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Preface

Los Angeles, CA

December 9, 2023

These are the lecture notes for CHEM 110B, “Topics in Physical Chemistry”, a course
which centers on thermodynamics and statistical mechanics. The lecture topics are:

Week 1 Introduction to Statistical Mechanics, Probability, Distribution Functions

Week 2 Boltzmann’s Law, Kinetic Theory, Maxwell-Boltzmann Distribution

Weeks 3,4 Boltzmann’s Law, Partition Functions (PFs), Microstates, Ensembles

Weeks 4,5 Ideal Gas: Translational, Rotational, Vibrational partition functions, Energy
Equipartition

Week 5 Statistical Thermodynamics, Equilibrium

Week 6 Black Body Radiation, Heat Capacity of Solids, Third Law

Week 7 Non-Ideal Gases, Liquid Structure: Hard Sphere Liquid

Weeks 8,9 Bose-Einstein & Fermi-Dirac Statistics, Electron Gas, Fermi Level, BE Conden-
sation

Weeks 9,10 Transport Processes and Kinetics

The following textbooks are recommended:

• Kubo, Toda, Saito, Statistical Physics I

• Honerkamp, Statistical Physics

• McQuarrie, Statistical Mechanics
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Chapter 1

Probability

Experimental measurements in the laboratory are random variables (rv). Every time you
measure a physical quantity you get a different number because of random fluctuations
(random errors). The random fluctuations are related to random errors in experiments.
To properly describe experimental errors, a statistical description is needed. In statistical
mechanics we deal with a very large number of particles. Because we cannot possibly know
everything about every particle, a statistical description is needed. Herein we introduce
tools to study random variables. Random variables can be continuous or discrete, depend-
ing on whether they take continuous or discrete values, respectively. An example of a
continuous random variable is the length of an object. Length is a random variable which
can take positive real values in a continuous interval. An example of a discrete random
variable is the number of counts within a time interval. Counts can only take discrete
values (1, 2, 3, . . . ), in this case, the positive integers.

1.1. Motivation for Probability

Let A be an event associated with some experiment E, so that A might, or might not,
occur when E is performed. Now consider a Super-experiment E∞ which consists of an
infinite number of independent performances of E, “independent” in that no performance
is allowed to influence others. Write N(A,n) for the number of occurrences of A in the first
n performances of E within the super-experiment. Then the long-term relative frequency
(LTRF) idea is that

N(A,n)

n
converges to P(A)

in some sense, where P(A) is the probability of A, that is, the probability that A oc-
curs within experiment E. If our individual experiment E consists of tossing a coin with
probability p of Heads once, then the LTRF idea is that if the coin is thrown repeatedly,

1



2 1. Probability

then
Number of Heads

Number of tosses
→ p

in some sense. Here, A is the event that “the coin falls Heads” in our individual experiment
E, and p = P(A). Since the coin has no memory, we believe (and postulate in mathematical
modelling) that it behaves independently on different tosses.

The certain event Ω (Greek Omega), the event that “something happens”, occurs on
every performance of experiment E. The impossible event ∅ (“nothing happens”) never
occurs. The LTRF idea suggests that

P(Ω) = 1, P(∅) = 0.

Note that in order to formulate and prove the Strong Law, we have to set up a model for
the super-experiment E∞, and we have to be precise about “in some sense”.

Addition Rule for Two Events: If A and B are events associated with our experiment
E, and these events are disjoint (or exclusive) in that it is impossible for A and B to occur
simultaneously on any performance of the experiment, and if A ∪ B is the event that “A
happens or B happens”, then, of course,

N(A ∪B,n) = N(A,n)N(B,n).

The appropriateness of the set-theoretic “union” notation will become clear later. If we
“divide by n and let n tend to ∞” we obtain LTRF motivation — but not proof — of the
Addition Rule for Two Events: if A and B are disjoint, then P(A ∪ B) = P(A) + P(B).
This is normally taken as an axiom. If our individual experiment is that of tossing a coin
twice, then

P(1 Head in all) = P(HT) + P(TH),
where, of course, HT signifies “Heads on the 1st toss, Tails on the 2nd”. If A is any event,
we write Ac for the event “A does not occur”. Then A and Ac are disjoint, and A∪Ac = Ω:
precisely one of A and Ac occurs within our experiment E. Thus, 1 = P(Ω) = P(A)+P(Ac),
so that P(Ac) = 1− P(A). Hence, for our coin, P(it falls Tails) = q : 1− p.

The LTRF motivation for conditional probability. Let A and B be events associated
with our experiment E, with P(A) ̸= 0. The LTRF motivation is that we regard the
conditional probability P(B|A) that B occurs given that A occurs as follows. Suppose
again that our experiment is performed ’independently’ infinitely often. Then (the LTRF
idea is that) P(B|A) is the long-term proportion of those experiments on which A occurs
that B (also) occurs, in other words, that both A and B occur: In other words, if A ∩ B
is the event that ’A and B occur simultaneously’, then we should have

P(B|A) =limit in some sense of
N(A ∩B,n)
N(A,n)

=limit in some sense of
N(A ∩B,n)/n
N(A,n)/n

=
P(A ∩B)

P(A)
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in our experiment E. In the mathematical theory, we define

P(B|A) := P(A ∩B)

P(A)
.

Suppose that our experiment E has actually been performed in the real world, and that
we are told only that event A has occurred. Bayesians would say that P(B|A) is then our
’probability as degree of belief that B (also) occurred’. Once the experiment has been
performed, whether or not B has occurred involves no randomness from the Frequentist
standpoint. A Frequentist would have to quote: ’the long-term proportion of those ex-
periments on which A occurs that B (also) occurs is (whatever is the numerical value of)
P(B|A)’; and in this sense P)(B|A) represents our ’confidence’ that B occurred in an actual
experiment on which we are told that A occurred.

With this Frequentist view of probability, we should explain to Homer that if the ex-
periment ’Pick a person at random and test him or her for the disease’ were performed
independently a very large number of times, then on a proportion 11/12 of those occasions
on which a person tested positively, he or she would not have the disease. To guarantee the
independence of the performances of the experiment, we would have to pick each person
from the entire population, so that the same person might be chosen many times. It is of
course assumed that if the person is chosen many times, no record of the results of any
previous tests is kept. This is an example of sampling with replacement.

General Multiplication Rule. We have for any 2 events A and B,

P(A ∩B) = P(A)P(B|A),
this being merely a rearrangement of the previous formula. The latter does not exist when
P(A) = 0.

For any 3 events A, B and C, we have, for the event A ∩ B ∩ C that all of A, B and C
occur simultaneously within our experiment E,

P(A ∩B ∩ C) = P((A ∩B) ∩ C) = P(A ∩B)P(C|A ∩B),

whence
P(A ∩B ∩ C) = P(A)P(B|A)P(C|A ∩B).

The extension to 4 or more events is now obvious.

A decomposition result. Let A and B be any two events. The events G : A ∩ B and
H := Ac∩B are disjoint, and G∪H = B. (Clarification. We are decomposing B according
to whether or not A occurs. If B occurs, then either ’A occurs and B occurs’ or ’A does
not occur and B occurs’.) We have

P(B) = P(G) +H = P(A)P(B|A) + P(Ac)P(B|Ac).
This, the simplest decomposition, is extremely useful.

Example on conditional probability. Suppose that 1 in 100 people has a certain
disease. A test for the disease has 90% accuracy, which here means that 90% of those who
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do have the disease will test positively (suggesting that they have the disease) and 10% of
those who do not have the disease will test positively. One person is chosen at random from
the population, tested for the disease, and the test gives a positive result. That person
might be inclined to think: “I have been tested and found ’positive’ by a test which is
accurate 90% of the time, so there is a 90% chance that I have the disease.” However, it is
much more likely that the randomly chosen person does not have the disease and the test
is in error than that he or she does have the disease and the test is correct. Indeed, we can
reason as follows, using ’K.’ to signify ’thousand’ (1000, not 1024) and ’M’ for ’million’.
Let us suppose that there are 1M people in the population. Suppose that they are all
tested. Then, amongst the 1M people, and about 1M x 99% = 990K would not have the
disease, of whom about (1M x 99%) x 10% = 99K would test positively; 1M x 1% = 10K
would have the disease, of whom about (1M x 1%) x 90% = 9K would test positively. So,
a total of about 99K + 9K = 108K would test positively, of whom only 9K would actually
have the disease. In other words, only 1/12 of those who would test positively actually
have the disease. Because of this, we say that the conditional probability that a randomly
chosen person does have the disease given that that person is tested with a positive result,
is 1/12.

