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Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for
simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There
are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different
algorithms may lead to different results. Thus, it has been difficult to reach definitive conclusions about
relaxation dynamics using nonadiabatic MQC methods because one is never certain whether any given algorithm
includes enough of the necessary physics. In this paper, we explore the physics underlying different nonadiabatic
MQC algorithms by comparing and contrasting the excited-state relaxation dynamics of the prototypical
condensed-phase MQC system, the hydrated electron, calculated using different algorithms, including: fewest-
switches surface hopping, stationary-phase surface hopping, and mean-field dynamics with surface hopping.
We also describe in detail how a new nonadiabatic algorithm, mean-field dynamics with stochastic decoherence
(MF-SD), is to be implemented for condensed-phase problems, and we apply MF-SD to the excited-state
relaxation of the hydrated electron. Our discussion emphasizes the different ways quantum decoherence is
treated in each algorithm and the resulting implications for hydrated-electron relaxation dynamics. We find
that for three MQC methods that use Tully’s fewest-switches criterion to determine surface hopping
probabilities, the excited-state lifetime of the electron is the same. Moreover, the nonequilibrium solvent
response function of the excited hydrated electron is the same with all of the nonadiabatic MQC algorithms
discussed here, so that all of the algorithms would produce similar agreement with experiment. Despite the
identical solvent response predicted by each MQC algorithm, we find that MF-SD allows much more mixing
of multiple basis states into the quantum wave function than do other methods. This leads to an excited-state
lifetime that is longer with MF-SD than with any method that incorporates nonadiabatic effects with the
fewest-switches surface hopping criterion.

I. Introduction

For over 40 years, molecular dynamics (MD) simulation
based on classical dynamics has been the method of choice for
developing a molecular-level understanding of solution-phase
chemical dynamics. More recently, MD simulation techniques
have been developed that propagate some degrees of freedom
(e.g., heavy nuclei) according to the rules of classical mechanics
and other degrees of freedom (e.g., electrons) according to the
rules of quantum mechanics,1-27 thus allowing the simulation
of processes that depend completely on quantum mechanics,
such as electron transfer. Because classical mechanics and
quantum mechanics are fundamentally incompatible, however,
such mixed quantum/classical (MQC) MD simulation methods
require assumptions about how the classical and quantum
dynamics are coupled together, particularly for systems in which
the classical and quantum motions occur on the same time scale
(i.e., when the adiabatic, or Born-Oppenheimer, approximation
fails). This has led to the development of many nonadiabatic
MQC algorithms based on different assumptions, and it is not
always clear which algorithm, if any, produces accurate dynam-
ics for any given system. Thus, the need to choose among
nonadiabatic MQC algorithms, each of which may give different
dynamics, means that the application of MQC simulation is
currently as much an art as a science. Broadly speaking

(although there are important exceptions15,16), there have been
two major approaches to the art of MQC simulation: quantum
Liouville methods17-27 and explicitly wave function-based
methods.2-15 Quantum Liouville methods map the time evolu-
tion of some degrees of freedom onto the evolution of phase
space distributions, whose time dependence is then treated
classically or semiclassically. Explicit wave function methods
take the classical limit of the time-dependent Hartree approxi-
mation,2-15 which assumes that the full wave function of the
system factors into a product of wave functions for the classical
and quantum degrees of freedom, such that when the classical
limit is taken the classical degrees of freedom evolve in time
according to Newton’s laws of motion.

In this paper, we will clarify some of the issues involved in
choosing a nonadiabatic MQC algorithm by using several
different methods to simulate the excited-state relaxation
dynamics of the prototypical condensed-phase quantum solute,
the hydrated electron.4,8-10,28-34 The relaxation of the excited
hydrated electron to the ground state involves a nonradiative
transition, so nonadiabatic dynamics are essential for a correct
description of the relaxation of this system. As we are unaware
of any applications of quantum Liouville methods to the
nonadiabatic relaxation of the hydrated electron, here we
consider only MQC algorithms that start from the time-
dependent Hartee approximation. These methods all assume that
the wave function of the quantum sub-system evolves according
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to the time-dependent Schro¨dinger equation (TDSE), but each
algorithm uses different approximations to describe the break-
down of the Born-Oppenheimer approximation. We will com-
pare and discuss these approximations in terms of quantum
decoherence and see how altering the way that decoherence is
treated affects the relaxation dynamics of the hydrated electron.
In addition to discussing the results of applying several well-
established algorithms to hydrated-electron relaxation dynamics,
such as fewest-switches surface hopping (FSSH, also known
as molecular dynamics with electronic transitions),3 stationary-
phase surface hopping (SPSH),5,35and mean-field dynamics with
surface hopping (MFSH),6,8 we also will apply a new nonadia-
batic MQC algorithm that we have recently introduced, the
mean-field dynamics with stochastic decoherence (MF-SD)
algorithm.13 This will be the first application of MF-SD to a
condensed-phase system, so we will also spend considerable
time discussing how to implement MF-SD in the condensed
phase.

The rest of this paper is organized as follows. In section II.A,
we outline the basic features of all MQC algorithms, and in
section II.B, we describe the additional approximations to
account for the breakdown of the Born-Oppenheimer ap-
proximation that are made by different nonadiabatic MQC
methods.3,6,13,35 In section II.C, we discuss the MF-SD algo-
rithm,13 and we explain in detail in section II.D how to calculate
the parameter needed to apply MF-SD to condensed-phase
systems such as the hydrated electron. Section III describes the
numerical methods used for all of the MQC calculations in this
paper. In section IV, we examine the relaxation dynamics of
excited hydrated electrons calculated using all of the nonadia-
batic MQC methods described in section II, including MF-SD.
We conclude in section V with a discussion of the results and
the implications for how the disparate treatment of decoherence
in the different algorithms affects condensed-phase nonadiabatic
dynamics.

II. Overview of Nonadiabatic MQC Algorithms

A. Fundamental Equations Common to all MQC Algo-
rithms. In MQC MD simulations, a subset of degrees of
freedom is taken to be quantum mechanical and the remaining
degrees of freedom are taken to be classical. Throughout this
paper, we shall refer to the quantum degrees of freedom as
“electronic” and the classical ones as “nuclear” even though
the quantum degrees of freedom need not be electronic.14 As
we discussed in the Introduction, formally one can derive various
MQC dynamics algorithms by writing the wave function of the
combined nuclear and electronic system as a product of nuclear
and electronic wave functions (the Hartree approximation), and
taking the classical limit for the nuclear degrees of freedom,1,2

although methods such as full multiple spawning use frozen
Gaussians for the nuclei to include some quantum aspects of
their dynamics.15,16Once the classical limit has been taken, the
nuclear degrees of freedom obey Newton’s laws and the
electronic degrees of freedom ought to evolve according to the
TDSE

where|ψ〉 is the wave function of the quantum sub-system with
HamiltonianĤ(R), which depends parametrically on the posi-
tions of all of the classical particles,R. In practice, the wave
function is written as a linear combination of basis states

which may be adiabatic states that satisfy the time-independent
Schrödinger equation

or any other well-defined set of basis states. We will refer to
|ψ〉 as the mean-field wave function of the quantum sub-system.
Inserting eq 2 into eq 1 leads to a set of coupled differential
equations for the expansion coefficients,bn; if the |φn〉 are chosen
to be the adiabatic states and these equations are rewritten in
terms of the elements of the density matrix,Fkj ) bk

