���t��, can be written as a product of time-dependent
nuclear ���t�� and electronic ���t�� wave functions, and that
the electronic wave function ���t��=� jcj�t��� j�t�� can be
written as a linear combination of basis states ��� j�	, then the
total density matrix �̂�t� is

�̂�t� = ���t��
��t�� = ���t��
��t�����t��
��t��

= �
j,j�

„cj�
* �t�cj�t��� j�
� j��…„���t��
��t��… . �1�

The information about the relative phase �coherence� be-
tween different basis states is contained in the off-diagonal
�k�k�� elements of the total density matrix,15

�k,k��t� = ck�
* �t�ck�t�
�k�t����t��
��t���k��t��

� �k,k��t�Dk�t�Dk�
* �t� , �2�

where �k,k��t�=ck�
* �t�ck�t� is an element of the electronic den-

sity matrix at time t , ��k�t�� is the nuclear wave function as-
sociated with the electronic basis state ��k� at time t, and we
call the inner product Dk�t�= 
�k�t����t�� �and its complex
conjugate Dk�

* �t�� the decoherence function.16 Phase informa-
tion �coherence� is lost whenever any of the �k,k��t�=0, and
Eq. �2� shows that this can result either from electronic dy-
namics, when �k,k��t� decays to zero, or from nuclear dynam-
ics, when the decoherence function Dk�t� vanishes. For
condensed-phase systems in which there are many nuclear
degrees of freedom and only a few quantum degrees of free-
dom, the loss of nuclear overlap, i.e., the decay of Dk�t�, is
the dominant mechanism for decoherence.17 The decoher-
ence function measures the overlap of two initially identical
nuclear wave functions that propagate in time under the in-
fluence of different electronic wave functions; it will decay
when the electronic wave functions differ in any way. Once
the nuclear overlap has decayed, the off-diagonal elements of
ˆ
��t� must be zero, forcing the electronic wave function into a
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mixture of the pure basis states; the classical bath then se-
lects one of the pure states by making a measurement on the
quantum subsystem. Therefore, how the nuclear wave func-
tion is approximated in a MQC algorithm should determine
both how quantum phase information is lost and how differ-
ent quantum basis states are selected by the bath upon wave-
function collapse. This provides the definition of decoher-
ence that we will use throughout this paper and forms the
central idea for the development of our new nonadiabatic
MQC MD algorithm: decoherence is a bath-induced process
that results in total collapse of the quantum wave function to
a pure state.

In addition to incorporating decoherence in different
ways, MQC MD algorithms are distinguished by how
the quantum and classical subsystems are affected by
decoherence. The response of the classical subsystem to
decoherence is typically designed to conserve the total
�quantum+classical� energy, though this is not the only
option;6 the classical response to decoherence is discussed in
detail below in Sec. III A 2 for our new algorithm and in the
Appendixes for selected other MQC MD methods. For the
response of the quantum subsystem to decoherence, most
nonadiabatic MQC MD algorithms choose which pure state
to collapse to stochastically, so the effects of decoherence are
modeled as discrete “surface hopping” events between the
pure basis states.2–4 To do this, such algorithms often choose
a “reference” state, the last basis state to which the quantum
subsystem collapsed, which is treated differently from the
other quantum basis states. For algorithms that also use a
mean-field �MF� description of the electronic wave function,
the use of a reference state leads to two different responses
of the quantum subsystem to decoherence. When the TDSE
evolves the quantum wave function into a mixture or super-
position, surface hopping �i.e., nonadiabatic transitions� can
occur only to electronic states other than the reference state,
and the mixed electronic wave function can be resolved back
to the reference state only under special circumstances.4

Since the choice of a reference state is arbitrary, it is not
clear if collapsing preferentially away from �or toward� the
reference state provides accurate nonadiabatic quantum dy-
namics. Moreover, since collapses to and away from the ref-
erence state are triggered by different criteria, these MQC
MD algorithms are simultaneously employing more than one
definition of decoherence. Furthermore, some algorithms
also force the quantum subsystem to decohere by adding an
exponential decay term to the off-diagonal elements of the
electronic density matrix7,18,19 or by introducing surface hops
that occur over a finite length of time.7 The time constant for
the decay of the off-diagonal density-matrix elements or the
length of the surface hop introduces yet another criterion for
decoherence. Finally, one MQC MD algorithm starts from
the Lindblad equation for the time-irreversible evolution of
the quantum wave function, which leads to stochastic deco-
herence using the decoherence operator.20

In this paper, we present a new method for performing
nonadiabatic MQC MD, which we call “mean field with sto-
chastic decoherence” �MF-SD�, that is based on a unified
definition of decoherence: We choose a single collapse crite-

rion that is based on physical arguments and well-defined

AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



234106-3 Mean-field dynamics with stochastic decoherence J. Chem. Phys. 123, 234106 �2005�
assumptions about the nuclear wave function in Eq. �2�. We
will argue throughout this paper that with this approach, the
MF-SD algorithm provides a physically intuitive mechanism
for decoherence that is numerically accurate, computation-
ally efficient, and simple to employ. The rest of this paper is
organized as follows. In Sec. II, we outline the basic proce-
dures for performing MQC MD. In Sec. III A, we derive
from the nuclear overlap decoherence function Dk�t� �defined
in Eq. �2��, the relevant equations that form the heart of the
new MF-SD algorithm. We then present the rest of the equa-
tions underlying MF-SD, and in Sec. III B we give a point-
by-point outline of how to implement the MF-SD algorithm.
Section III C presents a comparison of MF-SD to other nona-
diabatic MQC MD algorithms, which are summarized in the
Appendixes, in terms of how they are implemented, their
computational efficiency, and the basic underlying physical
principles that each algorithm attempts to capture. In Sec. IV,
we use MF-SD to solve a variety of one-dimensional, two-
state scattering problems and we compare the MF-SD results
both to the exact quantum solutions and to the solutions ob-
tained by other MQC methods. Finally, we offer some con-
cluding remarks in Sec. V. We note that a detailed look at the
application of the MF-SD algorithm to condensed-phase
nonadiabatic dynamics, including an exploration of the re-
laxation dynamics of photoexcited solvated electrons in both
water and tetrahydrofuran, will appear in a forthcoming
paper.21 We suggest that readers new to MQC MD algo-
rithms first read Sec. II, then skip to the Appendixes, and
finally continue from Sec. III to the end.

II. REVIEW OF NONADIABATIC MIXED QUANTUM/
CLASSICAL MOLECULAR DYNAMICS
METHODS

We begin our discussion by exploring what makes a
MQC MD algorithm desirable and what goes into such an
algorithm. First, since MQC algorithms eliminate as many of
the quantum coordinates as possible, there must be a pre-
scription to allow the quantum and classical subsystems to
interact in a simple and meaningful way. This effective in-

teraction is usually treated via a pseudopotential V̂p�r ;R�,
which depends on both the quantal r and classical R coordi-
nates. Second, individual trajectories in MQC MD simula-
tions should be physically meaningful—that is, we expect a
good algorithm to produce fully coherent TDSE dynamics
with classical particles propagated in the presence of the
mixed, or mean-field �MF�, quantum state, at least over short
times.22 We also expect that a good nonadiabatic MQC algo-
rithm will require the quantum subsystem to resolve occa-
sionally to a pure state due to nuclear-induced decoherence,
as suggested by Eq. �2�. Third, the method should be able to
model nonadiabatic effects, such as transitions �surface hops�
between electronic states. Finally, any good MD algorithm
should conserve energy, be computationally efficient, and
produce quantitatively accurate quantum observables. In this
section, we discuss features common to all MQC MD algo-
rithms; specific algorithms are differentiated by their treat-
ment of decoherence and nonadiabatic transitions.
Any MQC algorithm starts with the eigenvectors and
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eigenvalues of the quantum subsystem. Although many alter-
natives exist, here we will assume the set of adiabatic basis
states,23 defined for each configuration of the classical par-
ticles. With this assumption, the properties of the quantum
subsystem are given by the time-independent Schrödinger
equation

Ĥ�r;R��� j� = � j�� j� , �3�

where the Hamiltonian Ĥ= Û+ T̂+ V̂p has adiabatic eigenval-

ues � j and eigenvectors �� j� , Û and T̂ are the quantum poten-

tial and kinetic-energy operators, and V̂p is the pseudopoten-
tial from the classical particles. The total electronic wave
function ��� can be written as a superposition of the basis
states,

��� = �
j

cj�� j� , �4�

where the cj are time-dependent expansion coefficients and
� j�cj�2=1. The dynamics of the quantum subsystem are gov-
erned by the TDSE,

i�
d���
dt

= Ĥ��� , �5a�

which, in turn, governs the evolution of the electronic
density-matrix elements. By inserting Eq. �4� into Eq. �5a�
and using the electronic density-matrix notation of Eq. �2�
with �kj =ck