Now consider the situation where the experiment has actually been performed: a real person
with an actual name — let’s say it is Homer Lagrange — has been chosen, and tested with
a positive result. Can we tell Homer that the probability that he has the disease is 1/12?
Do note that we are assuming that Homer is the person chosen at random; and that all
we know about him is that his test proved positive. It is not the case (for example) that
Homer is consulting his doctor because he fears he may have caught a sexually transmitted
disease.

A Possible Frequency-School View. The problem is that there is no randomness in whether
or not Homer has the disease: either he does have it, in which case the probability that
he has it (conditional on any information) is 1; or he does not have it, in which case the
probability that he has it (conditional on any information) is 0. All that we can say to
Homer is that if every person were tested, then the fraction of those with positive results
who would have the disease is 1/12; and in this sense he can be 11/12 ’confident’ that he
does not have the disease. It is not very helpful to tell Homer only that the probability
that he has the disease is either 0 or 1 but we don’t know which.

The Bayesian-School View. If we take the contrasting view of the Bayesian School of
Statistics, then we can interpret ’probability that a statement is true’ as meaning ’degree
of belief in that statement’; and then we can tell Homer that the probability (in this new
sense) that he has the disease is 1/12.

In this example, let B be ’chosen person has the disease’ and A be ’chosen person tests
positively’. We want to find P(B|A). We are given that P(B) = 1%, P(Bc) = 99%,
P(A|B) = 90%, P(A|B) = 10%. We have, keeping the calculation in the same order as
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before,
P(A) = P(Bc ∩A) + P(B ∩A) = P(Bc)P(A|Bc) + P(B)P(A|B)

= (0.99× 0.10) + (0.01× 0.90) = 0.108 (= 108K/1M)

We now know P(A ∩B) and P(A), so we can find P(B|A).
’Independence means Multiply’. If A and B are two events, then we say that A and
B are independent if

P(A ∩B) = P(A)P(B),

one of several assertions which we shall meet that ’Independence means Multiply’. If
P(A) = 0, no comment is necessary. If P(A) ̸= 0, then we may rearrange the expression as

P(B|A) = P(A ∩B)

P(A)
= P(B),

which says that the information that A occurs on some performance of E does not affect
‘our degree of belief that B occurs’ on that same performance.

If we consider the experiment ’Toss a coin (with probability p of Heads) twice’, then, we
believe that, since the coin has no memory, the results of the two tosses will be independent.
(The laws of physics would be very different if they are not!) Hence we have

P(HT) = P(Heads on first toss)× P(Tails on second) = pq,

where q, the probability of Tails, is 1− p; and, using the addition rule, we get the familiar
answer that the probability of ’exactly one Head in all’ is pq + qp = 2pq.

The Multiplication Rules for n independent events follow from the General Multiplication
Rules similarly. If we toss a coin 3 times, the chance of getting HTT is, of course, pqq.

Counting. We now begin a discussion (continued in the next section) of various ’counting’
and ’conditioning’ aspects of the famous binomial-distribution result for coin tossing. The
’counting’ approach may well be familiar to you; but, in the main, we want you to condition
rather than to count.

Lemma. For non-negative integers r and n with 0 ≤ r ≤ n, the number
(
n
r

)
, also denoted

by cCr, of subsets of {1, 2, . . . , n} of size r is(
n

r

)
=n Cr =

n!

r!(n− r)!
,

where, as usual,
n! := n(n− 1)(n− 2) . . . 3.2.1, 0! := 1.

If r < 0 or r > n, we define nCr :=
(
n
r

)
:= 0. Note: there is a standard convention in math

that ‘set’ means ’unordered set’: {1, 2, 3}{3, 1, 2}. There are indeed 4C2 = 6 subsets of size
two of {1, 2, 3, 4}, namely, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. The empty set is the
only subset of {1, 2, ..., n} of size 0, even if n = 0.

Lemma. (a) The number of ordered r-tuples (i1, i2, . . . , ir) where each ik is chosen from
{1, 2, . . . , n} is nr. (We know from Set Theory that the set of all such r-tuples is the
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Cartesian product {1, 2, . . . , n}r.) (b) For 0 ≤ r ≤ n, the number nPr of ordered r-tuples
(i1, i2, . . . , ir) where each ik is chosen from {1, 2, . . . , n} and i1, i2, . . . , ir are distinct is
given by

nPr = n(n− 1)(n− 2) . . . (n− r + 1) =
n!

(n− r)!
.

(c) The number of permutations of {1, 2, . . . , n} is n!. (d) The previous Lemma is true.
Proof. In Part (a), there are n ways of choosing i1, and, for each of these choices,n ways
of choosing i2, making n × (n − 1) ways of choosing the ordered pair (i1, i2). For each of
these n2 choices of the ordered pair (i1, i2), there are n ways of choosing i3; and so on.
In Part (b), there are n ways of choosing i1, and, for each of these choices, n − 1 ways of
choosing i2 (because we are now not allowed to choose it again), making n× (n− 1)ways
of choosing the ordered pair (i1, i2). For each of these n(n− 1) choices of the ordered pair
(i1, i2), there are n− 2 ways of choosing i3; and so on. Part (c) is just the special case of
Part (b) when r = n. Now for Part (d). By Part (c), each subset of size r of {1, 2, . . . , n}
gives rise to r! ordered r-tuples (i1, i2, . . . , ir) where i1, i2, . . . , ir are the distinct elements
of the set in some order. So it must be the case that r!×n Cr =

n Pr;and this leads to our
previous formula for nCr.

National Lottery. One can however obtain clearer intuitive understanding of this Lemma
by using conditioning rather than counting as follows. Yes, a certain amount of intuition
goes into the argument too. A gambler (who clearly knows no Probability) pays 1 pound
to choose a subset of size r of the set {1, 2, . . . , n}. (n = 49, and r = 6.) The Lottery
Machine later chooses ’at random’ a subset of size r of the set {1, 2, . . . , n}. If the machine
chooses exactly the same subset as our gambler, then our gambler wins the ’jackpot’. It is
clear that our gambler wins the ’jackpot’ with probability 1/

(
n
r

)
, and we can find

(
n
r

)
from

this probability.

Now, the probability that the first number chosen by the machine is one of the numbers
in our gambler’s set is clearly r/n. The conditional probability that the second number
chosen by the machine is in our gambler’s set given that the first is, is clearly (r−1)/(n−1),
because, given this information about the first, at the time the machine chooses its second
number, there are n− 1 ’remaining’ numbers, r − 1 of which are in our gambler’s set. By
the multiplication rules the probability that the first two numbers chosen by the machine
are in our gambler’s set is

r

n
× r − 1

n− 1
.

By extending the idea, we see that the probability that the machine chooses exactly the
same set as our gambler is

r

n
× r − 1

n− r
× r − 2

n− 2
× · · · × 1

n− r + 1
=

r!
nPr

=
r!(n− r)!

n!
.

(In Britain, then, the probability of winning the jackpot is very roughly 1 in 14 million.)
We have proved the Lemma.
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Binomial(n, p) distribution. If a coin with probability p of Heads is tossed n times,
and we write Y for the total number of Heads obtained, then Y has the probability mass
function of the binomial(n, p) distribution:

P(Y = r) = b(n, p; r) :=

(
n

r

)
pr(1− p)n−r.

Proof. Because of the independence of the coin’s behavior on different tosses, we have for
any outcome such as HTHHHTTHH with exactly r Heads and n− r Tails,

P(HTHHHTTRH...) = pqpppqqpp... = prqn−r,

where q = 1 − p. Now the typical result with r Heads in all is a sequence such as HTH-
HHTTHH ... in which the set of positions where we have H is a subset of {1, 2, . . . , n} of
size r. Every one of these

(
n
r

)
subsets contributes prqn−r to P(Y = r), whence the result

follows.