/bj, then the
TDSE becomes3

where〈φl|φ̇k〉 is the nonadiabatic coupling between statesk and
l and the overdot denotes a partial derivative with respect to
time.36 The nonadiabatic coupling often is rewritten using the
chain rule as〈φl|φ̇k〉 ) ∑nR4 n‚〈φl|∇nφk〉 ≡ ∑nR4 n‚dkl

n , whereR4 n

is the velocity of classical particlen, ∇n is the gradient with
respect to classical particlen's position, anddkl

n is the nonadia-
batic coupling vector. In adiabatic MQC algorithms, the quantum
sub-system is propagated on a single basis state and the
nonadiabatic coupling terms are neglected, so thatFkj ) δklδjl

for a chosenl at all times. Such adiabatic dynamics cannot
describe the relaxation of a particle from an excited state to the
ground state, so we do not discuss it further.

The classical degrees of freedom obey Newton’s laws of
motion, and because the classical and quantum sub-systems
interact with each other, the classical degrees of freedom feel a
force from the quantum degrees of freedom. This force may be
determined using the stationary-phase approximation to the
semiclassical propagator,5,35,37-39 or it may be taken from the
Hellmann-Feynman (HF) theorem2

whereFn is the force on thenth classical particle andV̂ is the
interaction potential between the classical and quantum sub-
systems. In combination, Newton’s laws, the HF force, and eq
4 lead to MQC dynamics that conserves the sum of the classical
kinetic and potential energies and the mean-field quantum
energy,εMF ) 〈ψ|Ĥ|ψ〉 ) ∑j Fjjεj.6

All of the algorithms we have applied in this paper propagate
the nuclear degrees of freedom in time according to Newton’s
laws using the HF force, eq 5. Thus, the nonadiabatic MQC
algorithms are distinguished by how the quantum evolution is
allowed to proceed. One choice is to integrate eq 1 or eq 4
together with Newton’s laws and the HF force, eq 5, in what
has been called Ehrenfest or mean-field dynamics.40 At first
glance, Ehrenfest dynamics seems to contain the essential
physics because nuclear motions allow the wave function to
build amplitude on multiple potential energy surfaces, but further
consideration reveals that MF dynamics produces unphysical
long-time results.3 As the “paradox” of Schro¨dinger’s cat
illustrates,41 any quantum system interacting with a classical
bath must eventually collapse to a single basis state instead of
remaining in a superposition. It has been proposed that these
collapses occur because the quantum system interacts with many
degrees of freedom and these extra degrees of freedom destroy
superpositions through a process known asdecoherenceas the
classical limit is approached.42 In the context of MQC dynamics,
decoherence means that the wave functions that are being
neglected in the classical limit (i.e., those of the nuclei) rapidly

ip
d|ψ(t)〉

dt
) Ĥ(R)|ψ(t)〉 (1)

|ψ〉 ) ∑
n

bn|φn〉 (2)

Ĥ(R)|φn(R)〉 ) εn|φn(R)〉 (3)

ip
dFkj

dt
) (εk - εj)Fkj(t) - ip ∑

l

[Flj〈φl| φ̇k〉 - Fkl〈φj| φ̇l〉]

(4)

Fn ) -∇n〈ψ| Ĥ|ψ〉 ) -〈ψ|∇nV̂(R)|ψ〉 (5)
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lose overlap in time, leading to the destruction of superpositions
in the quantum sub-system.33,34 Thus, nonadiabatic MQC
dynamics must take decoherence into account to prevent
unphysical superpositions from arising. The most popular
approach to removing infinitely long-lived superpositions has
been to use surface hopping.3,18,43 With surface hopping,
superpositions are either forbidden or the superposition wave
function is collapsed every so often to a single basis state,
usually an adiabatic state.

B. Summary of Commonly Used Nonadiabatic MQC
Algorithms. There are several different algorithms for nona-
diabatic MQC dynamics that are commonly used: fewest-
switches surface hopping (FSSH),3 mean-field dynamics with
surface hopping (MFSH),6 and stationary phase with surface
hopping (SPSH).35 Below, we give a brief description of each
of these methods, as well as a related method designed to test
the limits of decoherence, which we call Ehrenfest dynamics
with surface hopping (EDSH).44 An overview of these and other
nonadiabatic MQC methods also may be found in the Ap-
pendices of ref 13.

The most widely used surface hopping method is Tully’s
fewest-switches surface hopping (FSSH) algorithm,3 which
propagates the classical dynamics with the wave function in a
single basis state, referred to as the reference state, with energy
εref; the wave function of the system is never allowed to mix
with other basis states. In FSSH, however, after each time step,
the reference state may switch with a probability determined
by the rate of change of a fully coherent density matrix that is
propagated via eq 4; such a switch of the reference state is called
a surface hop. In FSSH, when a surface hop to statej (with
energyεj) occurs, energy conservation is maintained by adding
the energy differenceεref - εj to the classical particles’ kinetic
energy. The particles’ velocities are modified only along their
projection onto the nonadiabatic coupling vector associated with
the transition in question.3,14 For wave function collapses that
would increase the energy of the quantum sub-system,εref - εj

< 0, the collapse is allowed only if there is enough kinetic
energy available in the velocities as projected along the
nonadiabatic coupling vector. (A similar prescription is used in
essentially all nonadiabatic MQC methods.) If a surface hop is
allowed, then the classical velocities are rescaled and the
simulation proceeds to the next time step; if the hop is forbidden,
then no change is made to the classical velocities45 and the
propagation continues. We note that Truhlar and co-workers
have introduced an alternative version of surface hopping, called
self-consistent decay of mixing, that switches states according
to Tully’s fewest-switches criterion but smoothly evolves the
density matrix to the new state rather than collapsing it
instantaneously.7,11,12

Originally, it was envisioned that the full wave function of
the quantum sub-system being described by FSSH could be
constructed by adding together the results of a swarm of runs
started with the same classical initial conditions but with
different random number seeds for the switching probabilities;
weighting the members of the swarm with an amplitude
determined by the fully coherent density matrix for each run
would give the full wave function.3 In practice, the sum over a
swarm of trajectories is not always performed, an approximation
that effectively assumes that differences caused by different
switching times are not important. In other words, use of the
FSSH algorithm without a swarm of trajectories assumes that
there is sufficient decoherence that the system’s properties can
be determined by adding probabilities (separate runs) instead
of amplitudes.