*cj, the TDSE can be rewritten as2

i�
d

dt
�kj = �

l
��ljVkl − �

n

i�dkl
n · Ṙn�

− �klVlj − �
n

i�dlj
n · Ṙn�� , �5b�

where the sum on n runs over the classical nuclear coordi-

nates, Ṙn is the velocity of nucleus n, and the electronic
coupling Vij is given by

Vij = 
� j�Ĥ��i� . �6�

We note that Eqs. �4�, �5a�, and �5b� hold independent of the
choice of basis set, but the adiabatic basis provides the ad-
vantage of making Vij in Eq. �6� a diagonal matrix. In the
adiabatic basis, dij is the nonadiabatic coupling vector, which
causes mixing between the basis states and is given by

dij
n = 
� j��Rn

�i� , �7�

where �Rn
is the gradient with respect to the classical coor-

dinate R associated with nucleus n. In order to conserve the
total energy of the mixed quantum/classical system, the ef-
fect of the mixed or mean-field wave function ���t�� on the
classical particles is given by the Hellmann-Feynman �HF�
expression

Fn�t� = − �Rn

��t��Ĥ���t�� = 
��t�� − �Rn

V̂p���t�� , �8�

where Fn�t� is the force of the quantum subsystem on
nucleus n at time t, and the last equality in Eq. �8� holds
because the classical gradient does not affect either the quan-

tum kinetic or potential-energy operators. The HF force pro-
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vides feedback about the quantum dynamics to the classical
particles, allowing the subsystems to interact. The sum of the
classical forces and the HF force is then used by a classical
MD algorithm to determine new classical particle positions
at the end of each simulation step, and these new positions
determine the eigenvalues and eigenvectors of the quantum
subsystem through Eq. �3�. The most general formulation of
a coherent mixed quantum/classical MD simulation using the
adiabatic basis set is simply the repeated execution of the
above statements.

Finally, we note that the above expressions can also be
used to perform fully adiabatic dynamics. All that is required
is to set the expansion coefficients ci in Eq. �4� to zero for all
i except the state of interest, to set all of the nonadiabatic
coupling vectors dij in Eq. �5b� to zero, and to reduce Eq. �8�
to the adiabatic HF force

Fi
n�t� = 
�i�− �Rn

V̂p��i� . �9�

If, however, Eqs. �5a�, �5b�, and �6�–�8� are used for nona-
diabatic dynamics, then the algorithm that implements them
must also include a method for implementing nonadiabatic
transitions and decoherence. We have summarized the salient
features of several nonadiabatic MQC MD methods in the
Appendixes and Table I, and readers new to the field of
MQC MD are urged to read the Appendixes before moving

TABLE I. Comparison of features of the new algorithm introduced in this p
are summarized in the Appendixes. In each entry, MF abbreviates “mean field
dynamics.”

Algorithm Decoherence methods

FSSH
Ref. 2

Adiabatic trajectories; check
for surface hops after every
time step; swarm of trajectories
required; observables calculated
from averages of the
“reference state”

Fully coherent propagation
“fictitious” density matrix
each trajectory; coherence
lost only after the swarm
is averaged

SPSH
Ref. 3

Self-consistent propagation
with the Pechukas method;
observables calculated from
averages of the reference state

Fully collapse the wave
function to an adiabatic
state after every
simulation time step

MFSH
Ref. 4

Requires both a MF trajectory
and a reference trajectory and
both real and fictitious density
matrices; observables calculated
from averages of the
reference state

Density matrix remains
coherent until surface hop
or MF rescaling occurs;
MF rescale when mean-fie
and reference trajectories
diverge, Eqs. �C1� and �C2

FMS
Ref. 6

One semiclassical trajectory
spawns new trajectories
whenever the nonadiabatic
coupling strength is large;
observables calculated from
density matrix

Treatment of nuclear wave
function as frozen Gaussia
leads to realistic decoheren

MF-SD
�this work�

One MQC trajectory; stochastic
collapse of the MF wave function
based on nuclear-induced
decoherence; observables
calculated from density matrix

Total wave function collap
from superposition state
to adiabatic pure state,
Eq. �13�, based on
nuclear dynamics
on to Sec. III; further information about many nonadiabatic
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MQC MD algorithms is provided in an excellent review ar-
ticle by Drukker.24

III. MEAN-FIELD DYNAMICS WITH STOCHASTIC
DECOHERENCE „MF-SD…

In this section, we derive a new algorithm, called
MF-SD, which we believe contains a physically motivated
and accurate description of decoherence and combines the
best features of the methods discussed in the Appendixes
with minimal disadvantages and only a single ad hoc param-
eter. We will show below that although we have not been
able to derive a rigorous expression for this parameter, we
have found that its value is, in fact, defined by the system
being simulated and is not free.

A. The ideas underlying MF-SD

We start our development of MF-SD using the set of
adiabatic basis states and choosing the TDSE to govern the
dynamics of the MQC trajectories, resulting in a MF descrip-
tion for propagation of the electronic degrees of freedom in
the presence of the classical particles; in this way, each
MF-SD trajectory is physically meaningful. As we will dis-
cuss further below, decoherence of the electronic density ma-
trix is modeled in MF-SD simulations as an instantaneous,

MF-SD, to four other nonadiabatic mixed quantum/classical algorithms that
QC abbreviates “mixed quantum/classical,” and MD abbreviates “molecular

Surface switching Comments

Based on the rate of
change of diagonal elements
of the fictitious density matrix,
Eq. �A1�

Avoids chatter between states
that are no longer coupled, unlike
older surface hopping methods
�e.g., Ref. 10�

Transition probabilities between
adiabatic states based on overlap
between two states before and
after the simulation time step,
Eq. �B1�

Coherent evolution of the classical
and quantum particles, only for
short periods of time; Pechukas
force is nonlocal in time

Same as FSSH; check for SH
or possible MF rescaling after
every simulation time step

MF dynamics without self-consistent
forces, but requires 2 MQC trajectories
to be run simultaneously; id- and ad-
versions �Refs. 18 and 19� also damp
quantum phase

Multiple spawns on all of the
coupled electronic states allow
for bifurcation of electronic and
nuclear wave functions

Useful as an ab initio MD method;
allows for tunneling; very expensive
for condensed-phase applications

Decoherence induces collapse of
the MF wave function to a pure
state, which may or may not be
different than the original state

Lack of reference trajectory improves
efficiency; decoherence and surface
hops treated equally; accuracy
improved in 1D examples
aper,
,” M

of
for
is

ld

�

ns
ce

se
total collapse of the MF wave function to one of the adia-
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batic basis states. We choose to collapse to adiabatic states in
MF-SD because they are the eigenvectors that define the
quantum subsystem for frozen configurations of the solvent,
and since we take decoherence events in MF-SD to be in-
stantaneous, the classical subsystem is frozen during these
events. Thus, MF-SD assumes that decoherence is not basis
independent, a result that might be expected on physical
grounds. One difference between MF-SD and other nonadia-
batic MQC MD methods is that MF-SD is based on a single
criterion for instantaneous wave-function collapse, no matter
which pure state is selected. This is an advantage because
MF-SD does not require a reference state,2,4,5 multiple defi-
nitions of decoherence,4,7,18 or multiple simultaneous trajec-
tories for each classical initial condition.2,4,5,18,19 We will
show below that this choice also allows MF-SD to improve
upon other MQC MD methods in terms of computational
efficiency and, in most cases, accuracy.

1. Deriving a decoherence time for MF-SD

In this subsection, we derive an expression that deter-
mines the rate at which the classical particles induce deco-
herence and present a prescription for the response of the
quantum subsystem when a decoherence event takes place.
For MF-SD, we wish to choose a criterion based on the
decoherence function Dk�t� defined in Eq. �2�, which can be
rewritten as

Dk�t� = 
�k�t����t�� = 
��0��eiĤkt/�e−iĤt/����0�� , �10a�

where Ĥ is the Hamiltonian that evolves the full superposi-

tion electronic wave function and Ĥk is associated with
propagation on the kth adiabatic electronic surface. Equation
�10a� is similar to an expression studied by Neria and Nitzan
that involves the overlap of nuclear wave packets propagated
under the influence of two different adiabatic states,25

Dk,k��t� = 
��0��eiĤkt/�e−iĤk�t/����0�� . �10b�

The important distinction is that Dk�t� �Eq. �10a�� measures
the decay of nuclear overlap caused by propagation between
an adiabatic state and the full superposition state, whereas
Dk,k��t� �Eq. �10b�� measures the decay caused by propaga-
tion on two pure adiabatic states. Equations �10a� and �10b�
describe a process that begins with two identical �in initial
position, width, and momentum� nuclear wave packets, each
of which begins a trajectory on a different electronic state.
Since the electronic surfaces are distinct, as time passes, the
nuclear wave packets will eventually lose spatial and mo-
mentum overlap. For the case of propagation on two differ-
ent adiabatic states, Schwartz et al. used the frozen Gaussian
approximation26 for the nuclear wave function and expanded
Eq. �10b� at short times to calculate the decay of the nuclear
overlap.27 If we use the same approach27 and
approximations28 in Eq. �10a�, then Dk�t� can be rewritten as