Stirling’s Formula. This formula, proved in 1730, states that

n! ∼
(n
e

)n√
2πn as n→ ∞,

with the precise meaning that, as n → ∞, the ratio of the two sides of this expression
converges to 1. For n = 10, LHS/RHS = 1.0084.

As an exercise, show that for the probability n(2n, 12 ;n) that we would get n Heads and n
Tails in 2n tosses of a fair coin satisfies

n(2n, 12 ;n) ∼
1√
πn

.

Check that when n = 10, the left-hand side is 0.1762 (to 4 places) and the right-hand side
is 0.1784 (to 4 places).

A very useful inequality.

1− x ≤ e−x for x ≥ 0.

To prove this, integrate 1 ≥ e−y (y ≥ 0) from 0 to x, getting x ≥ 1 − e−x. Note that
therefore, the probability that no two of our 23 people have the same birthday is at most

exp

(
−1 + 2 + · · ·+ 22

365

)
= exp

(
−253

365

)
= 0.499998.

1.2. Events and Probabilities

Probability P is just a function which assigns numbers to events in a manner consistent
with the Addition Rule (and with conditional-probability considerations) — and nothing
more. And events are just (technically, ‘measurable’) subsets of a certain set, always
denoted by Ω. This set is called the sample space and it represents the set of all possible
outcomes ω of our experiment. In Statistics, the experiment has been performed, and we
have some information — in many cases, all information — about the actual outcome ωact,
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the particular point of Ω actually ‘realized’. The relation between ’sample’ in Statistics
and our ’sample point’ and ’sample space’ will become clear as we proceed.

1.2.1. Possible outcome ω, actual outcome ωact; and Events.

1.2.1.1. Sample space of possible outcomes ω. Probability considers an experiment before
it is performed, and Statistics considers an experiment after it has been performed. Proba-
bility considers an abstract set Ω, the sample space, which represents the set of all possible
outcomes of our experiment. A possible outcome, or sample point, ω is mathematically a
point of the ’abstract’ set Ω.

1) For example, for the experiment of tossing a coin three times,

(1.1) Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT},
a finite set.

2) For the experiment of choosing a point at random between 0 and 1, we naturally take
Ω = [0, 1], an uncountable set.

3) For the experiment of tossing a coin until the first time we obtain MI, we can justify
taking

Ω = {HH, THH, HTHH, TTHH, . . . },
a countable set. However, there is the difficulty, which must be addressed, that there are
uncountably many ‘crazy’ outcomes in which the pattern HH never occurs. The set of all
such crazy outcomes must be proved to have probability 0 before we can reduce to the
desired Ω.

1.2.2. Crystallization of actual outcome; realization. Our picture is that Tyche,
Goddess of Chance, chooses a point ωact of Ω ‘at random and in accordance with the prob-
ability law P’ in a sense explained below. This is Tyche’s ’experiment’, and it determines
the actual outcome ωact in the real world. The whole sample space Ω is a nebulous, abstract
thing. Tyche’s choice, as it were, ’crystallizes into existence’ one sample point ωact which
becomes real. It is important that we regard Tyche’s single choice of ωact as determining
the entire outcome, the entire realization, of the real-world experiment. If the real-world
experiment consists of many stages (for example, many coin tosses), then Tyche is in a
sense revealing her choice to us in instalments. But she made just the one choice ωact.

1.2.3. Event as (measurable) subset of Ω. For the ’Toss coin three times’ experi-
ment, the real-world event ’2 Heads in all’ occurs if and only if ωact belongs to the subset
{HHT, HTH, THH} of Ω at (1.1) consisting of those possible outcomes ω which would
produce 2 Heads in all. In the mathematical theory, the event ’2 Heads in all’ is regarded
as the subset {HHT, HTH, THH} of the sample space Ω. And so for any event for any
experiment.
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Technical note: Except in simple cases, essentially those in which Ω is finite or countable,
we have to restrict the type of subset of Ω which constitutes an ’event’: an event is a
‘measurable’ subset of Ω. We therefore have the following table in mind:

Table 1.1. Correspondence between Mathematical and Real-world Concepts in Probabil-
ity

Event Real-world interpretation

Sample space Ω Set of all outcomes

Point ω of Ω Possible outcome of experiment

(No counterpart) Actual outcome ωact

Event F , measurable subset of
Ω

The real-world event corresponding to F oc-
curs if and only if ωact ∈ F

P, a number Probability that F will occur for an experi-
ment yet to be performed

We see that Tyche must perform her experiment in such a way that she will choose ωact

to be in the set F ‘with probability P(F )’. This is what is meant by ‘Tyche chooses in
accordance with the law P’. Because we are now regarding events F , G, etc, as subsets,
we can extend this table:

Table 1.2. Correspondence between Mathematical Events and Real-world Interpretations

Event Real-world interpretation

Ω, the entire sample space The certain event ‘something happens’

The empty subset ∅ of Ω The impossible event ‘nothing happens’

The intersection F ∩G ‘Both F and G occur’

F1 ∩ F2 ∩ · · · ∩ Fn ‘All of the events F1, F2, . . . , Fn occur simul-
taneously’

The union F ∪G ‘At least one of F and G occurs’

F1 ∪ F2 ∪ · · · ∪ Fn ‘At least one of F1, F2, . . . , Fn occurs’

Complement F c of F ‘F does not occur’

F \G ‘F occurs, but G does not occur’

F ⊆ G If F occurs, then G must occur

1.2.4. Set theory and Probability. Combining events is exactly the same as combining
sets in elementary set theory. I am sure that you know about Venn diagrams. The figure
below illustrates parts of the table just considered.
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The amazing fact that the Fundamental Experiment

Choose a number between 0 and 1 uniformly at random

is Universal in that every other experiment is contained within it makes the 1-dimensional
pictures particularly appropriate, especially for constructing counterexamples.

You should practice giving probabilistic interpretations of set-theoretic results. For exam-
ple, one of de Morgan’s rules states that

(F1 ∩ F2 ∩ · · · ∩ Fn)c = F c1 ∪ F c2 ∪ · · · ∪ F cn.
In real-world terms, with L for the left-hand side and R for the right-hand side, L: it is
not true that all of the events F1, F2, . . . , Fn do occur; R: it is true that at least one of the
events F1, F2, . . . , Fn, does not occur. Thus this relationship is obvious.

Or again, consider the distributive law:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

An (B U C) = (A n B) U (AnC). Exercise. Use ’event’ language (so that the left-hand side
signifies ’ A definitely occurs and at least one of B and C occurs’) to make the distributive
law ’obvious’.

1.2.5. Probabilities. Mathematically, probability is just a function P which assigns to
each event F a number P(F ) in [0, 1] such that

P(Ω) = 1

and the so-called Addition Rule holds. One important part of the Addition Rule states the
following.
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1.2.5.1. Addition Rule, an Axiom. For events F and G,

F ∩G = ∅ implies P(F ∪G) = P(F ) + P(G).
If F ∩ G = ∅, then F and G are called disjoint or exclusive. In the mathematical theory,
this rule is an axiom that the probability laws P which we use must satisfy: and we do not
prove this rule. We can only motivate it with examples.

1.2.5.2. Lemma. (a) For any event F , P(F c) = 1 − P(F ). (b) For any two events F and
G, we have the Inclusion-Exclusion Principle

P(F ∪G) = P(F ) + P(G)− P(F ∩G).
Proof. Part (a) is obvious. Part (b) may be seen as follows. The event F may be written
the disjoint union of F
G and F ∩G. So,

P(F ) = P(FG) + P(F ∩G);
and, since F ∪G is the disjoint union of F
G and G,

P(F ∪G) = P(FG) + P(G) = P(F )− P(F ∩G) + P(G),
the desired result.

1.2.5.3. Lemma. We have the extended Addition Rule: if the events F1, F2, . . . , Fn are
disjoint (that is, Fi ∩ Fj = ∅ whenever i ̸= j),

P(F1 ∪ F2 ∪ · · · ∪ Fn) = P(F1) + P(F2) + · · ·+ P(Fn).
In shorthand:

P (∪nk=1Fk) =
n∑
k=1

P(Fk).

Proof. If A,B and C are disjoint events, the A ∪ B is disjoint from C, so that two
applications of the Addition Rule for disjoint sets give

P(A ∪B ∪ C) = P((A ∪B) ∪ C) = P(A ∪B) + P(C) = P(A) + P(B) + P(C).
It is not worth dignifying the ’n-event’ case with a proof by induction.