One objection to using FSSH for nonadiabiatic dynamics has
been that it incorporates the TDSE only indirectly, via the

switching. Prezhdo and Rossky addressed this objection with a
generalization of the FSSH method, called mean-field dynamics
with surface hopping (MFSH),6 that allows the wave function
to evolve according to the TDSE. In MFSH,6,8 two density
matrices are propagated, one associated with the mean-field
wave function of the system (with energyεMF) and the other
associated with the reference state that is used to determine when
surface hops should occur according to Tully’s fewest-switches
criterion. When a surface hop to statej (which cannot be the
reference state) is allowed, the mean-field wave function (and
hence the mean-field density matrix) is collapsed to the new
reference state by settingFik ) δijδkj. In addition to surface hops,
in MFSH, the mixed wave function also may collapse onto the
current reference state, a so-called mean-field rescaling, when-
ever the wave function has become “too mixed”, as defined by
the divergence of theclassical trajectory from a similar
“reference trajectory” associated with the un-mixed reference
state. Thus, by combining Ehrenfest dynamics with mean-field
rescaling and fewest-switches surface hopping, MFSH allows
the quantum sub-system to propagate coherently for short times
but to collapse to a single adiabatic state on longer time scales.
Two later modifications of MFSH also allow decoherence to
occur continuously through decay of the off-diagonal elements
of the density matrix used to determine surface hops,9,10 but
we shall not discuss these refinements in detail here.

In the limit that MFSH undergoes mean-field rescalings at
nearly every time step (i.e., in the rapid decoherence limit), the
wave function would always be a single adiabatic state because
only the small amount of mixing allowed in a single time step
could occur before a collapse. For small enough classical time
steps, MFSH would then reduce to the FSSH algorithm without
trajectory swarms. To test the importance of mean-field res-
calings, in this paper, we also explore the opposite limit: We
assume that the wave function evolves coherently according to
the TDSE, eq 1, unless there is a surface hop according to the
FSSH criterion. We call this approach, which is just MFSH with
no mean-field rescalings, Ehrenfest dynamics with surface
hopping (EDSH). Without surface hops, EDSH would produce
the already-discredited Ehrenfest dynamics, but it is always
possible that there are systems that can support long-lived
superpositions (with eventual collapse) that might be well-
described by EDSH.

Another approach that allows fully coherent propagation of
the quantum sub-system can be found in the stationary phase
with surface hopping (SPSH) algorithm.35,5 In SPSH, the wave
function evolves according to the TDSE, eq 1, but the forces
on the classical particles are determined self-consistently from
the so-called Pechukas force instead of the HF force.37,38In most
applications, the mixed wave function is collapsed to a single
state after each time step, although longer coherence times have
been used,34 and the state to which the wave function is
collapsed is determined stochastically with a probability pro-
portional to the square of the amplitude of that state in the mixed
wave function. Thus, when the nuclear dynamics induces very
little mixing, the occupied adiabatic state is unlikely to change,
but with more mixing (e.g., near adiabatic avoided crossings)
the occupied adiabatic state can change. Even though the
criterion for hops in SPSH is distinct from the fewest-switches
criterion, in the limit of small simulation time steps, the two
criteria become identical.13

All of the FSSH-based methods discussed above rely on
selecting one particular basis state as special: the “reference
state”. By employing different criteria for hopping to or from
the reference state, these algorithms assume that mean-field
rescaling and/or surface hopping are not necessarily caused by
the same underlying physics. We have argued that wave function
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collapse should only occur if the classical degrees of freedom
make a measurement on the quantum sub-system, so that it does
not make sense for collapses to different states to be caused by
wholly distinct physical processes.13 Our recently introduced
MF-SD algorithm,13 described in the next subsection, avoids
this difficulty. MF-SD does away with the idea of a reference
state altogether and thus treats all wave function collapses on
the same footing regardless of whether other algorithms would
have treated the collapses with different criteria (e.g. as mean-
field rescalings or surface hops).

C. MF-SD Algorithm. The mean field with stochastic
decoherence (MF-SD) algorithm has been described in detail
in ref 13. For several one-dimensional scattering problems, MF-
SD has been shown to give results at least as accurate as any
of the MQC algorithms described in the previous subsection.
Because MF-SD has never before been applied to a condensed-
phase system, however, we use this subsection to provide a brief
review of the method.

MF-SD is designed to simulate nonadiabatic MQC dynamics,
but it differs from the MQC algorithms mentioned above in
several important ways. In MF-SD,all collapses of the quantum
sub-system’s wave function onto a single adiabatic eigenstate
are assumed to be induced by decoherence among the nuclei.
Thus, collapses can be onto the adiabatic state that has the largest
amplitude, analogous to mean-field rescalings in MFSH, or onto
a minimally occupied adiabatic state, in what other algorithms
would call a surface hop. Thus, in MF-SD, decoherence (or
wave function collapses) can occur to any pure state, as in SPSH,
except that in MF-SD the collapse need not happen after every
time step. Instead, MF-SD posits that collapses of the wave
function are needed because approximating some degrees of
freedom as classical removes information about how the wave
functions of those degrees of freedom would spread and dephase
over time. MF-SD asserts thatif the classical particles can tell
the difference between motion on a potential surface defined
by the mean-field wave function and motion on a surface defined
by one of the adiabatic basis states, then the classical sub-system
will “make a measurement” and collapse the quantum wave
function; this is similar in spirit to the criterion for mean-field
rescalings used by MFSH.

In practice, for MF-SD, we imagine that prior to taking the
classical limit, each classical particle can be described by a
Gaussian wave packet with spatial extent 1/(an)1/2. Making a
short-time approximation for the motion of these wave packets,
one finds that the overlap between a nuclear wave function
propagated with the quantum system in statej and one
propagated with the quantum sub-system in the mixed state
decays in time as33

whereFn(0) is the HF force, eq 5,Fn
j (0) is the adiabatic HF

force with |ψ〉 replaced by|φj〉, and the zero-time arguments of
the forces indicate that they are to be evaluated at whichever
time is taken to have initially perfect overlap. This Gaussian
overlap decay suggests that the wave function should collapse
onto statej with a characteristic time scaleτj

that we take as the rate at which the classical bath attempts to
collapse the wave function.46 As we have pointed out previ-

ously,13 this time scale is based on amomentum criterion: The
wave function collapses when the momenta of the classical
particles propagated with mean-field forces diverge sufficiently
from the momenta propagated on a single adiabatic state. MF-
SD uses both this criterion and the population in statej to
determine the probability,Pj, of collapsing the wave function
to statej during a time stepδt

This collapse probability depends on the widths chosen for the
Gaussian wave packets,an, so choosingan is crucial in
determining how rapidly decoherence causes the wave function
to collapse. We defer discussion of how to determinean to the
subsequent subsection.