Dk�t� � exp�− �
n

„Fn
„0… − Fk

n
„0……2

4an�2 t2� , �11�

where for each classical nucleus n at time zero, Fk
n�0� is the

n
adiabatic HF force from state k �Eq. �9��, F �0� is the full
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mean-field HF force �Eq. �8��, and an is the inverse of the
square of the width of the nth frozen Gaussian wave packet.
Since Dk�t� determines the decay of the off-diagonal ele-
ments of the total density matrix �Eq. �2��, we can use Eq.
�11� to define the decoherence time

�k
−2 = �

n

„Fn
„0… − Fk

n
„0……2

4an�2 , �12�

where �k is the characteristic time constant of the Gaussian
decay of Dk�t� that results from the fact that the nuclear
degrees of freedom diverge when propagated under the in-
fluence of adiabatic state ��k� instead of the full superposi-
tion state ���. Equation �12� defines a unique decoherence
time for each adiabatic state at every classical configuration;
this time depends on only a single parameter an, which de-
pends on the width of the frozen Gaussian chosen to repre-
sent nucleus n. In other applications of the frozen Gaussian
approximation, an is defined by the thermal de Broglie wave-
length of classical nucleus n,25 but we will argue in Sec.
IV D that for MF-SD this parameter is related to the spatial
extent of the nonadiabatic coupling and the instantaneous
de Broglie wavelength. In our view of decoherence, when
the nuclear overlap has decayed, the quantum subsystem
must collapse onto one of the adiabatic states; thus, we will
use �k to govern the total collapse of the quantum subsystem
and not just the decay of the off-diagonal elements of the
electronic density matrix. We choose 1/�k to serve as the
operative MF-SD definition of the rate for nuclear-induced
wave-function collapse �decoherence� to adiabatic eigenstate
k. With this choice, MF-SD does not distinguish between
decoherence and what others refer to as “nonadiabatic tran-
sitions.” The mean-field wave function can collapse to any of
the adiabatic states with the rates given by Eq. �12�.

To determine precisely when a collapse should occur in
MF-SD, we define the probability Pk for the mean-field wave
function to collapse to the kth adiabatic eigenstate as

Pk =
�kk

�k
dt , �13�

where we have multiplied the inverse of the decoherence
time by the simulation time step dt and weighted the prob-
ability by the population on state k , �kk. The weighting by
�kk makes the probability for collapse proportional to the
population of each adiabatic state in the full mixed wave
function, as is usually assumed in theories of quantum mea-
surement; in this way, the system is prevented from collaps-
ing to adiabatic eigenstates that have no amplitude. In the
limit that there is no decoherence, this choice recovers the
exact TDSE probabilities for fully coherent propagation. In
the MF-SD algorithm, we implement decoherence stochasti-
cally by comparing the probability computed from Eq. �13�
to a random number 	 chosen uniformly on �0,1� and we
force the wave function to collapse to adiabatic state k when-
ever Pk
	. When we force a collapse, we set all the ele-
ments �diagonal and off-diagonal� in the electronic density
matrix to zero, except �kk=1.29

In the event that collapses to more than one adiabatic

state are allowed �when 	 is less than 2 or more of the Pk’s�,
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which is a potential issue with any stochastic surface hop-
ping algorithm,2,4,7 we recast the probabilities relative to the
set of allowed collapses by

Tj = P�j + Cj−1, �14�

where

P�j = �Pj/Psum, j � allowed

0, j � allowed
� , �15�

with

Psum = �
j�allowed

Pj �16�

and

Cj = �
i=1

j

P�i. �17�

This ensures that the new set of probabilities Tj run from
�0,1�. We then choose a new random number on �0,1�, 	� and
require the quantum subsystem to collapse to state k when-
ever

Tk−1 � 	� � Tk. �18�

With these choices, collapses of the wave function in MF-SD
occur to each adiabatic state in a manner proportional both to
the population of that state in the full mixed wave function
and to how effective that state is in leading to the loss of
nuclear overlap.

We finish this subsection by examining the decoherence
time in more detail. Equation �12� says that decreasing the
nuclear frozen Gaussian width �i.e., making an larger� causes
the nuclear overlap to decay more slowly and thereby in-
creases the decoherence time, which at first seems counter-
intuitive. However, in the short-time expansion of Eq. �10a�
that leads to Eq. �12�, the position part of the frozen Gauss-
ian wave-packet overlap cancels to second order in time and
the force difference that remains arises from the momentum
part of the frozen Gaussians.27 Since the nuclear width in
position space is inversely proportional to the momentum
uncertainty, the wider the Gaussian wave packet is in posi-
tion space, the more quickly the overlap between nuclear
wave packets is lost. Thus, the decoherence rate we choose
for MF-SD, Eq. �12�, is actually a momentum-based crite-
rion.

2. Conservation of energy and “forbidden”
transitions in MF-SD

Now that we have introduced a new method for the
classical particles to induce collapses of the quantum wave
function, we turn in this subsection to the details of
how the classical subsystem responds to a decoherence
event. When the mixed wave function collapses to state k,
the quantum energy changes discontinuously from EMF

= 
��Ĥ��� to the adiabatic eigenvalue �k. To conserve the
total �quantum�classical� energy of the system in MF-SD,

we scale the classical kinetic energy in a manner similar to
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other MQC MD methods2,4 to compensate for the change in
quantum energy. After a decoherence event in MF-SD, the
classical velocities vn(t) become

v�n�t� = vn�t� − dk
n�t� , �19�

where instead of scaling the classical velocities along the
direction of the nonadiabatic coupling vector �Eq. �7�� as is
done in other algorithms, we scale the classical velocities in
the direction of an effective mean-field nonadiabatic coupling
vector

dk
n = �

i�k

�ii
�k��Rn
�i� = �

i�k

�iidik
n , �20�

which is the MF population-weighted average of the dik
n de-

fined in Eq. �7�.5 The scalar  in Eq. �19� is determined by
solving a quadratic equation based on the constraint that the
change in classical kinetic energy �KE� must be equal and
opposite in magnitude to the change in the quantum energy
�QE�:30

�KE = KEnew − KEold = − �QE = QEold − QEnew,

KEnew =
1

2�
n

mn„v�n…
2, KEold =

1

2�
n

mn„vn…
2, �21�

2

2 �
n

mn„dk
n
…

2 − �
n

mn„vn · dk
n
… + �QE = 0,

where �KE=−�QE is the difference between the classical
kinetic energy before �old� and after �new� the decoherence
event and mn is the mass of nucleus n. We choose to rescale
the classical velocities along the effective MF nonadiabatic
coupling vector �Eq. �20�� because only those classical mo-
tions with components along this vector cause the adiabatic
states to mix, so only these degrees of freedom should con-
tribute to the discontinuity in quantum energy.

Some collapses �decoherence events� lead to an increase
in the energy of the quantum subsystem, so it is possible for
the classical subsystem to have insufficient kinetic energy
along the effective nonadiabatic coupling vector to give to
the quantum subsystem. This means that the total energy
cannot be conserved for this event, and the upward quantum
transition is considered “forbidden.” Most MQC MD meth-
ods assume that such forbidden transitions correspond to
classical turning points,30 and in these instances, the classical
momentum is typically reversed along the direction of the
nonadiabatic coupling vector, leaving the quantum sub-
system unchanged. We note, however, that Müller and Stock
have argued that simply ignoring forbidden transitions and
not reversing the classical velocities leads to an improvement
in the accuracy of the calculated quantum branching ratios.31

As such, for MF-SD, we choose to ignore all forbidden tran-
sitions.

The issue of forbidden upward transitions also produces
the following conundrum. Suppose for a particular configu-
ration that both an upward transition, to state k+, and a down-
ward transition, to state k−, are allowed based on the random
number 	 and the probabilities in Eq. �13�. In MF-SD, we

recast the transition probabilities according to Eqs.
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�14�–�17�. If the upward transition is chosen by the second
random number 	� �see Eq. �18��, then the system should
collapse to state k+. If there is insufficient classical kinetic
energy along the direction of the effective nonadiabatic cou-
pling vector �i.e., there is no  that satisfies Eq. �21� and the
conditions outlined above�, then the collapse to state k+ is
forbidden. The original random number, however, indicated
that either transition was likely, and the downward collapse
to state k− is always allowed by energy conservation. So the
question in this case is whether the quantum system should
remain in the fully mixed state or should collapse to state k−.
Accepting the collapse to state k− would amount to a modi-
fication of the probabilities in Eq. �13� such that

Pj = �� j j

� j
dt���KEcl� , �22�

where

��KEcl� = �1 energy allowed

0 energy forbidden
� �23�

is a step function that depends on the available classical ki-
netic energy �KEcl� along the effective MF nonadiabatic cou-
pling vector. We implemented MF-SD using decoherence
probabilities described by both Eqs. �13� and �22� for the
one-dimensional, single-avoided crossing example that will
be discussed below in Sec. IV A and found that the inclusion
of the energy-dependent step function incorrectly predicted
no reflection on the lower surface at k�8 a.u. �cf. Fig. 2�c�,
below�. Thus, all the other MF-SD simulations discussed in
this paper use the decoherence probabilities defined by Eq.
�13�, not the energy-dependent probabilities in Eq. �22�. In
fact, any nonadiabatic MQC algorithm that includes instan-
taneous changes to the quantum wave function2,4,5,18,19

should suffer from this same conundrum, but to the best of
our knowledge, the issue of how to resolve it has not been
previously addressed in the literature.