1.2.5.4. General Inclusion-Exclusion Principle. What about the Inclusion- Exclusion Prin-
ciple for n events? For 3 events A,B,C, it would say

P(A ∪B ∪ C) = Σ1 − Σ2 +Σ3,

where
Σ1 := P(A) + P(B) + P(C),

Σ2 := P(A ∩B) + P(A ∩ C) + P(B ∩ C),
Σ3 := P(A ∩B ∩ C).
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1.2.5.5. Lemma: General Inclusion-Exclusion Principle. Let F1, F2, . . . , Fn be any events.
Then

P(F1 ∪ F2 ∪ · · · ∪ Fn) = Σ1 − Σ2 +Σ3 − · · ·+ (−1)n+1Σn,

where Σr is the sum of terms

P(Fi1 ∩ Fi2 ∩ · · · ∩ Fir)
over all subsets {i1, i2, . . . , ir} of size r from {1, 2, . . . , n}.
1.2.5.6. Example: The Hat-Matching Problem. In this well-known problem, n absent-
minded hat-wearing professors attend a meeting. At the end of the meeting, each picks a
hat at random. We want to show that the probability at least one of them gets the right
hat is

1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!
.

Thus the probability that none of them gets the right hat, namely 1 minus the above
expression, is exactly the sum of the first n + 1 terms in the expansion of e−1, and so is
extremely close to 1/e even for moderate n.

Solution. Let Fk be the probability that the k-th professor to leave (Prof. k) gets the right
hat. Now, it is all just as if someone shuffled the whole ’pack’ of hats and gave them out
randomly to the various professors. So, for every k, the chance that the k-th professor to
leave gets the right hat is 1/n. For i ̸= j, the chance that Prof i and Prof j both get the
right hat is (1/n)× (1/(n− 1)).

Since there are n! permutations of the n numbers {1, 2, . . . , n}, there are n! ways of ‘giving
out the hats’. We need to know how many ways there are of giving out the n hats such
that Prof i and Prof j both get the right hats (others being allowed to get the right hats
too). In other words, we need to know how many permutations of {1, 2, . . . , n} keep i and j
fixed. But this is just the total number of permutations of the remaining numbers. Hence
for i ̸= j,

P(Fi ∩ Fj) =
(n− 2)!

n!
=

1

n(n− 1)
,

and, more generally, for any subset {i1, i2, . . . , ir} of {1, 2, . . . , n},

P(Fi1 ∩ Fi2 ∩ · · · ∩ Fir) =
(n− r)!|

n!
.

Hence, since there are (7) subsets of size r from {1, 2, . . . , n},

Σr =
n!

r!(n− r)!
× (n− r)!

n!
=

1

r!
,

1.2.6. Probability and Measure.
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1.2.6.1. The Full Addition-Rule Axiom. If F1, F2, . . . is an infinite sequence of disjoint
events, then

P (∪∞
k=1Fk) =

∞∑
k=1

P(Fk).

It is impossible to prove this by ’letting n → ∞ in the Lemma for the extended Addition
Rule. That is the whole point. Except in very simple cases, we cannot arrange that this
property (full addition-rule axiom) will hold if we insist that all subsets of Ω are events.
We will need the concept of σ-algebra.

1.2.6.2. Full Axiomatization. In the general theory then, not all subsets of Ω need be
events. We axiomatize things again. The class F of all subsets of Ω which are events must
be what is called a σ-algebra: this means that

• Ω ∈ F ,

• F ∈ F implies that F c ∈ F ,

• F1, F2, · · · ∈ F implies that ∪Fn ∈ F .

Then P is a map P : F → [0, 1] such that P(Ω) = 1 and the Full Addition-Rule Axiom
Property holds whenever the Fk are disjoint elements of F . We now have the full axioma-
tization of the Addition Rule. We say that P is a probability measure on (Ω,F), and that
(Ω,F ,P) is a probability triple.

What makes things work is that we can always set up an (Ω,F ,P) triple for the experiment
which we wish to model in which is large enough to contain every event of which we could
ever wish to find the probability. In the remainder of this section, (Ω,F ,P) is a probability
triple used to model some experiment.

1.2.6.3. Fact: Monotone-Convergence Properties. (a) Suppose that we have events F1 ⊆
F2 ⊆ F3 ⊆ . . . and that F = ∪Fn. Then P(Fn) =↑ P(F ): the sequence {P(Fn)} is
non-decreasing with limit P(F ).
(b) Suppose that we have events G1 ⊇ G2 ⊇ G3 ⊇ . . . and that G = ∩Gn. Then
P(Gn) ↓ P(G): the sequence {P(Gn)} is non-increasing with limit P(G). (This uses the
fact that P(Ω) is finite.)
This is important in that, for example, Fn might be ‘population is extinct at time n’ and
then F is ‘population is eventually extinct’.

1.2.6.4. Almost surely. A statement S about outcomes is said to be almost surely true or
to be true with probability 1 if the truth set T of S, the set of outcomes ω for which S is
true, is an element of F and P(T ) = 1. If a statement is certain, true for every ω, then, of
course, its truth set is Ω and, since P(Ω) = 1, it is almost surely (a.s.) true. The important
point is that many of the things in which we are most interested are almost surely true
without being ’absolutely certain’. Do note that the probability of an almost sure event is
exactly 1, not 99.9% or anything similar.
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1.2.6.5. Null set, null event. An event N is called a null event or null set if N ∈ F and
P(N) = 0. We see that a statement about outcomes is almost surely true if the outcomes
for which it is false form a null event.

1.2.6.6. Fact. If N1, N2, . . . is a sequence of null sets, then ∪Nk is a null set. If H1, H2, . . .
is a sequence of events each of probability 1, then ∩Hk has probability 1.

1.2.6.7. The Fundamental Model. Consider the experiment ’Choose a (real) number uni-
formly between 0 and 1. The outcome must be a real number between 0 and 1, so we take
Ω to be [0, 1]. For each x in [0,1], we wish the statement ’chosen number is less than or
equal to x’ to have a probability and for that probability to be x. It is a theorem of Borel
and Lebesgue that if F is the smallest σ-algebra of subsets of Ω = [0, 1] containing every
interval [0, x] where 0 < x < 1, then there is a unique probability measure P on (Ω,F)
such that P([0, x]) = x whenever 0 < x < 1. We therefore have our complete model for
choosing a point at random between 0 and 1. Let’s call the resulting triple (Ω,F ,P) the
Fundamental Triple.

1.2.6.8. Null sets for the Fundamental Model. This most fundamental model contains all
other models in a certain sense. It is therefore good that we can understand easily what
’almost sure’ or ’with probability 1’ means for this model. As explained previously, we
need only understand what is a null set for the Fundamental Triple. A set N in F is a null
set (it has measure 0) if and only if, for every ϵ > 0 we can find a sequence of disjoint open
subintervals In = (an, bn) of [0,1] (such an open interval is also allowed to have the form
[0, b) or (a, 1] to deal with the endpoints) such that

N ⊆ ∪In and
∑

ℓ(In) < ϵ,

where ℓ(In) is the length of In. In short, for any ϵ > 0, you can find an open subset G of
[0, 1] containing N and of length at most ϵ.

1.2.6.9. Remark. For X ∈ Ω = [0, 1], let Nx = {x}. Then each Nx a null event. (For ϵ > 0,
Gϵ = (x− 1

3ϵ, x+
1
3ϵ) ∩ [0, 1] is an open subset of [0,1] of length less than ϵ and containing

Nx.) However, Ω = ∪n∈ΩNx, and Ω is certainly not a null event. The point here is that the
set Q = [0, 1] is not countable, i.e., we cannot write Ω = {x1, x2, x3, . . . } for some sequence
(xk) of points of Ω; Ω is too large a set to allow us to do this. Otherwise, we would have a
contradiction with Lemma 1.2.6.6. The set of all subsequences of the sequence of positive
integers is also uncountable.