Once an appropriate choice ofan has been made, in MF-SD
the MQC dynamics proceeds according to eq 4 for the quantum
sub-system and the classical particles obey Newton’s laws. After
every time step, the probability to collapse the wave function
onto each adiabatic state is calculated using eq 8 with the forces
Fn(0) and Fn

j (0) calculated at the previous time step, and
whether a collapse occurs is determined stochasically. For
collapses to statej from a MF state, the appropriate “effective”
nonadiabatic coupling vector for rescaling the classical velocities
is taken to be

as explained in ref 13.
D. Determining the Width of the Frozen Gaussians for

MF-SD in the Condensed Phase.Our discussion above made
clear that the MF-SD probability that decoherence will cause
the wave function to collapse is governed by the width 1/(an)

1/2

that we choose to ascribe to the classical particles’ fictitious
Gaussian wave functions. In our previous paper,13 we found
that the Gaussian width, 1/(an)1/2, is determined both by the
speed of the particle and by the spatial extent of the nonadiabatic
coupling,w, so that

whereλD ) h/mVn is the instantaneous deBroglie wavelength,
a0 is the Bohr radius, andVn is the speed of the classical particle
at time t. The dependence on the spatial extent of the
nonadiabatic coupling was discovered empirically by applying
MF-SD to a set of one-dimensional scattering problems with
known solutions.3,13 The empirical relationship was tested by
changing the spatial extent of the nonadiabatic coupling and
using eq 10, and good agreement was found with the exact
results. At present, we have no good theoretical justification
for why thew parameter must be included in the width of the
frozen Gaussians; we have argued that decoherence must be
determined by how nonadiabatic coupling varies over the extent
sampled by the particles being approximated as classical, but
the precisew-dependence has not been justified from first
principles.13

In the one-dimensional test problems described above, the
nonadiabatic coupling was assumed to be either exponential,
exp(-x/D), or Gaussian, exp(-x2/D2), in form, so it was easy
to setw ∼ D. In the condensed phase, however, the nonadiabatic
coupling is determined by how classical molecular motions
modify the adiabatic eigenstates and thus has no simple

exp[-(∑n

(Fn(0) - Fn
j (0))2

4anp
2 ) t2] (6)

τj
-2 ) ∑

n

(Fn(0) - Fn
j (0))2

4anp
2

(7)

Pj )
Fjj

τj
δt (8)

dh j
n ) ∑

k

Fkk djk
n (9)

an(t) ) ((w/a0)
2

2λD(t) )2

(10)
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functional form. To arrive at a spatial extent of coupling between
statesi and j, we must split the nonadiabatic coupling,〈φi|φ̇j〉,
into contributions from each classical particle. The coupling
between statesi and j produced by atomn is proportional to
the nonadiabatic coupling vector,dij

n, so on average the
nonadiabatic coupling will be characterized by the magnitude
of dij

n as a function of the distance between atomn and the
quantum solute. We propose that the spatial extent of the
nonadiabatic coupling between statesi and j should be deter-
mined from the weighted radial distribution function

where the angled brackets denote an equilibrium ensemble
average,rQM is the location of the quantum sub-system, defined
below, and we divide by the ordinary radial distribution function
to remove oscillations caused by the classical solvation shell
structure. We note that, in a study of which solvent degrees of
freedom contribute to nonadiabatic transitions of the hydrated
electron, Prezhdo and Rossky formed a similar quantity for
configurations at the moment of a surface hop to the ground
state.47 In general, nonadiabatic coupling may arise between any
pair of states, so we form an effective spatial extent of the
nonadiabatic coupling by averaging thegNA

ij (r) over pairs of
states

whereN is the number of states included in each sum overi
and j.

For the hydrated electron, the center of mass of the ground
state and the lowest three excited states are nearly coincident,
as discussed in section IV, so we have takenrQM to be the
center-of-mass position of the hydrated electron’s ground state.48

Using this definition, we have calculatedgjNA from two
statistically independent 5-ps equilibrium adiabatic runs with
the electron confined to its quasispherical ground state, usingi,
j ) 1, 2, ..., 5,i * j. Figure 1 displays the averaged weighted
distribution function,gjNA(r), eq 12, for the hydrated electron.
The hydrated electron repels the water molecules, so there is

no coupling at small separations. The coupling turns on abruptly
at ∼1.5 Å, rises to a maximum at∼3 Å, and falls off roughly
exponentially with a decay length of∼2.7 Å. One could
therefore estimate the length scale of the nonadiabatic coupling
simply asw = 1.5 + 2.7 ) 4.2 Å. Similarly, the distance
between the turn-on at∼1.5 Å and the point at which the
function has fallen to half of its maximum value is∼3.8 Å. If
we instead think ofgjNA(r) as a distribution function, then we
find that twice the root-mean-squared deviation ofr is ∼4.5 Å.
Whichever of the methods we choose suggests that the ap-
propriate value forw is ∼4 Å. In the Appendix, we explore
how the nonadiabatic relaxation of the hydrated electron
calculated with MF-SD varies withw and we show that small
changes inw make little difference in the dynamics: Choosing
w anywhere in the range 2-5 Å gives essentially the same
results, but significantly larger or smaller values ofw lead to
very different relaxation dynamics.

III. Numerical Methods

In all of the calculations presented here, we performed
microcanonical molecular dynamics simulations of a single
excess electron in a cubic box 18.17 Å on a side containing
200 classical, flexible water molecules. The water molecules
interacted according to the SPC-Flex potential,49 and the electron
interacted with each water molecule through the pseudopotential
of Schnitker and Rossky.50 Although there are other choices,51

we chose this pseudopotential to facilitate comparison with the
large body of literature on nonadiabatic hydrated-electron
relaxation that uses this potential.8-10,29-32 All of the interactions
were computed using minimum-image periodic boundary condi-
tions52 and were tapered smoothly to zero at half the box
length.53 The positions and velocities of the classical water
molecules were propagated using the velocity Verlet algorithm,52

with a time stepδt ) 0.5 fs. The average temperature was∼300
K at the beginning of the runs and∼315 K after the excited
electron had fully relaxed and reequilibrated, with root-mean-
squared deviations of∼9 K.

At each time step of the simulation, the lowest four adiabatic
eigenvectors,|φn〉 (n ) 1, 2, 3, 4), were computed at the vertices
of a 16 × 16 × 16 cubic lattice with an iterative-and-block
Lanczos algorithm.35 The nonadiabatic coupling at timet + δt
was computed using a finite-difference approximation

The nonadiabatic coupling vectors needed for most of the
algorithms were calculated using the relation6

Once the adiabatic eigenstates and nonadiabatic couplings at
time t + δt were calculated, the density matrix was propagated
from time t to t + δt in 500 intermediate steps, with each step
propagated by a fourth-order Runge-Kutta algorithm; during
the Runge-Kutta integration, the adiabatic energies and nona-
diabatic couplings were linearly interpolated between their
values at timet and their values at timet + δt.

For the simulations using the MF-SD algorithm, all of the
averages reported in this paper were taken from 50 nonequi-
librium trajectories in which the electron was excited at timet
) 0 by 2.27( 0.01 eV to either the first or second excited

Figure 1. Nonadiabatic-coupling-weighted radial distribution function
with N ) 5, eq 12, for the hydrated electron.

gNA
ij (r) )

〈∑
n

|dij
n|δ(r - |rQM - Rn|)〉

〈∑
n

δ(r - |rQM - Rn|)〉
(11)

gjNA(r) )
2

N(N - 1)
∑
i,j)1
i*j

N

gNA
ij (r) (12)

〈φi(t + δt)| φ̇j(t + δt)〉 )
〈φi(t)|φj(t + δt)〉 - 〈φi(t + δt)|φj(t)〉

2δt
(13)
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state. The 50 runs began with 25 initial water configurations
and velocities taken from a 10-ps ground-state equilibrium
simulation; half of the runs used the initial velocities from the
equilibrium simulation and the remaining half used the same
initial configurations but with the velocities reversed. For the
simulations using the MFSH, FSSH, and EDSH algorithms, the
averages were taken from the same 25 initial conditions whose
velocities were not reversed. The random numbers used to
determine whether a surface hop or wave function collapse
occurred in all of these algorithms were generated using the
ran2 routine from Numerical Recipes. For the MFSH simula-
tions, the parameters needed to determine when mean-field
rescalings take place are the same as those used by Wong and
Rossky in ref 9. The SPSH results reported in this paper were
taken from the 20 excited-state runs reported in ref 29.