B. Point-by-point outline of the MF-SD algorithm

In this section, we present a point-by-point outline of
each step required to implement the MF-SD algorithm. The
user is required to find a way to integrate the time-dependent
Schrödinger equation, a simple and efficient way to generate
the MQC Hamiltonian, and a way to find the adiabatic eigen-
vectors and eigenvalues. The initial trajectory setup requires
a position and momentum to be assigned to each classical
particle, an initial seed for the random number generator, and
an initial electronic density matrix, which may represent a
pure state, a mixture, or a superposition of states. Once the
initialization is complete, the implementation of MF-SD pro-
ceeds as follows:

�1� For the configuration of the classical coordinates at
time t ,R�t�, find the adiabatic basis states �the eigen-
values and eigenvectors of the Hamiltonian� using Eq.
�3�.

�2� Using Eq. �5b�, integrate the TDSE to the current time
t to find the density-matrix elements �Eq. �2�� and the

mean-field wave function.
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�3� Calculate the mean-field HF force on each nucleus
Fn�t� and the HF force from each of the adiabatic states
F j

n�t� using Eqs. �8� and �9�, respectively.

�4� Using the forces obtained in step 3 and the choice for
an given below in Eq. �24�, calculate the decoherence
probabilities for each of the adiabatic states Pk using
Eq. �13�. Once the Pk’s are obtained, determine whether
or not the system has collapsed by calling a random
number 	 from �0,1�.

�a� If a single Pk
	, then collapse the MF wave func-
tion to the adiabatic state �k using the procedure
described in step 5.

�b� If more than one Pk
	, then perform the “tie-
breaker” test using Eqs. �14�–�18� to choose the ap-
propriate adiabatic state for the collapse, and pro-
ceed to step 5.

�c� If all of the Pk�	, then no collapse occurs; skip to
step 6.

�5� If the tests in step 4 determine that a collapse should
occur,

�a� Calculate the effective nonadiabatic coupling vector
using Eq. �20�.

�b� Solve Eq. �21� for ; if the collapse is allowed, pro-
ceed to step 5c; if the collapse requires an energeti-
cally upward hop for the quantum subsystem and no
solution for  exists �i.e., conservation of energy is
not satisfied�, do not perform the wave-function col-
lapse, do not set � to �k, and do not rescale the
classical velocities; instead, skip to step 6.

�c� �i� Set the mean-field HF force to the adiabatic force
for state k chosen in step 4, i.e., F�t�=Fk�t�, �ii� reset
the electronic density matrix to represent the pure
state k �i.e., set all elements of the matrix to zero
except �kk=1�, and �iii� rescale the classical veloci-
ties using  from Eq. �21�.

�6� Calculate the classical forces f�t�.

�7� Propagate the classical equations of motion using the
quantum and classical forces, F�t� and f�t�, to generate
a new classical configuration R�t+dt� with any classi-
cal MD algorithm, and return to step 1.

C. Comparison of the ideas in MF-SD to other MQC
MD algorithms

In this subsection, we compare and contrast MF-SD to
some other MQC MD methods, whose features are discussed
in more detail in the Appendixes. We first turn to the issue of
computational expense; ignoring the cost of the features
common to all MQC MD algorithms �see Sec. II�, it is clear
that different methods of treating decoherence do, in fact,
change the cost of an algorithm. For example, in the mean
field with surface hopping �MFSH� algorithm of Prezhdo and
Rossky4 �see Appendix C�, decoherence events are deter-
mined by comparing the dynamics of a MF trajectory to

those of a second, simultaneous adiabatic MQC trajectory.
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The fact that two trajectories with different solutions to the
Schrödinger equation must be used to determine the MFSH
dynamics makes MFSH roughly twice as computationally
expensive as MF-SD. In the fewest-switches surface hopping
�FSSH� algorithm of Tully2 �also sometimes referred to in
the literature as molecular dynamics with electronic transi-
tions �MDET�, see Appendix A�, the individual trajectories
are fully adiabatic with discrete hops between adiabatic
states, and decoherence takes place by adding together a
swarm of trajectories for each classical initial condition at
the amplitude level. Thus, the dynamics of individual FSSH
trajectories are not physical, and it is unclear how many tra-
jectories in the swarm must be averaged before observables
can be calculated; if the required swarm is large, then FSSH
could be significantly more expensive than MF-SD. MF-SD
is also more efficient than the stationary phase surface hop-
ping �SPSH� algorithm of Webster et al. �see Appendix B�,3

which requires an iterative evaluation of the quantum forces
using the Pechukas method32 to propagate the classical de-
grees of freedom. Finally, MF-SD is much more efficient
than the full-multiple spawning �FMS� method of Martinez
and co-workers6 �see Appendix D�, since the number of
spawned basis functions �each of which are essentially sepa-
rate semiclassical trajectories� may be dozens or hundreds
for each classical starting configuration. In MF-SD, the only
computational expense not shared by other MQC MD algo-
rithms is the calculation of the decoherence times, Eq. �12�,
but for a moderate number of basis states in the condensed
phase,21 this calculation is no slower than diagonalization of
the Hamiltonian. Overall, MF-SD provides for the evolution
of the quantum subsystem via the TDSE with decoherence
events that do not require a swarm of trajectories, so each
individual MF-SD trajectory contains physically meaningful
quantum dynamics.

Of course, the most important feature of any MQC MD
algorithm is its accuracy; even if an algorithm is efficient and
easy to implement, it is of little utility if it does not provide
accurate results. As we will explore in detail below in Sec.
IV, MF-SD is indeed quantitatively accurate, and on some
problems it performs better than other MQC MD methods.
We believe this is because MF-SD incorporates a more
physical definition of decoherence.

In summary, even though decoherence cannot be for-
mally derived from the TDSE, the way decoherence is imple-
mented in the MF-SD algorithm is grounded in specific as-
sumptions regarding the total quantum/classical density
matrix and the nuclear wave function.33 In contrast, fully
adiabatic methods such as FSSH do not address decoherence
in individual trajectories, and most mean-field methods use
ad hoc criteria and/or many different definitions of decoher-
ence that are not based on well-defined assumptions about
quantum nature of the bath. We note that a recent paper by
Jasper and Truhlar34 derived a decoherence time by making
different assumptions about the nuclear wave function and
taking the first time derivative of Dk,k��t� in Eq. �10b�. Their
derivation led to a decoherence time that depends on both the
spatial and momentum overlaps of the nuclear wave packets,
whereas our decoherence formula, Eq. �12�, contains only a

momentum criterion. Although MF-SD is fully compatible

Downloaded 04 Jan 2006 to 128.97.34.137. Redistribution subject to 
with any nuclear-induced decoherence time inserted into Eq.
�13�, the decoherence time derived by Jasper and Truhlar is
more difficult to calculate than Eq. �12�.34

IV. APPLICATION OF MF-SD TO TWO-STATE
NONADIABATIC MODEL SYSTEMS

In the MF-SD algorithm, decoherence is accounted for
by making the frozen Gaussian approximation for the
nuclear wave function and assuming that the decay of
nuclear overlap Dk�t� causes the electronic wave function to
lose coherence; MF-SD uses this decay to calculate the de-
coherence rate. The quantum subsystem responds to the
nuclear-induced decoherence by collapsing to a pure state so
that all quantum coherence is destroyed. The collapse may or
may not leave the system on a different electronic surface
than the one it started on, providing a means to account for
what other nonadiabatic MQC methods call nonadiabatic
transitions. In this section, we use simple, one-dimensional
�1D� model problems to determine whether the new MF-SD
algorithm provides sufficient accuracy for quantum dynam-
ics in the absence of the Born-Oppenheimer approximation.
The model nonadiabatic systems we discuss here were pre-
sented in Ref. 2 and include a single-avoided crossing, a
dual-avoided crossing, and a system with an extended range
of nonadiabatic coupling. For each of these three model

FIG. 1. Adiabatic surfaces for two-level model problems: The adiabatic
energy levels as a function of position for �a� the single-avoided crossing,
�b� the dual-avoided crossing, and �c� the extended-coupling model prob-
lems. The diabatic Hamiltonians that describe these three problems are taken
from Tully in Ref. 2 and given explicitly in Eqs. �25�, �26�, and �28�,
respectively.
problems, we show the adiabatic surfaces in Fig. 1 and the
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results of both exact and MQC MD calculations in Figs. 2, 3,
and 5.