1.2.6.10. Fact: First Borel-Cantelli Lemma. Let J1, J2, . . . be a sequence of events. If∑
P(Jk)M < ∞, then it is almost surely true that only finitely many of the events Jk

occur (Assumed fact). This First Borel-Cantelli Lemma is a very useful result. In the next
chapter,

1.2.6.11. Borel sets and functions. The Borel σ-algebra B(S) on a topological space S is
the smallest σ-algebra of subsets of S which contains all open subsets of S (equivalently,
the smallest σ-algebra of subsets of S which contains all closed subsets of S). A Borel
subset of S is an element of this Borel σ-algebra.
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If S = R, then the Borel σ-algebra is the smallest σ-algebra containing every set of the
form (−∞, x], where x ∈ R. This is just what is needed to study distribution functions in
Probability and Statistics. If S = Rn, then the Borel σ-algebra is the smallest σ-algebra
containing every subset of the form

{(x1, x2, . . . , xn) : xk ≤ a}
where a ∈ R and k ∈ {1, 2, . . . , n}. For the Fundamental Model F ∈ B([0, 1]).
Recall that a continuous function f : S → R is one such that the inverse image f−1(B) :=
{s ∈ S : f(s) ∈ B} of any open subset B of R is open in S. Analogously, we define a
function f : S → R to be a Borel function if the inverse image f−1(B) of any Borel subset
B of R is Borel in S: equivalently, if, for every x ∈ R, {s ∈ S : f(s) ≤ x} is Borel in S.

Every subset of Rn and every function on Rn you are ever likely to meet will be Borel.
Continuous functions are Borel. Limits, limsups, what-have-you of sequences of Borel
functions are Borel. You need to be clever to construct explicitly a function which is not
Borel; but it can be done.

Remark: It was previously stated that there exists a unique measure P on what we now
know to be B[0, 1] such that P([0, x]) = x for every x in [0,1]. The hard thing is to prove the
existence of P. But it matters greatly that P is unique. Uniqueness can easily be proven.

1.3. Random Variables, Means and Variances

1.3.1. Random Variables. Intuitively, a Random Variable (r.v.) is ’a number deter-
mined by Chance’; but this is hardly adequate for a mathematical theory. The formal
definition is as follows.

1.3.1.1. Mathematical formulation of Random Variable (RV).. A Random Variable is de-
fined to be a function (strictly, an F-measurable function) from Ω to R.
Question: Why is it appropriate to axiomatize the notion of Random Variable as being a
function on our sample space ft?

Answer. Suppose that our r.v. Y is ’total number of Heads’ if I toss my coin 3 times. We
can make the picture:

Table 1.3. Random variable Y is a mapping from ω to Y (ω)

ω: HHH HHT HTH HTT THH THT TTH TTT

Y (ω): 3 2 2 1 2 1 1 0

and this already displays Y as a function on Ω. Any ’intuitive r.v. X’ will assign a value
X(ω) to every possible outcome ω.

Here’s another example. Suppose that our experiment consists of throwing a die twice,
that X is the score on the first throw, Y that on the second, and Z is the sum of the
scores. A typical possible outcome w has the form (i, j), where i is the first score and j
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the second. Then X(ω) = i, Y (ω) = j, and Z(ω) = i+ j, and we have the picture

For an r.v. X, we wish to be able to talk about its Distribution Function (DF) FX : R →
[0, 1] (of which more, of course, later) defined by

FX(x) := P(X ≤ x) (x ∈ R).
We therefore require that, for every x ∈ R, the subset Lx := {ω : X(ω) < x} of Ω (the
mathematical formulation of the ’event that X < x’) be a true mathematical event, that is,
an element of the class F of events; and then, of course, we interpret P(X < x) as P(Lx).
Question: Why the restriction to ’measurable’ functions in the proper theory?

Saying that for every x in R, Lx ∈ F is exactly saying in Measure Theory that X is an
F-measurable map from Ω to R.
The point is that sums, products, pointwise limits (if they exist), etc, of measurable func-
tions are measurable. You cannot break out of the world of measurable things without
being rather clever. So, we shall ignore measurability questions.

1.3.1.2. Crystallization, Pre-Statistics and actual statistics. Again let Y be the number
of Heads in 3 tosses of my coin. In Probability, we consider the experiment before it is
performed, and Y is a function on the nebulous, abstract set Ω. Tyche’s choice ’crystallizes
into existence’ the actual outcome ωact. Suppose that ωact = {HHT}. Then the observed,
or realized, value yobs of Y is yobs = Y (ωact) = 2. We may call

• Y , the r.v., a Pre-Statistic,

• yobs, the observed value of Y , an actual statistic,

and regard the crystallization of ωact as changing Y to yobs = Y (ωact).

A Pre-Statistic is a special kind of Random Variable: a Random Variable Y is a Pre-
Statistic if the value Y (ωact) will be known to the observer (it may have to be calculated
from things directly observed) after the experiment is performed; and then Y (ωact) becomes
the observed value yobs of Y . Thus,

A Pre-Statistic is an Observable Random Variable.
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The model may involve r.v.’s the actual values of which cannot be determined after the
experiment: these r.v.’s are not Pre-Statistics. We refer to ωact rather than ωobs precisely
because full information about may never be known.

1.3.1.3. Indicator function IF of an event F . For an event F , we define

IF (ω) :=

{
1 if ω ∈ F,

0 if ω /∈ F.

Intuitively, IF = 1 if F occurs, 0 if it doesn’t. Note: For any x, {ω : IF (ω) < x} can only
be one of three things: ∅, F c, Ω, depending on where x lies in relation to 0 and 1. Hence
IF is certainly measurable.) We use indicator functions to do our counting. The number
Y of Heads I get in n tosses of a coin is

Y = X1 +X2 + · · ·+Xn,

where Xk is the indicator function of the event ’Heads on k-th toss’: for the sum counts 1
for every Head, 0 for every Tail.

Exercise. Let F and G be events. Prove that

IF c = 1− IF , IF∩G = IF IG,

as function identities (‘true for every ω’). Deduce from de Morgan’s rule that IF∪G =
IF + IG − IF IG, and explain why this is otherwise obvious.

1.4. Distribution Functions, PMFs and PDFs

1.4.1. Continuous Random Variables. As mentioned earlier, a random variable X is
not a simple variable; it is better described by associating it with a function that encodes
all of its statistical properties.1 We associate with X a probability density function (PDF),
p(x). As a matter of convention, we shall use capital letters (X) to denote random variables
and lowercase letters (x) for the value of X in some particular experiment ω, i.e., x = X(ω).

1.4.2. Probability Density Function. The probability density function (PDF) of a
random variable X, denoted p(x), is everywhere non-negative: p(x) ≥ 0 and is normalized
to 1: ∫ ∞

−∞
p(x)dx = 1.

We note that the PDF refers to a particular random variable (say, X). This is sometimes
emphasized by adding a subscript, e.g., pX(x) instead of p(x). When working with a single
random variable we do not need the subscript because it should be clear that there is only
one possible random variable that p(x) refers to. However, when the problem involves

1Think of an experiment performed on Monday. The value measured on Tuesday may be slightly different than the

one obtained on Monday because of random errors. Same story for measurements performed on subsequent days —
these values will also be different due to fluctuations.
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more than one random variable, we should use a subscript to avoid confusion between the
different PDFs.

1.4.3. Cumulative Distribution Function. We define the cumulative distribution func-
tion (CDF) as the integral of the PDF:

P(X ≤ x) ≡
∫ x

−∞
p(x′)dx′

The event {X ≤ x} is interpreted as {ω : X(ω) ≤ x} , i.e. the set of all random outcomes
ω such that X(ω) < x. The CDF is the probability that X takes a value less than or equal
to x. The quantity {X ≤ x} is an example of a random event; the function P(·) associates
a number between 0 and 1 to this random event. We note that if p(x) is continuous, then
there is no distinction between P(X ≤ x) and P(X < x). When discontinuities are present,
we should be careful about the equality.

From this definition, we can solve for p in terms of P :2

p(x) =
dP(X ≤ x)

dx

∣∣∣∣
x

.

We note that for a ≤ b

P(a < X ≤ b) =

∫ b

a
p(x)dx =

(∫ b

−∞
−
∫ a

−∞

)
p(x)dx = P(X ≤ b)− P(X ≤ a).

The events {X ≤ a} and {a < X ≤ b} are disjoint with union {X ≤ b}.