IV. Excited-state Relaxation of the Hydrated Electron
with Different MQC Algorithms

The hydrated electron is a solvent-supported species with an
optical absorption spectrum in the visible and near-infrared.54

The most common view is that the hydrated electron is trapped
in a roughly spherical cavity with the water polarized around
it.50,51,55-59 The low-lying adiabatic eigenstates of the hydrated
electron resemble those of a particle in an attractive spherical
box: The ground state is approximatelys-like and centered in
the cavity, and there are threep-like bound states also centered
in the cavity, with higher-lying continuum states delocalized in
the liquid. Previous nonadiabatic studies of the excited-state
relaxation of the hydrated electron using the SPSH algorithm29

have revealed that, when the spherically symmetric electron is
excited into ap-like excited state, the energy of the excited state
does not change on average throughout the relaxation process.
The ground state, in contrast, is rapidly destabilized as water
molecules in the first solvation shell move so as to bring
hydrogen atoms into the node of the excited orbital. The energy
of the ground state continues to rise as the first solvent shell
rearranges to accommodate the two lobes of charge until, after
a few hundred femtoseconds, the ground-state energy reaches
a quasi-equilibrium several tenths of an electron volt below the
occupied excited-state energy.29 Prior to the establishment of
this quasi-equilibrated excited state, there are very few surface
hops, and even after the system reaches quasi equilibrium, it
must wait several hundred femtoseconds for an opportunity to
hop to the ground state. Thus, with SPSH, the electron collapses
to the ground state on average∼730 fs after the initial excitation.
Using a new quantum mechanical projection formalism, we
recently have shown that the physical picture of the ground state
being destabilized by solvent librations holds when the relaxation
dynamics is computed with MF-SD.60 In this section, we will
explore how this picture changes when the dynamics is
computed with each of the nonadiabatic MQC algorithms
described in section II.

A. Population Dynamics and Excited-state Lifetimes.
Figure 2 displays dynamical histories of the adiabatic and mean-
field energies for a representative single hydrated-electron
relaxation run as calculated using the FSSH (panel A), MFSH
(panel B), EDSH (panel C), and MF-SD (panel D) algorithms;
each run began with the same initial conditions and random
number seed. For the first∼250 fs, the dynamics computed
via all four simulation methods appear identical, characterized
primarily by ground-state destabilization, as discussed above,
after which small deviations begin to appear. When the
dynamics for this trajectory are computed with FSSH, the
hydrated electron makes a transition to the ground state at time

t ) 362.5 fs, and thereafter, its trajectory is distinct from the
other three nonadiabatic MQC methods. With MFSH dynamics,
there is little mixing (less than 1%) of multiple adiabatic states
and the hydrated electron remains largely in the excited state
until the time of the nonadiabatic transition att ) 452.5 fs.
With EDSH dynamics, there is minimal mixing in the excited
state and the transition to the ground state occurs at the same
time as with FSSH dynamics (at the onset of strong mixing of
the ground state into the mean-field wave function). After the
hop to the ground state, the EDSH mean-field wave function
continually remixes amplitude with the first excited state until
as much as 90% of the wave function consists of the first excited
state; in the presence of this much mixing, the system undergoes
a surface hop to the first excited state (not shown) followed
within 50 fs by a hop back to the ground state. We note that
the particular ordering of the relaxation lifetimes seen for the
trajectories in Figure 2 is not unique: For other initial conditions,
the electron reaches the ground state first with EDSH or with
MFSH dynamics, or all three FSSH-based methods perform a
surface hop at almost the same time. Thus, no matter how wave
function mixing is described, the fewest-switches criterion for
surface hops causes the transition to occur immediately after
the onset of significant nonadiabatic coupling between the
ground and first excited state; the subsequent return to equi-
librium then thwarts any additional mixing (except for EDSH).

In contrast, there is significant mixing of several basis states
into the mean-field wave function of the electron with MF-SD
dynamics, because unlike the FSSH-based methods, the transi-
tion of the system to the ground state is not necessarily induced
at the onset of rapid mixing. Furthermore, in MF-SD, there is
a good chance that a strongly mixed state can collapse back to
the excited state, a possibility not allowed by FSSH and seldom
achieved with MFSH because strong mixing does not occur
without inducing a surface hop. In the MF-SD trajectory for
the electron shown in Figure 2, the mixed MF wave function
did in fact collapse back onto the first excited state, at botht )
361 fs andt ) 450 fs. The first collapse to the ground state
takes place at timet ) 931.5 fs, only after the mean-field wave
function has built up nearly 50% population on the ground state.

Figure 2. Representative dynamical histories of the excited hydrated
electron’s adiabatic (alternating thin solid and dashed gray curves) and
mean-field (thick solid curve) energies calculated with FSSH (panel
A), MFSH (panel B), EDSH (panel C), and MF-SD (w ) 4.0 Å, panel
D). The crosses show times at which the mean-field wave function
was collapsed onto a single adiabatic state.
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Figure 3 displays the averaged excited-state survival prob-
abilities

computed with SPSH (dotted curve) and MFSH (dashed curve)
dynamics, whereΘ(t) is a step function,tR is the time of the
first transition to the ground state, andN is the number of runs.
The averaged EDSH and FSSH results are not shown because
they are essentially identical to those produced with MFSH. In
MF-SD, the population evolves continuously, so in any given
run there is no clear-cut excited-state survival probability.
Because MF-SD does not assume the existence of a well-defined
reference state, as is done in surface hopping methods, one
cannot say that the hydrated electron occupies a single state
except immediately following collapses. For example, if the
wave function has acquired 70% ground-state character before
any collapse, then the electron should neither be considered fully
excited nor should it be considered fully relaxed. One way an
average excited-state population can be determined, however,
is by defining the average fractional excited-state population

where the overbar represents an average over all nonequilibrium
runs.61 This fractional excited-state population is precisely
analogous to the excited-state survival probability for systems
with a reference state,ps(t), andPexc(t) computed with MF-SD
also is displayed in Figure 3 (solid curve). The excited-state
survival probability falls off fastest with MFSH dynamics and
slowest with SPSH dynamics; the mean excited-state population
calculated with MF-SD dynamics lies somewhere between the
other two curves. Note also that the greater mixing allowed in
MF-SD (cf. Figure 5B, below) is manifest in the fact that
Pexc(t) decays smoothly and continuously instead of in discrete
jumps at surface hopping events, asps(t) does for FSSH, MFSH,
EDSH, and SPSH.