To apply MF-SD to the three test problems, we begin by
following Ref. 2 and choosing the mass of the classical par-
ticle to be 2000 a.u. We performed the classical integration
using the velocity Verlet algorithm and the integration of the
quantum density matrix with a fourth-order Runge-Kutta al-
gorithm with 150 intermediate points to propagate the elec-
tronic density matrix over the duration of a single classical
time step. Each trajectory began with the classical particle on
the lower adiabatic quantum surface at x=−10 a.u. The par-
ticle was given incident momentum to the right and the
simulations were run until the classical particle reached a
position of �x�=15 a.u. Fewer than 0.5% of all trajectories
failed to leave the interaction region after 2.5�105 classical
time steps, and these were not included in the averaging. The
simulation time step was chosen so that the fluctuation in the
total �quantum+classical� energy for any single trajectory
was less than 3%, though this error is easily reduced with
shorter time steps. All of the calculations performed here

35

FIG. 2. Single-avoided crossing: �a� Probability for transmission on the
lower adiabatic state, �b� probability for transmission on the upper adiabatic
state, and �c� probability for reflection on the lower adiabatic state for the
model potential given by Eq. �25� whose adiabatic surfaces are shown in
Fig. 1�a�. The MF-SD results are the solid boxes connected by lines, the
FSSH results �Ref. 2� are the open gray triangles, and the exact results �Ref.
2� are the open gray circles �Ref. 37�; two-standard-deviation error bars are
smaller than the symbols used to represent the MF-SD data points.
used the RAN3 random number generator. The MF-SD

Downloaded 04 Jan 2006 to 128.97.34.137. Redistribution subject to 
simulations all used the adiabatic basis, and the results we
present in Figs. 2, 3, and 5 are averages of the final values of
�11 and �22 over 2000 trajectories per initial momentum. In
contrast, the FSSH and MFSH algorithms calculate the
upper/lower-state branching ratio by counting the last refer-
ence state, regardless of the amount of mixing at the end of
the trajectory; for MFSH, this amounts to performing a
mean-field rescaling �see Appendix C� at the end of each
individual trajectory.

We note that trajectories with a low enough initial
momentum never have sufficient energy to fully occupy
the upper adiabatic state. As the single-avoided crossing
problem shows in Fig. 1�a�, in order to conserve the total
energy, the classical particle must have at least 0.02 Hartree
of kinetic energy, k
 �9 a.u., at the beginning of the trajec-

FIG. 3. Dual-avoided crossing: �a� Probability for transmission on the lower
adiabatic state, �b� probability for transmission on the upper adiabatic state,
and �c� probability for reflection on the lower adiabatic state for the model
potential given by Eq. �26� whose adiabatic surfaces are plotted in Fig. 1�b�.
The MF-SD results are the solid boxes connected by lines, the FSSH results
�Ref. 2� are the downward facing triangles, the MFSH results �Ref. 4� are
the exes, and the exact results �Ref. 4� are the solid gray circles �Ref. 37�;
the two-standard-deviation error bars are smaller than the symbols used to
represent the MF-SD data points. The FSSH results for transmission, shown
in Fig. 5 of Ref. 2, are omitted here for clarity; they are nearly identical to
the MFSH and MF-SD transmission probabilities.
tory to be observed in the upper state to the far right or left
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at the end of the trajectory. To conserve energy for the
dual-avoided crossing, the initial momentum must be
k
 �14 a.u. �log�E / a.u.�
−3�, and the classical particle in
the extended-coupling model must have initial momentum
k
 �29 a.u. for transmission on the upper surface.36 In
these cases of low initial momentum, no energy-conserving
decoherence event �measurement� could cause the system to
be observed in the upper state. As such, at the end of trajec-
tories that had insufficient initial energy to occupy the upper
adiabatic surface, we forced the final mixed state to collapse
to the lower surface. This is justified because the adiabatic
surfaces still have an infinitesimally small slope, meaning
that a decoherence event that collapses the system to the
lower surface would eventually occur for a sufficiently long
trajectory because upward transitions would have been for-
bidden.

The only parameter in the MF-SD algorithm is the width
of the frozen Gaussian wave packet representing each clas-
sical nucleus. Other applications with frozen Gaussians have
taken an to be given by the thermal de Broglie wavelength;
however, we believe that a microscopic algorithm should
rely only on instantaneous rather than thermally averaged
information about the classical particles. For reasons that we
discuss below in Sec. IV D, we chose this width to be

an�t� =  �w/a0�2

2�D�t� �
2

, �24�

where �D=h /mv is the instantaneous de Broglie wavelength
of the classical particle, a0 is the Bohr radius, v is the clas-
sical velocity at time t, and w is the spatial extent of the
nonadiabatic coupling, discussed in Sec. IV D. For the 1D
problems explored here, the coupling width w was chosen to
be approximately the width of the Gaussian �or exponential�
V12�x� in the diabatic coupling matrix.

A. Single-avoided crossing

The diabatic Hamiltonian for the single-avoided crossing
model is2

V11�x� = A�1 − exp�− Bx��, x 
 0,

V11�x� = − A�1 − exp�− Bx��, x � 0,

�25�
V22�x� = − V11�x� ,

V12�x� = V21�x� = C exp�− Dx2� ,

where A=0.01, B=1.6, C=0.005, and D=1.0, all in a.u.,
with the coupling width w=1/ �D=1a0. The MF-SD solu-
tions to this problem as a function of incident particle mo-
mentum k are presented as the boxes connected by solid lines
in Fig. 2, which show the probability for the classical particle
to be transmitted on the lower state �Fig. 2�a��, transmitted
on the upper state �Fig. 2�b��, or reflected back to the left on
the lower state �Fig. 2�c��. For comparison, we also show the
results from FSSH calculations �gray triangles� and the exact
quantum-mechanical solutions �gray open circles�, both cal-
culated by Tully.2,37 The MF-SD calculations for transmis-

sion do not quantitatively agree with either the exact or
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FSSH results at intermediate momenta, 6�k�15, but
MF-SD is more accurate at higher momentum �k
20� than
FSSH. Both MF-SD and FSSH methods fail to obtain tun-
neling of the classical particle through the barrier on the
lower surface at very low momentum, which is represented
by the step-function behavior at k�5 a.u.; this is a well-
known failing of almost all MQC MD methods, FMS
excepted.6 Both MF-SD and FSSH also accurately calculate
the small amount of particle reflection that occurs when
k�8 a.u. �Fig. 1�c��, which is above the threshold for trans-
mission. This reflection is accounted for by trajectories that
have upward quantum transitions, get trapped in the well on
the excited state, and then make a downward transition while
traveling to the left.

B. Dual-avoided crossing

The key feature of the dual-avoided crossing model is
quantum-interference effects �Stueckelberg oscillations�2 that
come from the successive regions of strong nonadiabatic
coupling. The model diabatic potentials are given by2

V11�x� = 0,

V22�x� = − A exp�− Bx2� + E , �26�

V12�x� = V21�x� = C exp�− Dx2� ,

where A=0.10, B=0.28, C=0.015, D=0.06, and E=0.05, all
in a.u.; the coupling width is w=4a0�1/ �D. The exact re-
sults �solid gray circles� in Fig. 3 were taken from Ref. 4.37

The MF-SD �boxes connected by solid lines�, FSSH
�triangles�,2 and MFSH �exes�4 results are all in qualitative
agreement for the transmission probabilities, exhibiting the
expected oscillations for transmission on the upper and lower
surfaces. The SPSH results �not shown, see Fig. 1 of Ref.
3�b�� are also qualitatively correct,3�b� and the FMS results
�not shown, see Fig. 7 of Ref. 6�b�� are in quantitative agree-
ment as well.6 The magnitude of the oscillations is good for
all of the approximate methods, but at low energies, the
phase of the oscillations calculated by all of the MQC meth-
ods is mismatched from the exact result, although MFSH
comes closest. It is not surprising that all of the approximate
methods are in agreement with the exact oscillations at high
energies. Since there is rigorously no reflection above
loge�E / a.u.�
 �−3, the oscillations in the transmission
probabilities merely reflect the density-matrix elements asso-
ciated with the upper or lower surfaces; any method that
integrates the TDSE properly should obtain the correct re-
sults at these energies.