1.4.4. Interpretation of PDF. The PDF, p(x), has the following interpretation. The
quantity p(x)dx is the probability that the random variable X lies in the interval [x, x+dx]:

p(x)dx = P(x ≤ X ≤ x+ dx) ≡ P(X ∈ dx),

where dx is an infinitesimally small quantity. In the last equality, dx refers to the interval
[x, x+ dx]. P(·) denotes the probability of the event · occurring.

2To differentiate the integral with respect to x, apply the Leibniz formula (see Section 9.9) for differentiation of
integrals. In the expression

∫ x
−∞ p(x′)dx′, the only dependence on x comes from the upper limit of the integral.

Thus, d
dx

∫ x
−∞ p(x′)dx′ = p(x).
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The quantity p(x)dx by itself is rarely used, except under the integral sign. Instead, one
integrates this expression to find the probability that X will take some value in a finite
interval [a, b]:

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx.

The last step follows from3

P(x ≤ X ≤ x+ dx) = P(X ≤ x+ dx)− P(X ≤ x) = dP(X ≤ x),

integrating P(x ≤ X ≤ x + dx) = dP(X ≤ x) from a to b yields
∫ b
a dP(X ≤ x) = P(X ≤

b)−P(X ≤ a) = P(a ≤ X ≤ b) whereas integrating p(x)dx yields
∫ b
a p(x)dx. Since the two

are equal, we have that P(a ≤ X ≤ b) =
∫ b
a p(x)dx.

1.4.5. Limit value of CDF. We note that the CDF approaches 1 in the limit of large
x. This follows from the normalization condition on the PDF.

1.4.6. Experimental Data: The Empirical Distribution. Suppose that our knowl-
edge of the rv X is not its PDF, p(x) but instead a series of data points obtained experi-
mentally:

x1 = X(ω1), x2 = X(ω2), . . . , xn = X(ωn).

(An equivalent description that will be used in subsequent chapters is to take n independent
rv’s X1, . . . , Xn of the same distribution as X and fix ω. The order in which rv’s are
measured is immaterial since they are assumed independent. Fixing ω implies that all
random variables are measured simultaneously. The data is {xi = Xi(ω)}ni=1.)

We define the empirical PDF as follows:

p̂(x) =
1

n

n∑
i=1

δ(x− xi),

where δ(x) is the Dirac delta function. It is trivial to verify that
∫
p̂(x)dx = 1 and p̂(x) ≥ 0.

The CDF corresponding to p̂(x) is:

P(X ≤ x) =

∫ x

−∞
p̂(x)dx =

1

n
#{i : xi ≤ x}.

Here, #{i : xi ≤ x} denotes the number of data points xi satisfying the condition xi ≤ x.
The empirical distribution p̂(x) is an approximation to the true PDF p(x). This fact follows
from the Law of Large Numbers (see Problem 16).

3In calculus, recall that df(x) = f(x+ dx)− f(x).
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1.4.7. Mean Value of Continuous Random Variable. Let X be a continuous rv.
The mathematical expectation of X, denoted ⟨X⟩, is defined as:

⟨X⟩ ≡
∫ ∞

−∞
x p(x)dx.

where the integral is over all values taken by the rv X (here, over the entire real line). If
the random variable takes values in the interval [0, 1] then the limits of the integral range
from 0 to 1.

That is, to obtain the mean value of X, we replace the rv X by a regular variable x that
represents its value, then multiply by p(x) and integrate over all x.

Other names for ⟨X⟩ include “mean value” (of X), or “expectation value” or “average
value”. Other symbols you may encounter in the literature include X, µX , ⟨X⟩ or m(X).

We note that this expression differs from the sample mean µ̂X = 1
n

∑n
i=1 xi. The sample

mean is an estimate of the mean.4 Substitution of the empirical distribution (Eq. 1.2)

(1.2) p̂(x) =
1

n

n∑
i=1

δ(x− xi)

into the above definition for ⟨X⟩ gives the sample mean:∫ ∞

−∞
x
1

n

n∑
i=1

δ(x− xi)dx =
1

n

n∑
i=1

xi.

Here {xi}ni=1 denotes experimental measurements of X.

1.4.8. Indicator Functions. An indicator function, 1{x<y}(x) is a function that takes
the value 1 when x < y and 0 otherwise. Indicator functions can also be applied to random
events. Let X be a rv and A is a random event. The indicator function for the random
event X ∈ A is defined as:

1A(X) =

{
1 if X ∈ A

0 otherwise

where X ∈ A refers to the value of the rv X taken after a random experiment. Another
notation for 1A(X) you may encounter is 1X∈A. You may also encounter IX∈A or χA(X)
instead of 1X∈A. Taking the mathematical expectation of 1X∈A and applying the definition
of probability,

⟨1X∈A⟩ =
∫ ∞

−∞
1x∈A(x)p(x)dx =

∫
A
p(x)dx = P(A).

where A is a random event and the integral
∫
A means integral over all points x that meet

the condition x ∈ A (for example, X could be a coordinate, and A = (−∞, y] indicates an
event where the coordinate is less than y). Indicator functions are useful when dealing with

4More specifically, the sample mean is the best estimate of the mean in the sense of least squares.
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experimental measurements. See Problems 15, 10 and 17 for example uses of the indicator
function.

1.4.9. Variance. The variance of X, denoted var(X) or σ2X , is defined as the sum of
square differences between X and its mean, µX ≡ ⟨X⟩, weighted by the PDF:

σ2X ≡ var(X) =

∫ ∞

−∞
p(x)(x− µX)

2dx

The square can be expanded to give
∫∞
−∞ p(x)(x2 + µ2X − 2xµX)dx and thus

σ2X = ⟨X2⟩ − (µX)
2.

The square root of the variance is called the standard deviation and is commonly denoted
σ.

1.4.10. Example PDFs.

1.4.10.1. Point Distribution. Let X be a rv and p(x) its distribution (PDF). The simplest
known PDF is one concentrated at a single point x0:

p(x) = δ(x− x0).

It is trivial to verify that p(x) ≥ 0 and
∫∞
−∞ p(x)dx = 1. The CDF is easily found:

P(X < a) =

∫ a

−∞
δ(x− x0)dx = θ(a− x0),

where

θ(x) =

{
1 if x > 0

0 otherwise

is the Heaviside step function. We note that the Heaviside function can be expressed in
terms of the indicator function as θ(x) = 1(0,∞)(x). We also note that δ(x) = d

dxθ(x).

1.4.10.2. Discrete Distribution. Let X be a rv that can take values {xi}Ni=1 in a set X . N
is the number of possible values that X can take. The PDF

p(x) =
N∑
i=1

piδ(x− xi), pi ≥ 0,
N∑
i=1

pi = 1

is called discrete distribution because it can be used to describe discrete rv. The set of
number {pi}Ni=1 is called the probability mass function (PMF). The xi represent the discrete
values taken by the rv X. pi is the probability of observing the discrete outcome xi ∈ X .
The mean of X is:

µX ≡ ⟨X⟩ =
∫ ∞

−∞
x

N∑
i=1

piδ(x− xi)dx =

N∑
i=1

pixi.
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The variance is

var(X) =
N∑
i=1

pi(xi − µX)
2.

1.4.10.3. Distribution After Rescaling Of Random Variable. Let X be a rv. What is the
distribution of 2X? Since we are multiplying all values of X by 2, we at least expect the
mean to be twice as large. What about the remaining details of its distribution? First of
all we note that:

P(2X < a) = P(X < a/2) =

∫ a/2

−∞
pX(x)dx.

Next, we differentiate this integral with respect to a to get the PDF:

d

da
P(2X < a) = pX(a/2) ·

1

2
.

We conclude that the PDF of 2X is half as high and twice as spread out compared to the
distribution of X. If the mean of X is µX then the mean of Y = 2X is

⟨Y ⟩ = 1

2

∫ ∞

−∞
ypX(y/2)dy =

1

2

∫ ∞

−∞
(2x)pX(x)(2dx) = 2µX .

The variance is:

var(Y ) =
1

2

∫ ∞

−∞
(y − µY )

2pX(y/2)dy =
1

2

∫ ∞

−∞
(2x− 2µX)

2pX(x)(2dx) = 22var(X).

1.4.10.4. Cauchy Distribution. Let X be a rv with the Cauchy (or Lorentzian) distribution.
Its PDF is defined as:

pX(x) =
1

π

1

(1 + x2)
.