Figures 2 and 3 make it evident that the extra mixing allowed
by MF-SD can alter the dynamics in individual trajectories and
thus the average excited-state lifetime for the electron. For
methods based on surface hopping, the lifetime of a single run

is defined as the time at which the reference state switches to
the ground state.29 Thus, the average lifetime forN excited-
state runs would beth ) ∑R tR/N, wheretR is the lifetime for run
number R. With EDSH, we taketR to be the time of first
transition to the ground state, although the fact that Ehrenfest
dynamics allows the continuous build-up of amplitude in the
excited state means that the excited-state lifetime of hydrated
electrons probably should be considered to be infinite. In MF-
SD, because the population evolves continuously, there is no
clear-cut excited-state lifetime in any given run, but a lifetime
can be defined by analogy to the lifetime computed with a
reference state. It is straightforward to show that the average
lifetime for systems with a reference state can be calculated
from ps(t)

For the case of continuous population transfer, each decrease
in Pexc may be thought of as the loss of a single member of a
large ensemble, so we define the MF-SD mean lifetime by
analogy to eq 17

Although taking the derivative of a function contaminated by
simulation noise is numerically unstable, a simple integration
by parts converts eq 18 to the easily evaluable

where we have used the facts thatPexc(0) ) 1 andPexc(∞) ) 0.
The averaged squared lifetime may be defined analogously, with
the final result that

We will use eq 20 to calculate the statistical uncertainty in the
mean MF-SD lifetime from the standard deviation, ((〈t2〉 - 〈t〉2)/
(N - 1))1/2.

Table 1 displays the average excited-state lifetime for the
hydrated electron computed using eqs 17 or 18 for the five
different nonadiabatic MQC methods. The table makes it clear
that the hydrated-electron lifetime,th, is essentially the same for
MFSH, FSSH, and EDSH (although as discussed above EDSH
should properly be considered to give an infinite lifetime). Thus,
if surface hops take place according to the fewest-switches
criterion, it makes no difference in the average lifetime whether
the wave function is propagated with complete decoherence
(FSSH), complete coherence (EDSH), or something between
(MFSH). This result suggests that changes in the excited-state
lifetime must come from changes in the evolution of the density
matrix used to determine hopping probabilities. In fact, Tully
suggested that decoherence could be incorporated into FSSH
by continuously damping the off-diagonal elements of the
density matrix,3 and such damping terms have been included
by Wong and Rossky in two variants of MFSH,9,10 but is not
clear precisely how the damping affects the average excited-
state lifetime of hydrated electrons.62 Similarly, we anticipate
that the modifications of FSSH introduced by Truhlar and co-
workers,7,11,12which use fewest-switches probabilities to com-

Figure 3. Average excited-state probability of the hydrated electron
calculated with with MF-SD (Pexc(t), solid curve, eq 16) and excited-
state survival probability (ps(t), eq 15) with MFSH (dashed curve) and
SPSH (dotted curve). FSSH and EDSH excited-state survival prob-
abilities are not shown because they are indistinguishable from the
MFSH result.

th )
∫0

∞
dt t (dps(t)/dt)

∫0

∞
dt (dps(t)/dt)

(17)

〈t〉 )
∫0

∞
dt t (dPexc(t)/dt)

∫0

∞
dt (dPexc(t)/dt)

(18)

〈t〉 ) ∫0

∞
dt Pexc(t) (19)

〈t2〉 ) 2∫0

∞
dt t Pexc(t) (20)

ps(t) ) ∑
R

Θ(tR - t)/N (15)

Pexc(t) ) 1 - Fj11(t) (16)
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pute surface hops, but which continuously damp the density
matrix elements to complete the hop, will give essentially the
same lifetime for the hydrated electron. All three FSSH-based
methods discussed in this work result in a much shorter excited-
state lifetime than MF-SD. SPSH, which allows coherent
propagation between time steps but forces the wave function
to collapse after each classical time step, yields a longer lifetime
than MF-SD,29 but we do not believe the difference is statisti-
cally significant.

In the above discussion, we compared〈t〉, eq 18, from MF-
SD to th, eq 17, for the other methods because we believe〈t〉
provides the closest analog toth. But 〈t〉 is not the only possible
definition one could use to define the lifetime with MF-SD
dynamics. Although MF-SD does not incorporate the idea of a
reference state, one could calculate a version ofth in MF-SD by
taking the relaxation time for a run to be the time at which the
wave function first collapses to the ground state. We would
expect this to overestimate the lifetime because it does not
include reductions in excited-state character caused by signifi-
cant mixing into the ground state that can occur before the
transition.63 For MF-SD withw ) 4.0 Å, calculatingth in this
fashion givesth ) 660( 116 fs, where the error is two standard
deviations. As expected, this lifetime exceeds the lifetime
calculated with〈t〉; see eq 18 (Table 1).

B. Nonequilibrium Solvation Response Function.The
nonequilibrium solvation response for the hydrated electron
typically is studied by examining how the energy gap between
the occupied and ground states,U(t) ) εMF(t) - ε0(t), evolves
after the electron is excited. In principle,U(t) is simply related
to the fluorescence Stokes shift,31 but it is often more convenient
to examine the normalized nonequilibrium solvent response
function

where the overbar indicates a nonequilibrium average over the
ensemble of excited-state runs. When we compute this non-
equilibrium average, we remove runs from the ensemble at the
instant the wave function first collapses onto the ground state.

Figure 4 displays the nonequilibrium solvation response
functions for the excited hydrated electron calculated with FSSH,
MFSH, and MF-SD; the EDSH result is not shown for clarity
because it is nearly identical to the FSSH and MFSH results.
Clearly, there is essentially no difference in the energy relaxation
predicted by the different methods, except perhaps for SPSH
(not shown).64 We find it surprising that MF-SD gives the same
solvent response function as the various fewest-switches based
algorithms, because the excited-state lifetime is significantly
longer with MF-SD than with these other methods and because
we expected the extra mixing with MF-SD to lower the gap
relative to the other algorithms. We believe that the explanation
for this is thatS(t) is ill-suited to detect differences in the excited-
state dynamics for this system. As discussed above, Schwartz
and Rossky have shown29 (and we have confirmed60) that most
of the dynamics inherent in the electron’sS(t) comes from
destabilization of theground state as the solvent rearranges
around the excited electron. The extra mixing allowed with MF-
SD only affects the energy gap near the transition to the ground
state, and this has little effect on the shape ofS(t) because most
of the dynamics comes from the large shift in the ground-state
energy. Apparently, solvent migration into the node of the
excited electron is unaffected by whether there is a few percent
of another state mixed into the wave function, so the ground-
state destabilization that dominatesS(t) is insensitive to the
differences in population dynamics.