Although all of the MQC MD methods accurately calcu-
late the transmission probabilities for this problem, MFSH
and FSSH fail to accurately calculate the reflection probabili-
ties by an order of magnitude, as shown in Fig. 3�c� �note the
expanded scale�; reflection results for SPSH were not given
in Ref. 3. MF-SD, however, obtains the correct transmission/
reflection branching ratio. This overestimation by FSSH and
MFSH arises because the transition probability from the
FSSH algorithm �on which MFSH is also based� results in

too many upward transitions. To better understand this over-
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estimation, in Fig. 4 we plot transition probabilities for
MF-SD and FSSH for an adiabatic ground-state trajectory as
a function of position for a classical particle initially with k
=14.14 a.u. or loge�E / a.u.�=−3; the adiabatic surfaces
�dashed-gray curves� are shown to guide the eye. The mini-
mum probability for a nonadiabatic transition in the FSSH
algorithm �dotted curve� is

PFSSH
min = 2�v · d12�dt , �27a�

�see Eqs. �A1� and �A2�� where dt=0.3 a.u. is the simulation
time step.38 The reason that PFSSH

min is a minimum is because
in the implementation of FSSH, Eq. �27a� is divided by a
fraction �in this case, the diagonal element of the fictitious
density matrix that corresponds to the reference state�. Figure
4 also plots the maximum decoherence probability from the
MF-SD algorithm �solid curve�, which is given by

PMF-SD
max =

dt

�2
�27b�

�see Eq. �13��. PMF-SD
max is a maximum for two reasons: First,

in the implementation of MF-SD, Eq. �27b� is multiplied by
a fraction �the population on state 2� and second, the force
difference used to calculate �2 in Eq. �27b� is the adiabatic
force difference between states 1 and 2 �cf. Eq. �9��. Thus,
Fig. 4 suggests that in the dual-avoided crossing problem, the
probability for a nonadiabatic transition to the upper surface
in FSSH is more than 20 times greater than the correspond-
ing probability in MF-SD.

We can safely assume at these low energies that once a
trajectory makes an upward transition, it has a roughly equal
chance of being transmitted or reflected on the lower surface
in FSSH or MF-SD. Therefore, if 
20 times more FSSH
trajectories make the upward transition than MF-SD trajec-
tories, we should expect to see 
20 times more reflection
probability. However, Fig. 3�c� shows that FSSH overesti-
mates the probability for reflection by only a factor of 10, not
20 or more. The reason for this is that with FSSH, each

FIG. 4. Transition probabilities for dual-avoided crossing: Probability for an
upward transition for a fully adiabatic, ground-state trajectory with initial
momentum k=14.14 a.u. �log�E / a.u.�=−3�. The minimum transition prob-
ability from a FSSH trajectory �dotted curve� is given by Eq. �27a�, and the
maximum transition probability from a MF-SD trajectory �solid curve� is
given by Eq. �27b� �see text�; to better compare the two curves, the maxi-
mum MF-SD probability curve is multiplied by 20. The dashed-gray curves
are the adiabatic surfaces for the dual-avoided crossing shown in Fig. 1�b�,
reproduced and scaled here for reference.
trajectory can only make a transition when the position of the
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classical particle is on the left �x�0�,38 whereas MF-SD
trajectories can make transitions over the entire range of the
well, effectively doubling the number of chances MF-SD
simulations have for collapsing to the upper state. As a re-
sult, FSSH �and MFSH, which uses the FSSH transition
probabilities� overestimate the amount of reflection by
roughly a factor of 10. MF-SD, using a physically motivated
and unified definition of decoherence, correctly captures the
physics of this reflection.

C. Extended coupling

The diabatic potentials for the extended-coupling model
problem are1

V11�x� = A ,

V22�x� = − A ,

�28�
V12�x� = V21�x� = C exp�Dx�, x � 0,

V12�x� = V21�x� = C�2 − exp�− Dx��, x 
 0,

where A=6�10−4, C=0.1, and D=0.9, all in a.u.; we chose
w=1a0�1/D. As the results of Fig. 5 indicate, the extended-
coupling model is a particularly difficult system for the
MFSH and FSSH algorithms; MFSH �Ref. 4� �exes con-
nected by lines� and FSSH �not shown, see Fig. 6 in Ref. 2�
both predict large, rapid oscillations in the reflection coeffi-
cients that are not present in the exact QM result �gray
circles�.39 The MF-SD �solid curve with boxes� and FMS
�not shown, see Fig. 8 from Ref. 6�b�� algorithms, however,
do not exhibit the oscillations that plague the other two MQC
MD methods. Of course, the extended-coupling system
should not show any Stueckelberg oscillations because as the
nuclear wave function leaves the coupling region and enters
the region where the adiabatic states split, part of the wave
function will be reflected on the upper surface and part will
be transmitted on the lower surface. The reflected and trans-
mitted parts of the wave function do not encounter each
other ever again and therefore cannot interfere. The artificial
oscillations in FSSH and MFSH result from trajectories that
get reflected by the upper surface, and as they reenter the
region of strong nonadiabatic coupling, the quantum sub-
system freely hops �changing the reference state� between
the upper and lower surfaces as the particle exits to the far
left. Thus, the oscillations most likely occur because the
amount of time spent in the strong coupling region varies
with the particle’s momentum. In contrast, MF-SD has no
reference state; thus, once the system is reflected, the mean-
field force and the force from each of the adiabatic states
become similar, so decoherence events occur only rarely �ef-
fectively only once as t→��. This is an important distinction
between MF-SD and other MQC MD methods that use the
FSSH criteria.2,4,5,18,19 The FSSH algorithm calls for surface
hops when the nonadiabatic coupling is highest; in this case,
when the classical particle has a position of approximately
−7�x�−3. The fact that the FSSH probability �Eq. �A1�� is
largest when the classical and quantum subsystems are not

interacting �the Hellmann-Feynman force is nearly zero in
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this range� leads to trajectories that do not properly incorpo-
rate decoherence; thus, FSSH-based methods cannot obtain
the correct reflection probabilities.40 In MF-SD, however, de-
coherence occurs when the force difference is largest, just to
the right of x=0 at the inflection point of the two adiabatic
surfaces and where the quantum and classical subsystems are
affecting each other the most strongly. Moreover, when the
classical and quantum subsystems no longer interact because
the quantum subsystem does not exert any force on the clas-
sical particle, as is the case for �x�
 �4, there should be no
decoherence. MF-SD predicts this correctly because the
mean-field HF forces and the adiabatic forces are all zero;
thus, MF-SD trajectories can be completed with the quantum
subsystem still in a superposition state, as the exact results
show should be the case for this particular model problem.

D. Exploring the interaction width w and the nuclear
Gaussian width an

In this section, we discuss the system-defined parameter
in the MF-SD algorithm, called the interaction width w,

FIG. 5. Extended coupling: �a� Probability for transmission on the lower
adiabatic state, �b� probability for reflection on the lower adiabatic state, and
�c� probability for reflection on the upper adiabatic state for the model
potential given by Eq. �28� whose adiabatic surfaces are shown in Fig. 1�c�.
The symbols have the same meanings as in Fig. 3 �Ref. 37�. The MFSH
results are not shown in panel �a� because they are indistinguishable from
the exact results. In panels �b� and �c�, the MFSH data points are connected
by lines to better show the spurious oscillations in the reflection probabilities
�Ref. 39�.
which is used to set the widths of the frozen Gaussians cen-

Downloaded 04 Jan 2006 to 128.97.34.137. Redistribution subject to 
tered on each classical nucleus. The origin of Eq. �24� is
empirical, but we found that this relationship was necessary
to obtain the best results for the three problems presented in
Figs. 2, 3, and 5. There are two ways we can test the validity
of our expression for w: We can either change the width of
the coupling in the model potential and use the new width to
define a new frozen Gaussian wave packet or we can change
the width of the Gaussian wave packet for a fixed coupling
width. The dual-avoided crossing is a good model problem
for these tests because it is the only one of the three model
potentials with w�1 and because the Stueckelberg oscilla-
tions are sensitive both to the separation between the two
regions of coupling and to the ability of the particle to inter-
act with the two crossings simultaneously. For example,
Webster et al.3�b� observed that as the separation between the
two regions of strong nonadiabatic coupling is increased, a
fully quantum wave packet will only interact with one cross-
ing at a time. Conversely, as the coupling is narrowed, the
system resembles a single crossing event. In this section, we
first change the system, apply the empirical relationship for
the system-defined interaction width, and show that with this
choice, MF-SD still calculates the correct quantum observ-
ables. Then, for a single system, we show that small changes
to w have little effect on the calculations, but that larger
changes in w result in wildly inaccurate branching ratios.