The CDF is:

P(X < x) =

∫ x

−∞

1

π

1

(1 + x2)
dx.

We know from calculus that the derivative of tan−1(x) is 1/(1 + x2). Therefore, the last
expression can be integrated:

P(X < x) =
1

π
tan−1(x) +

1

2
.

1.4.10.5. Rayleigh Distribution. Let X be a rv with Rayleigh distribution (X ∼ Rayleigh).
The Rayleigh distribution has a PDF:

p(x) =
x

σ2
e−x

2/(2σ2),

where x ≥ 0 and σ is a parameter of the distribution. The CDF can be shown to be:

P(X < x) = 1− e−x
2/(2σ2),
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x

p(x)

x

σ
≈ 2.355 σ

Figure 1.1. Gaussian (bell shaped) distribution. The PDF has full width at half-
maximum of approximately 2.355σ.

where x ≥ 0. The reader can check that the mean of X is σ
√
π/2 and its variance is

σ2 4−π2 .

1.4.10.6. Gaussian (Normal) Distribution. The normal distribution N (µ, σ2) with param-
eters µ and σ2 is defined by the density:

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where x ∈ (−∞,∞). The prefactor 1√
2πσ2

is such that p(x) adds up to 1:∫ ∞

−∞
p(x)dx = 1.

This can be verified using the well-known result for a Gaussian integral
∫∞
−∞ e−ax

2
dx =√

π/a, where a > 0. As an exercise, you should check that this PDF is normalized to 1,
the mathematical expectation of X ∼ N (µ, σ2) is µ and its variance is σ2, i.e. ⟨X⟩ = µ
and ⟨X − µ⟩2 = σ2.

This probability density is plotted below. It is centered on µ and the width is proportional5

to σ.

If a rv X follows a Gaussian distribution (Fig. 1.1) with mean µ and variance σ2 we write
X ∼ N (µ, σ2). For a Gaussian distribution, the CDF is called the error function. See
Figure 1.2.

5In fact, the full width at half maximum of the Gaussian is 2
√
2 log 2σ ≈ 2.355σ. You can check this by finding

the values of x for which 1
2

1√
2πσ2

= 1√
2πσ2

e
− x2

2σ2 or 1
2
= e

− x2

2σ2 , since the maximum of the function is 1√
2πσ2

(set

x = 0). Taking logs of both sides gives x = ±
√

2σ2 log 2.
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x

Gaussian
PDF

xx

1

0

Erf

x

Figure 1.2. Error function is defined as the (cumulative) area under the Gaussian PDF.

(1.3) erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dx.

The error function is an integral which cannot be evaluated analytically. Instead it must
be solved numerically. Values of the error function can be obtained from tables, calculators
or computer programs. The error function for standard normal rv (mean 0, variance 1) is
often tabulated in books. In MATLAB the command normcdf(x,mu,sigma) will return
values for erf(x)µ,σ. See Section 1.4.11 for a discussion of the error function.

1.4.10.7. Multivariate Normal Distribution. Let ξ1, . . . , ξn be n random variables whose
joint distribution is given by the density p(x1, . . . , xn), of the form

p(x) = p(x1, . . . , xn) = Ce−
1
2
(A(x−m),(x−m)).

Here C is a normalization constant, x = (x1, . . . , xn) is an n-dimensional vector, m =
(m1, . . . ,mn) is another n-dimensional vector and A is a symmetric matrix. This density
is convenient because it depends on simple parameters: a n-dimensional vector m and a
symmetric matrix A of order n.

Since p(x) is integrable, p(x) → 0 as x→ ∞. This is possible only in the case when A is a
positive definite matrix. We now find the value of the constant C. By the normalization
condition we have

1

C
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2
(A(z−m),(x−m))dx1 . . . dxn.

We first make the change of variables y = x−m:

1

C
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2
(Ay,y)dy.

We now find an orthogonal matrix S such that S∗AS = D, where D is a diagonal matrix
with elements di on the diagonal. We also have detD = detA. We now make the linear
change of variables y = Sz. Then (Ay, y) = (ASz, Sz) = (S∗ASz, z) = (Dz, z) (for an
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orthogonal matrix S∗ = S−1) and

1

C
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2
(Dz,z)dz =

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2

∑n
i=1 diz

2
i dz1 . . . dzn

=
∏
i

∫ ∞

−∞
e−

1
2
diz

2
i dzi =

∏
i

√
2πd−1

i = (2π)n/2

(∏
i

di

)−1/2

=(2π)n/2(detD)−1/2 = (2π)n/2(detA)−1/2.

Therefore C = (2π)−n/2
√
detA. We now elucidate the probabilistic meaning of the vector

m and the matrix A. Let us find the expectation ⟨ξi⟩:

⟨ξi⟩ =
∫ ∞

−∞
· · ·
∫ ∞

−∞
xip(x1, . . . , xn)dx1 . . . dxn

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞
xie

− 1
2
(A(x−m),(x−m))dx1 . . . dxn

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞
(xi −mi)e

− 1
2
(A(x−m),(x−m))dx1 . . . dxn +mi

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞
yie

− 1
2
(Ay,y)dy +mi.

Here we made the change of variable x−m = y. The resulting integral is equal to 0, since
the integrand is an odd function of yi. Thus, mi = ⟨ξi⟩.
We now find cov(ξi, ξj). We have

cov(ξi, ξj) =⟨(ξi −mi)(ξj −mj)⟩

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞
(xi −mi)(xjmj)e

− 1
2
(A(x−m),(x−m))dx

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞
yiyje

− 1
2
(Ay,y)dy1 . . . dyn.

As before, we make the change of variable y = Sz or, more explicitly yi =
∑n

k=1 sijsz.
Then

cov(ξi, ξj) =C

∫ ∞

−∞
· · ·
∫ ∞

−∞

∑
k,l

siksjlzkzle
− 1

2

∑
i diz

2
i dz1 . . . dzn

=C

∫ ∞

−∞
· · ·
∫ ∞

−∞

∑
k

siksjkz
2
ke

− 1
2

∑
i diz

2
i dz1 . . . dzn

=
n∑
k=1

siksjkd
−1
k

Here we used the fact that
∫∞
−∞ zkzle

−1/2
∑

i diz
2
i dz1 . . . dzn = 0 for k ̸= l and equals

√
2πd

−3/2
k for k = l. We now note that

∑
k sikd

−1
k sjk is an element of the matrix SD−1S∗ =
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SD−1S−1 = A−1. Thus the matrix A−1 has en immediate probabilistic meaning. Its ele-
ments are the covariances of the random variables ξi, ξj . Let us assume that the covariances
of the random variables ξi, ξj are equal to 0 for i ̸= j. This means that A−1 is a diag-
onal matrix. Then A is also a diagonal matrix, and p(x1, . . . , xn) = p1(x1) . . . pn(xn) is
the product of one-dimensional normal densities, i.e. the random variables ξ1, . . . , ξn are
independent. Thus in the case of the multivariate normal distribution, if the covariances
reduce to zero, independence flow.

1.4.10.8. Log-Normal Distribution. In Section 1.4.10.6, we have introduced the error func-
tion as the CDF of the Gaussian PDF (Eq. 1.3):

erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−(x−µ)2/2σ2

dx.

If X ∼ N (µ, σ2) and Y = eX , then

P(Y < y) = P(eX < y) = P(X < log y),

which leads to the CDF:

(1.4) P(Y < y) =

∫ log y

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx = erf(log y)µ,σ.

This is called the log normal distribution (Y ∼ log-normal). You can check, using the Leib-
niz formula (see Section 9.9) for differentiation, that the PDF of the log-normal distribution
is:

pY (y) =
1√
2πσ2

e−(log(y)−µ)2/2σ2 · 1
y
.

1.4.11. Tabulated Values of Error Function. It is important to be able to use tabu-
lated values of the error function. Let X ∼ N (µ, σ2). Then,

ϕµ,σ(x) ≡ erf(x)µ,σ = P(X < x) =
1√
2πσ2

∫ x

−∞
e−(ξ−µ)2/(2σ2)dξ︸ ︷︷ ︸

let ζ=(ξ−µ)/σ,dζ=dξ/σ

=
1√
2π

∫ (x−µ)/σ

−∞
e−ζ

2/2dζ = Φ

(
x− µ

σ

)
,

where Φ(·) denotes the normalized error function:

Φ(z) =
1√
2π

∫ z

−∞
e−ζ

2/2dζ.