V. Discussion: The Effects of Decoherence on
Condensed-phase Nonadiabatic Dynamics

In this paper, we have compared the excited-state relaxation
dynamics of the hydrated electron calculated by five different
nonadiabatic MQC algorithms. Most of the algorithms use the
idea of a “reference state”, with a rule for switching the reference
state in what is called a surface hop. Three of the methods,
FSSH, MFSH, and EDSH, are based on Tully’s fewest-switches
method for computing the probability of a surface hop; in our
interpretation, they represent, respectively, the rapid, intermedi-
ate, and minimal decoherence regimes. The hopping criterion
in SPSH resembles the fewest-switches prescription in the limit
of a small time step, whereas MF-SD uses a fundamentally
different decoherence criterion. We have found, however, that
with fewest-switches hops, the amount of decoherence has no

TABLE 1: Average Excited-state Lifetime of the Hydrated
Electron Computed via Different Nonadiabatic MQC
Algorithmsa

MQC algorithm lifetime (fs)b

MF-SDc 632( 116
SPSHd 731( 217
MFSHe 445( 111
FSSHf 409( 112
EDSHg 532( 144h

a The uncertainties are two standard deviations, where one standard
deviation is calculated as described in the text from the root-mean-
squared deviation divided by (N - 1)1/2, whereN is the number of
runs.b The lifetimes were calculated using eq 19 for MF-SD and using
eq 17 for the other methods; the integrations were performed using
the trapezoid rule with a time step of 0.5 fs.c Mean-field dynamics
with stochastic decoherence (ref 13 and this work), computed with the
Gaussian width parameterw ) 4.0 Å and 50 runs, as described in the
text. d Stationary phase with surface hopping (refs 5 and 35), taken
from the 20 runs reported in ref 29.e Mean-field dynamics with surface
hopping (refs 6 and 8) with 25 runs.f Fewest-switches surface hopping
(ref 3) with 25 runs. As described in the text, these runs used a single
trajectory for each initial condition rather than the swarm of trajectories
required by the original formulation of the method.g Ehrenfest dynamics
with surface hopping (this work) with 25 runs.h As discussed in the
text, it may be more appropriate to consider the excited-state lifetime
to be infinite with EDSH dynamics.

S(t) )
Uh (t) - Uh (∞)

Uh (0) - Uh (∞)
(21)

Figure 4. Nonequilibrium solvation response, eq 21, of the excited
hydrated electron, computed with MF-SD (solid curve), FSSH (dashed
curve), and MFSH (dotted curve);S(t) computed with EDSH is not
shown because it is indistinguishable from the FSSH and MFSH results.
S(t) was computed using 25 trajectories started from the same initial
conditions for MF-SD as for FSSH and MFSH.
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effect on the excited-state lifetime of the hydrated electron.
Instead, the lifetime appears to be controlled entirely by the
fewest-switches criterion, suggesting that FSSH (and its siblings
MFSH and EDSH) do not properly include the effects of
decoherence for the hydrated electron. This suggests that, for
FSSH, decoherence should be included either through a sum
of amplitudes over a swarm of trajectories or by damping of
elements of the density matrix.3,9,10The similarity of the FSSH
and MFSH results also suggests that MFSH is merely a more
expensive way to do FSSH; this is consistent with the fact that
MFSH and FSSH gave the same answers for the one-
dimensional single avoided crossing problem,6,13 which has
similar physics to the hydrated electron’s relaxation.

Our results for EDSH relaxation also showed an interesting
difference from what would be expected with purely Ehrenfest
dynamics. Parandekar and Tully have shown that forN-level
systems true Ehrenfest dynamics leads to nearly equal population
of all states for reasonable choices of parameters,40 and we have
confirmed this result for the hydrated electron.65 The presence
of surface hops, however, seems to bias the system toward the
occupying either the ground or first excited state, and we
speculate that EDSH may yield average populations intermediate
between the infinite-temperature (Ehrenfest dynamics) and
properly Boltzmann weighted (FSSH dynamics)66 limits.

Despite the differences in excited-state dynamics and lifetimes
with the different nonadiabatic MQC algorithms, we found that
all of the methods we tested produced identical nonequilibrium
solvation response functions,S(t). This is because the dynamics
underlying S(t) for the hydrated electron are dominated by
solvent motions that depend only weakly on details of the
excited-state wave function.

In addition to FSSH-based algorithms, we also applied the
MF-SD algorithm to the relaxation of the hydrated electron,
the first time MF-SD has been applied to a condensed-phase
problem. As far as we are aware, MF-SD is the only MQC
algorithm that considers all nonadiabatic transitions to be
induced by decoherence instead of imposing a separate transition
criterion based on the time evolution of the quantum wave
function. The decoherence time scale is set by the effective width
of Gaussians that are imagined to model quantum aspects of
the classical degrees of freedom, and we described in detail how
one goes about finding the Gaussian width parameter that
determines decoherence in MF-SD. In the Appendix, we show
that small changes in the width parameter,w, have little effect
on the overall relaxation dynamics but that large changes lead
to drastically different excited-state lifetimes. In either the rapid
or slow decoherence limit, the lifetime of the excited-state
diverges: With rapid decoherence, the divergence arises due
to the quantum Zeno effect,67 wherein an unstable state is unable
to decay so long as it is observed continuously. With slow
decoherence, the divergence results from the fact that Ehrenfest
dynamics never leads to a fully populated ground state.40 For
decoherence in the intermediate regime,w ∼ 2-5, we find that
the lifetime does not change appreciably, so one only needs to
estimatew to apply MF-SD to a condensed-phase problem. In
the Appendix, we also point out that the range forw that we
believe to be correct produces the smallest excited-state
lifetimes, and we speculate that this minimum is not coinci-
dental: Identifying such a minimum could provide an (albeit
expensive) alternative method for determiningw.

When we originally introduced MF-SD, we showed that for
three standard, one-dimensional model problems MF-SD is at
least as accurate as methods based on fewest-switches surface
hopping and that for some problems it is much more accurate.13

Having now applied this method to hydrated-electron relaxation,
a problem whose exact solution is not known, we find that MF-
SD dynamics differs in several important ways from FSSH and
its siblings. First, in MF-SD, the wave function of the system
is allowed to mix much more than in FSSH or MFSH. Near a
transition to the ground state, MF-SD yields an electronic
structure that is a superposition of the ground and excited states
for tens of femtoseconds. Fewest-switches-based algorithms, in
contrast, hop to the ground state as soon as mixing begins to
occur, so that far less mixing actually takes place near the
transition. Second, the criteria used to decide when to collapse
the wave function are very different for the two methods. With
fewest-switches, strong mixing causes a surface hop, whereas
in MF-SD a wave function collapse only occurs if the mixing
would lead to a loss of overlap among the Gaussians that
represent the classical particles. We already have shown that
this difference allows MF-SD dynamics to correctly predict
reflection and transmission probabilities without spurious Stu¨ck-
elberg oscillations for Tully’s extended-coupling model,3,13and
we saw here that this difference also leads the hydrated electron
to maintain excited-state character on average∼200 fs longer
for MF-SD than for FSSH or MFSH.