Figure 6 shows the survival probability for a particle
initially on the upper surface for a narrow dual-avoided
crossing �Eq. �26�� in an attempt to verify the empirical re-
lationship between w and the nonadiabatic coupling width.
The only difference between the adiabatic surfaces shown in
Fig. 1�b� and those used here is the choice of D=0.20a0

−2, so
that w /a0�1/ �D= �5. The results from MQC calculations
using FSSH �Ref. 3�b�� �triangles connected by dotted lines�
and MF-SD �boxes connected by lines� are shown in Fig. 6,
along with the exact results3�b� �gray circles connected by
dotted lines�. FSSH, MF-SD, and SPSH �Ref. 3�b�� �not

FIG. 6. Narrow dual-avoided crossing: Survival probability on the upper
adiabatic state of the dual-avoided crossing the problem defined in Eq. �26�
but with D=0.2a0

−2 instead of 0.06a0
−2. The MF-SD results are the boxes

connected by solid lines, the FSSH results �Ref. 3�b�� are the triangles
connected by dotted lines, and the exact results �Ref. 3�a�� are the gray
circles connected by dotted lines �Ref. 37�; the SPSH results can be found in
Fig. 4 of Ref. 3�b�.
shown, see Fig. 4 of Ref. 3�b�� are numerically accurate for
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k
20 and exhibit Stueckelberg oscillations, with MF-SD
following the exact results to the lowest k among the three
approximate methods. However, for k�15, all three methods
fail to obtain the correct amplitude and phase of the oscilla-
tions; the SPSH calculation, in particular, predicts a large
unphysical discontinuity at k�13. Thus, Figs. 3 and 6 verify
that w is sensitive to the range of the nonadiabatic coupling
and is defined by the parameters of the system; in other
words, the width of the frozen Gaussians is not a free param-
eter but is instead system defined.

We also studied the dual-avoided crossing problem �Eq.
�26�� as we changed the interaction width w, while keeping
the nonadiabatic coupling width fixed at D=0.06a0

−2 �for
which Eq. �24� suggests that w2 should be about 16a0

2�. Fig-
ure 7 gives the MF-SD results for a particle initially on the
lower surface with �w /a0�2=0.5 �dash-dot curve�, 4 �dashed
curve�, 16 �solid curve, same as Fig. 3�a��, and 128 �dotted
curve�. The exact results are shown as the solid gray circles
�same as Fig. 3�a��. The most obvious deviation from the
exact results is for w2=0.5a0

2. Moreover, although the trans-
mission probability for w2=128a0

2 appears identical to the
result using w2=16a0

2, the choice of w2=128a0
2 incorrectly

predicts no reflection on the lower surface. Hence, choosing
the width of the frozen Gaussian wave packets, w, from the
spatial extent of the nonadiabatic coupling minimizes the
deviation from the exact result, as we had determined em-
pirically for the original three 1D problems.

It is possible that the reason the nuclear width scales

FIG. 7. Effect of the interaction width in the dual-avoided crossing: Varia-
tion of the lower-surface transmission �a� and reflection �b� with the inter-
action width w, Eq. �24� for the dual-avoided crossing problem described by
Eqs. �27a� and �27b�. Results are shown for w2 /a0

2=0.5 �dashed curve�, 4
�gray dashed curve�, 16 �solid curve, same as the data in Figs. 3�a� and 3�c��,
128 �dotted curve�, and the exact results �Ref. 4� �gray boxes, same as in
Figs. 3�a� and 3�c�� �Ref. 37�. The error bars are two standard deviations; for
clarity, the error bars are not shown for every data point. The curve for
w2=128 is not visible in panel �a� since it lies exactly on top of the curve for
w2=16.
with this “interaction length” �the length over which the
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nonadiabatic coupling is strong� in these dual-avoided cross-
ing examples is because decoherence should be defined by
how a real nuclear wave packet experiences the crossings.
For the original dual-avoided crossing �Eq. �26� and results
presented in Fig. 3�, the nonadiabatic coupling is significant
over a range of at least 4a0, which spans both of the crossing
events. Thus, the Gaussian wave packets need to be large
enough to ensure interaction with both crossings before de-
coherence occurs. In the limit where the two crossings are
infinitely far apart, the interaction length is only as wide as
the nonadiabatic coupling is significant for each crossing.
This leads to the question of how to find the interaction
length in a complicated, condensed-phase calculation, where
there is no simple diabatic formula for the nonadiabatic cou-
pling. We will show in a subsequent article21 that the width
parameter w, for condensed-phase systems, is, in fact, readily
available from simulation.

V. CONCLUDING REMARKS

When performing nonadiabatic mixed quantum/classical
molecular dynamics, artificial methods for including deco-
herence are necessary because information about the total
system wave function is lost when some degrees of freedom
�the bath nuclei� are treated classically. In this paper, we
introduced a new nonadiabatic MQC MD algorithm, called
mean-field dynamics with stochastic decoherence �MF-SD�,
that allows the quantum subsystem to evolve into a superpo-
sition state but also includes a way for the superposition to
decohere to a pure state. This process is irreversible in time
and is controlled directly by the quantum/classical interac-
tion through the Hellmann-Feynman forces �Eqs. �8�, �9�,
and �12��. We used frozen Gaussians to approximate the
nuclear wave function �although classical point particles are
used to describe the dynamics�, and by expanding the
nuclear wave-function overlap �the decoherence function,
Eq. �10a�� at short times, we obtained the nuclear-induced
decoherence rate �Eq. �12��. In our algorithm, this rate deter-
mines the probability that the nuclear degrees of freedom
should force the electronic superposition state to collapse
into a pure state. Our method contains only one ad hoc pa-
rameter, which we have shown is not a free parameter but is
instead defined by the system being studied.

We also have used a series of one-dimensional, two-state
systems to show that MF-SD is at least as quantitatively
accurate as other popular MQC MD methods. MF-SD im-
proves upon other MQC algorithms such as FSSH, SPSH,
and MFSH for several reasons. First, MF-SD is built around
a single, physically motivated definition for decoherence,
which we derived from arguments about the total system
density matrix and the nature of nuclear wave-function de-
cay. Decoherence in our new algorithm is treated with only
one criterion and the effects of decoherence on the quantum
and classical systems are clearly defined: decoherence causes
the quantum subsystem to instantaneously collapse to a pure
state, and the velocities of the particles in the classical sub-
system are scaled in the direction of the effective nonadia-
batic coupling vector to ensure energy conservation. Second,

we use a mean-field description for the evolution of our
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quantum/classical system, which ensures that the dynamics
calculated by MF-SD is governed by the TDSE and that a
swarm of trajectories is not required. Third, MF-SD elimi-
nates the need for a reference state, on which most MQC MD
methods rely, and replaces it with a unified description of
decoherence based on wave-function collapse. This leads to
the improved accuracy when calculating quantum observ-
ables because elimination of the reference state ensures that
weakly coupled quantum/classical systems remain in super-
position states and do not undergo artificially imposed col-
lapses back to the reference state. In addition to being more
accurate, we also have argued that MF-SD is computation-
ally more efficient than other popular nonadiabatic MQC
MD simulation methods.
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APPENDIX A: FEWEST SWITCHES SURFACE
HOPPING „FSSH…

In Tully’s fewest-switches surface hopping �FSSH� algo-
rithm �sometimes referred to as molecular dynamics with
electronic transitions �MDET��2 the classical particles propa-
gate under the assumption that the quantum mechanical de-
grees of freedom occupy a single adiabatic state j called the
reference state. Nonadiabatic transitions between states are
modeled as instantaneous and discontinuous switches �sur-
face hops� between the reference state and any other adia-
batic state k. The probability Pjk that the system should un-
dergo a surface hop is governed by the rate of change of the
diagonal elements of a fictitious41 density matrix via

Pjk =
bkj

� j j
dt , �A1�

where dt is the simulation time step and

�̇mm = �
l�m

bml = �
l�m

�2�−1 Im��ml
* Vml� − 2 Re��ml

* dmlṘ��

�A2�

is the time rate of change of the mth diagonal element of the
fictitious density matrix; Eq. �A2� follows directly from the
TDSE �Eq. �5b��.2 In FSSH simulations, a surface hop occurs
whenever the transition probability calculated from Eq. �A2�
is greater than a random number chosen uniformly between
zero and 1. When a surface hop does occur, the discontinu-
ous change in quantum energy is balanced by the kinetic
energy of the bath, as described in Sec. III A 2. The surface
hopping check is performed on every time step, and the fic-
titious density matrix remains coherent for the entire
trajectory;42 as a result, decoherence is not manifest in any
individual trajectory. Coherence damping occurs only after
adding together a swarm of trajectories from the same clas-

sical initial condition at the amplitude level. It is not clear,
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however, how many trajectories must be averaged in a
swarm to properly account for decoherence, and the number
of trajectories required almost certainly depends on the par-
ticular system under study. This need for a swarm of un-
known size can add considerable computational cost. Re-
cently, it was derived that detailed balance holds in FSSH
calculations,43 so that the populations of the quantum states
are distributed according to the Boltzmann distribution. It is
not clear if other methods, including MF-SD, also have this
advantage.