Because the calculatedS(t) for the hydrated electron is similar
for all methods, each would produce dynamics that compare
equally well with experiment. Thus, the question is which
nonadiabatic MQC algorithm incorporates the most intuitively
correct physics. Our preference is for MF-SD for two main
reasons. First, MF-SD allows the time-dependent Schro¨dinger
equation to govern evolution of the wave function until
decoherence induces changes in the dynamics. Second, MF-
SD allows mixed states to exist so long as the classical particles
cannot distinguish mixed from unmixed states, so that collapses
of the wave function are induced by the classical particles
“making a measurement” on the quantum sub-system and not
by the rate of change of the quantum system’s density matrix
(which in our view should have little to do with whether the
classical bath will attempt to collapse the wave function). As a
consequence, wave function collapses need not occur at the onset
of rapid mixing, and our intuition suggests that this may provide
a more correct description of the quantum dynamics for systems
with weak nonadiabatic coupling between the ground and
excited states, such as the hydrated electron. We believe that
there is room for considerably more discussion of exactly how
it is that decoherence controls excited-state relaxation in the
condensed phase, particularly because we cannot rely on
experiments on hydrated-electron relaxation to decide among
the nonadiabatic MQC algorithms. One area that we believe
could be particularly fruitful is to investigate how to bridge the
gap between quantum Liouville methods, which can explicitly
treat decoherence, and explicit MQC wave function approaches
(such as those discussed here), in which decoherence is treated
in a more ad hoc fashion. We hope that the detailed examination
given here has clarified some of the issues involved in choosing
a nonadiabatic MQC algorithm, and that these questions, whose
answers we have only been able to hint at, will provide the
impetus for further research into how decoherence should
properly be included in MQC dynamics.
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Appendix: w-dependence of the Excited-state Lifetime of
the Hydrated Electron

In the one-dimensional problems for which we previously
tested MF-SD, we found that small changes in the width
parameter,w (defined in eq 10), made little difference in the
MQC dynamics.13 Changingw by a factor of 2 or more did,
however, cause significant differences in the nonadiabatic
transition probabilities. In this Appendix, we examine the
dynamics of excited hydrated electrons calculated with MF-
SD as a function ofw, and we discuss in detail what changing
w implies for the resulting dynamics. Each of the average
lifetimes reported here for the 15 different choices ofw
represents between 75 and 250 dedicated hours on a single AMD
Opteron 248 processor; we were able to perform the calculations
in days rather than months through the use of many such
processors on a large Beowulf cluster.

Figure 5 shows, for the same initial condition, the populations,
Fii, as a function of time after resonant excitation of a hydrated
electron by 2.26 eV to the first excited state for several different
choices ofw. Panel A shows that settingw ) 0.1 Å, much
smaller than the 4 Å suggested by the discussion in section II.D,
causes the wave function to collapse at nearly every time step
(on average, after 99.7% of the time steps). Such frequent
collapses are expected because a small value ofw implies a
large decoherence rate,τ-1. Over the short time between
collapses, very little mixing with the ground state can occur,
so by eq 8 there is almost no chance for the electronic wave
function to collapse to the ground state; the collapse to the
ground statet ) 767 fs occurred only after a chance reduction
in the energy difference between the ground and first excited
states allowed significant mixing into the ground state in a single
0.5-fs time step. Panel B displays the evolution of the popula-
tions with our presumptive choice ofw ) 4 Å. This Gaussian
width allows significantly more mixing to take place, so that
there are only three wave function collapses over the entire run,
as indicated by the crosses in panel B. As the inset shows,∼350
fs after the initial excitation, population builds up on the ground
state, reaching a plateau with∼70% population on the ground
state and only∼30% on the first excited state. After only∼15
fs as a strongly mixed state, decoherence induces a wave
function collapse to the ground state. After the ground state
has been reached, solvation quickly reduces the ground-state
energy so that there is very little further mixing. Finally, panel
C shows the population dynamics withw ) 10 Å. The largew
value implies very broad Gaussians in momentum space, so
there should be very few wave function collapses. As indicated
by the crosses in panel C, over the 1.6 ps of this simulation,
there were only two decoherence events, one that caused a
collapse back to the first excited state at∼680 fs and the other
that caused a collapse to the ground state at∼1370 fs. The lack
of decoherence events over a relatively long time means that
the calculated dynamics is very nearly Ehrenfest in character,
with the wave function remaining mixed for excessively long
periods. It recently has been shown that such mean-field
dynamics leads on average to nearly equal populations in all
states,40 so that asw f ∞ the electron will never be confined
solely to a single state; in this limit, MF-SD should approach
purely Ehrenfest dynamics.

Figure 5 showed that either with very large or very small
values of w, the electron remains in the excited state for
significantly longer than we saw with the intermediate value,
w ) 4 Å. Thus, in Figure 6, we study thew-dependence of the
average excited-state lifetime of the hydrated electron. The upper
panel of Figure 6A shows the average excited-state population,
Pexc(t) (eq 16), for the same three width parameters discussed

in connection with Figure 5. This figure shows that on average
Pexc(t) decays fastest forw ) 4 Å, whereas forw ) 10 Å, it
decays more slowly but varies continuously, as expected for
what is largely mean-field dynamics with only a few wave
function collapses. Forw ) 0.1 Å,Pexc(t) differs markedly from
the other two average excited-state populations. The population
decreases in a stepwise fashion because the density matrix is
constantly being collapsed to one of the excited states, as in
the quantum Zeno effect.67 In this rapid decoherence limit, the
steps inPexc(t) correspond to the times when the essentially
adiabatic dynamics of an excited-state switches to become
adiabatic dynamics on the ground electronic state. Thus,
Pexc(t) for w ) 0.1 Å is closely analogous to the excited-state
survival probability calculated in other surface hopping tech-
niques,3,6 albeit with a different (and quite artificial) criterion
for the hops.

We have seen that different values ofw lead to distinct
dynamics for the density matrix. How do these differences
translate into a lifetime for the excited hydrated electron? Figure
6B displays the mean lifetime as a function ofw for Gaussian
widths ranging from 0.1 up to 20 Å, where each point is

Figure 5. Time evolution of the state populations calculated with MF-
SD following excitation of a hydrated electron for different choices of
the width parameterw (eq 10): w ) 0.1 Å (panel A),w ) 4.0 Å (panel
B), andw ) 10.0 Å (panel C). The insets in panels A and B show the
times near the first wave function collapse to the ground state on an
expanded scale. The crosses in panels B and C indicate times at which
the wave function collapsed to a single adiabatic state; wave function
collapses are not indicated in panel A because whenw ) 0.1 Å, the
wave function collapses at almost every time step, as discussed in the
text.
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calculated usingPexc(t) averaged over 50 excited-state relaxation
runs as described in section III. As expected from our earlier
discussion, at both small and largew values, the lifetime is quite
large. In the limitsw f 0 andw f ∞, the lifetime rigorously
becomes infinite, consistent with the trends shown in the figure;
for w g 5 Å, the lifetime fits very well to an exponential increase
with w. The mean lifetime does not change significantly for 2
e w e 5, so any of the methods we used to estimatew can be
considered equivalent. The fact that the mean lifetime in this
range ofw is a minimum raises the intriguing possibility that
the correct value ofw may be found by looking for the minimum
lifetime, especially because a minimum lifetime represents a
balance between allowing mixing to occur (unlike withw ∼ 0)
and not allowing decoherence events (as withw f ∞). It is
interesting to speculate that it may not be a coincidence that
the minimum lifetime occurs with the value ofw determined
by examining eq 12, but as of yet, we have no compelling
argument for why this should be the case.
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