APPENDIX B: STATIONARY PHASE SURFACE
HOPPING „SPSH…

In the stationary phase surface hopping �SPSH� algo-
rithm introduced by Webster et al.,3 the quantum subsystem
is evolved fully coherently for each individual simulation
time step, but at the end of each step, the system undergoes a
collapse to one of the adiabatic basis states determined by
the square of the transition amplitude

Pjk = �
k�t��Û�t,t0��j�t0���2, �B1�

where Û�t , t0� is the time evolution operator, �j�t0�� is the
occupied electronic state at the start of the time step, and
�k�t�� is any of the adiabatic electronic states at the end of the
time step. We note that by performing a Taylor expansion of

Û�t , t0�, it is easy to show that Pjk in SPSH is identical to the
surface hopping probability given in FSSH �Eq. �A1�� in the
limit that dt is infinitely small. The transition probabilities in
SPSH are compared to a uniform random number 	, and a
collapse is made to a new state k if Pjk
	 and to the original
state j if none of the probabilities are greater than 	. Thus,
SPSH assumes that a measurement is made by the bath after
every time step and that the quantum wave function is only
coherent between time steps. Finally, in order to conserve
energy during the fully coherent propagation and collapse,
the evolution of the mixed quantum/classical system is done
using the Pechukas method,32 which requires an iterative
self-consistent evaluation of the quantum and classical dy-
namics. Modification of the SPSH algorithm to allow for
decoherence times that are not linked to the simulation time
step is challenging because the Pechukas force expression,
which is derived from the stationary phase approximation, is
nonlocal in time.3�b�

APPENDIX C: MEAN FIELD DYNAMICS
WITH SURFACE HOPPING „MFSH…

The MFSH �Refs. 4 and 5� algorithm allows for coherent
mean-field propagation for short periods of time followed by
full wave-function collapse. MFSH uses the FSSH prescrip-
tion for transitions between adiabatic states and, in doing so,
requires two different density matrices for each MQC trajec-
tory: a fictitious,41 fully coherent “primary” density matrix,
which keeps track of the FSSH transition probabilities, and
an “auxiliary” density matrix, which is used to calculate the
mean-field HF force.44 Whenever a surface hop to state k is
allowed, all the elements of the auxiliary density matrix are
set to zero except �kk, which is set to 1. As with FSSH, the

primary density matrix remains fully coherent throughout
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each trajectory. However, because the propagation of the
auxiliary matrix produces dynamics that obeys the TDSE for
short times, MFSH has the advantage that each MQC trajec-
tory is physically meaningful. In addition to surface hops,
MFSH treats coherence loss with “MF rescalings,” where
coherence in the electronic density matrix is destroyed and
the mixed wave function is collapsed back to the “reference”
state. This means that MFSH has two different but simulta-
neous definitions of decoherence, both of which cause
unique responses in the quantum subsystem. Mean-field res-
caling events are treated differently from surface hops be-
cause bkk in Eq. �A2� is zero for all k; in other words, there is
no nonadiabatic coupling vector �Eq. �7�� to induce a surface
hop back to the reference state. The criteria for MF rescal-
ings are determined by a second simultaneous MQC trajec-
tory �called the “reference trajectory”� that is computed
along with the MFSH mean-field trajectory. The initial con-
figuration and momenta in both trajectories are identical, but
the classical particles in the reference trajectory experience
the adiabatic HF force �Eq. �9�� from the reference state,
while the classical particles in the mean-field trajectory ex-
perience the mean-field HF force �Eq. �8��; the two trajecto-
ries eventually diverge in the presence of any nonadiabatic
coupling. MFSH compares the two trajectories and allows
for a wave-function collapse to the reference state when they
have diverged sufficiently; this is taken to be whenever either
of the inequalities

�PMF − Pref

PMF + Pref
� � 1, �C1�

�RMF − Rref� � a0 �C2�

is violated for any classical particle, where PMF�RMF� and
Pref�Rref� are the classical momenta �positions� in the MF and
reference trajectories, respectively. When either of the in-
equalities �C1� and �C2� is violated, the auxiliary density
matrix is reset so that the quantum wave function in the
mean-field trajectory collapses to the reference state and the
classical coordinates in the reference trajectory are reset to
match the MF trajectory, although the primary density matrix
is not reset �the reference trajectory coordinates are reset if a
surface hop or MF rescaling occurs�. Finally, as in FSSH, to
ensure conservation of energy, surface hops require the clas-
sical velocities to be scaled along the direction of the nona-
diabatic coupling vector, whereas MF rescalings require the
classical velocities to be scaled along the direction of the
effective nonadiabatic coupling vector �Eq. �20��.5

Two modifications of MFSH have been presented in the
literature: the average decoherence18 �ad� and instantaneous
decoherence19 �id� with MFSH algorithms. In both id-MFSH
and ad-MFSH, the off-diagonal elements of the auxiliary and
primary density matrices evolve according to

i�
d

dt
�kj = �

n
�

l

��lj�Vkl − i�dkl
n · Ṙn� − �kl�Vlj − i�dlj

n · Ṙn��

− i�
�1 − �kj��kj

�kj
, �C3�
where the Kronecker delta in the last term ensures that the
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dissipation affects only the off-diagonal elements �cf. Eq.
�5b��. In Eq. �C3�, the decoherence time �kj represents coher-
ence loss between two adiabatic states k and j, which can
either be predetermined and thus fixed throughout the entire
simulation, ad-MFSH, or be calculated instantaneously for
each configuration, id-MFSH. Both modifications are identi-
cal in all other ways to the original MFSH algorithm, which
is recovered in the limit �kj→�.

APPENDIX D: FULL-MULTIPLE SPAWNING „FMS…

The full-multiple spawning �FMS� method, developed
by Martinez and co-workers,6 uses the frozen Gaussian ap-
proximation and the equations of motion derived by Heller26

to represent the nuclear wave function. The total wave func-
tion of the system � is described as a linear combination of
basis functions �i �with expansion coefficients Di� that are
products of a nuclear wave function and a set of orthonormal
electronic basis states. The coefficients evolve according to
the TDSE, and the method involves propagating a set of
carefully chosen starting configurations, each of which starts
with only one basis function. Whenever a trajectory enters a
region of strong nonadiabatic coupling, new basis functions
are “spawned” on the coupled electronic states, representing
the population changes predicted by the TDSE. The spawned
basis functions can in turn create spawns of their own as they
enter additional regions of strong nonadiabatic coupling. The
idea of introducing new basis functions is to allow the total
wave function to bifurcate as a real quantum wave function
should. Final-state populations and observables are calcu-
lated after all spawns have escaped all regions of nonadia-
batic coupling using the coefficients Di in the linear combi-
nation of basis functions. The spawned trajectories are
typically chosen to preserve the total classical energy, as well
as either the classical positions or classical momentum.
Momentum-conserving spawns have the advantage of allow-
ing for tunneling of the nuclei, which is impossible for most
other MQC MD methods. Although FMS requires a signifi-
cant computational effort, it has found utility as an ab initio
MD method for fairly large molecules, including small pro-
teins, in the gas phase.45 In the condensed phase, FMS has
thus far found utility as a QM/MM method46 in which the
electronic structure in the subsystem treated by FMS does
not directly influence the classical bath.

APPENDIX E. SELF-CONSISTENT DECAY OF MIXING
„SCDM…

The self-consistent decay of mixing �SCDM� algorithm
of Truhlar and co-workers7 incorporates a term in the TDSE
for coherence loss in the off-diagonal elements of the density
matrix, but unlike the ad- and id-MFSH methods, SCDM
adds the innovation of supplementary terms in the classical
equations of motion and the diagonal density-matrix ele-
ments. These extra terms attempt to model decoherence by
continuously and smoothly driving the mean-field wave
function in a SCDM trajectory towards a single adiabatic
reference state while conserving energy and angular momen-
tum and ensuring Tr���=1. SCDM uses the FSSH probabili-

ties to determine the reference state, however, the modified
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SCDM equations of motion allow these surface hopping
events to occur over a finite time rather than instantaneously.
This might be a more accurate treatment of coherence loss
than instantaneous wave-function collapse and has the ad-
vantage of trajectories that never undergo discontinuous
changes in the quantum wave function or density matrix. As
a result, there are no energy conservation problems in SCDM
that might lead to a “forbidden” transition, see Sec. III A 2.
SCDM has the drawback, however, that there is no easy
prescription to derive the decoherence and population decay
times used in integrating the equations of motion: In the
original SCDM algorithm, the authors included an arbitrary
scaling factor so the decoherence time could be adjusted at
will. In a recent paper, however, Jasper and Truhlar have
derived a first-order decoherence rate from a formula similar
to Eq. �10b�.34 In addition, because SCDM uses the FSSH
probabilities, SCDM trajectories will always necessarily end
in a pure state, even when the classical and quantum sub-
systems are no longer interacting. We have argued that in
such cases, the quantum subsystem could end up in a super-
position state, but SCDM cannot predict this properly �e.g.,
the extended-coupling problem discussed in Sec. IV C�.
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