The latter is the CDF of the standard normal distribution, N (0, 1). z is known as the
z-score:

(1.5) z =
x− µ

σ
.
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As an example, Eq. (1.4) can be expressed in this notation as:

erf(log y)µ,σ = Φ

(
log y − µ

σ

)
.

You should beware that there exist other conventions for the error function. For example,
MATLAB and EXCEL softwares define the error function as:

(1.6) erf(x) =
2√
π

∫ x

0
e−t

2
dt.

This is related to the normal CDF according to:

ϕµ,σ(x) = erf(x)µ,σ = Φ

(
x− µ

σ

)
=

1

2

(
1 + erf

(
x− µ

σ
√
2

))
.

This expression can be used to calculate erf(x)µ,σ using data from tables, where µ is the
mean of the population and σ is the standard deviation of the population. First, we
form the “z-score” (Eq. 1.5). Then we use tabulated values of the error function for this
particular value of z.

For example, suppose that a manufacturer produces electrical resistors whose nominal value
is (100± 2) Ω, where 2 Ω is the standard deviation (both could be estimated, for example,
using sample mean and sample variance). Assuming that the distribution of the resistance
X is Gaussian (i.e. X ∼ N (100, 22)), what is the probability that choosing a resistor at
random will yield a resistance of 95 Ω or less? We want to show that

P(X ≤ 95 Ω) = Erf(95)100,2 ≈ 0.0062.

Method 1 uses MATLAB:

>> normcdf(95,100,2)

ans =

0.0062

Method 2 uses tabulated values of Φ(z): The z-score is:

z =
x− µ

σ
=

95− 100

2
= −2.5,

which is negative. Unfortunately, tables of error function do not list negative z values.
However, notice that negative z values can be obtained from positive ones:

Φ(−z) = 1− Φ(z).

Here, for positive z = 2.5 the value Φ(2.5) is 0.993790. Taking 1 − Φ(2.5) gives 0.00621,
the result we sought. Most books on statistics will have such a table. Tables can also be
generated in MATLAB by typing:

normcdf(linspace(0,3,50)’,0,1)
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x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x)
0 0.5000 0.5056 0.6934 1.0112 0.8440 1.5169 0.9353 2.0225 0.9784 2.5281 0.9943
0.0337 0.5134 0.5393 0.7052 1.0449 0.8520 1.5506 0.9395 2.0562 0.9801 2.5618 0.9948
0.0674 0.5269 0.5730 0.7167 1.0787 0.8596 1.5843 0.9434 2.0899 0.9817 2.5955 0.9953
0.1011 0.5403 0.6067 0.7280 1.1124 0.8670 1.6180 0.9472 2.1236 0.9831 2.6292 0.9957
0.1348 0.5536 0.6404 0.7391 1.1461 0.8741 1.6517 0.9507 2.1573 0.9845 2.6629 0.9961
0.1685 0.5669 0.6742 0.7499 1.1798 0.8810 1.6854 0.9540 2.1910 0.9858 2.6966 0.9965
0.2022 0.5801 0.7079 0.7605 1.2135 0.8875 1.7191 0.9572 2.2247 0.9869 2.7303 0.9968
0.2360 0.5933 0.7416 0.7708 1.2472 0.8938 1.7528 0.9602 2.2584 0.9880 2.7640 0.9971
0.2697 0.6063 0.7753 0.7809 1.2809 0.8999 1.7865 0.9630 2.2921 0.9891 2.7978 0.9974
0.3034 0.6192 0.8090 0.7907 1.3146 0.9057 1.8202 0.9656 2.3258 0.9900 2.8315 0.9977
0.3371 0.6320 0.8427 0.8003 1.3483 0.9112 1.8539 0.9681 2.3596 0.9909 2.8652 0.9979
0.3708 0.6446 0.8764 0.8096 1.3820 0.9165 1.8876 0.9705 2.3933 0.9917 2.8989 0.9981
0.4045 0.6571 0.9101 0.8186 1.4157 0.9216 1.9213 0.9727 2.4270 0.9924 2.9326 0.9983
0.4382 0.6694 0.9438 0.8274 1.4494 0.9264 1.9551 0.9747 2.4607 0.9931 2.9663 0.9985
0.4719 0.6815 0.9775 0.8358 1.4831 0.9310 1.9888 0.9766 2.4944 0.9937 3.0000 0.9987

Table 1.4. Numerical values of the error function Φ(x) = 1√
2π

∫ x

−∞ e−x2/2dx .

The results {(x,Φ(x))}, x ∈ [0, 3] are shown in Table 1.4.

1.4.12. The z-score. Let’s view the z-score as a random variable:

Z(ω) =
X(ω)− µ

σ

where µ ≡ ⟨X⟩, σ ≡
√
var(X) and Z ∼ N (0, 1). The statement that Z ∼ N (0, 1) follows

automatically when X is normal with mean µ and variance σ2. In that case,

(1.7) P(X ≤ x) = P(σZ + µ ≤ x) = P(Z ≤ x− µ

σ
)

=
1√
2π

∫ (x−µ)/σ

−∞
e−ζ

2/2dζ = Φ

(
x− µ

σ

)
.

This is result identical to the one in the previous section, but its derivation did not require
us to change variables of integration. Using the probability function P(·) can sometimes
save you a step.

1.4.13. Confidence Limits and Error Bars. Recall the Gaussian probability density
which has a bell shape centered on ⟨X⟩ = µX and full width at half-maximum ≈ 2.355σ
(Fig. 1.3). The area under the curve bounded by the interval x ∈ [µX − σ, µX + σ] is given
by:

1√
2πσ2

∫ µX+σ

µX−σ
e−

(x−µX )2

2σ2 dx = erf(µX + σ)µX ,σ − erf(µX − σ)µX ,σ ≈ 0.683

where

erf(x)µ,σ =
1√
2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dx.

About 2/3 of the total area under the curve is within ±σ of the mean. Recall that:

(value of x) = xbest ± δx
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Fraction of data expected to
lie within one standard
deviation of the mean

x

σFWHM =

x

≈ 2.355 σ

p(x)

x + σx - σ

Figure 1.3. Confidence limits. The Gaussian distribution has a full width at half-
maximum of approximately 2.355σ.

where we often take δx = σ. This choice for δx corresponds to the “68% confidence
level”. This means that we are confident, at the 68% level, that were we to take another
measurement, the value would lie within one standard deviation of the mean. There are
other possible conventions for choosing δx. Common choices for δx are:

±σ → 68% level

±2σ → 95% level

±3σ → 99.7% level

1.4.14. Example: From CDF to PDF. It is important to be able to convert from PDF
to CDF and vice versa. Suppose that we have a CDF:

(1.8) P(Y < a) =

∫ a

−∞

1

π

dy

(1 + y2)

To get the PDF from this CDF we use the formula

dP(Y ≤ a)

da
= pY (a).

The result is:

pY (y) =
1

π

1

(1 + y2)
,

(We renamed a as y.) The differentiation is always with respect to the upper bound of the
integral. Another way to look at it is to write F (x) = P(X ≤ x) and

dF (x)

dx
= pX(x) or

dF (a)

da
= pX(a).
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Inspection of the Leibniz formula (see Section 9.9) for differentiation shows that the differ-
entiation step is completely trivial and amounts to simply identifying the integrand. This
is consistent with the definition of CDF:

(1.9) P(Y < a) =

∫ a

−∞
pY (y)dy.

1.4.15. Calculating Probabilities: Single Variable. Probabilities of random events
of the type {a ≤ X ≤ b} are calculated by integrating the PDF from a to b:

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx.

More generally, we deal with random events, which are statements of the type {X ∈ A}
where A is a set of points. The quantity P(X ∈ A) is a number between 0 and 1, which
gives the probability that the rv X will take values in the set A:

P(X ∈ A) =

∫
{x|x∈A}

p(x)dx,

where {x|x ∈ A} is the set of points x that belong to the set A. The integral is a Riemann
summation over the set of points {x|x ∈ A} on the real line. This notation is useful because
we can transform the statement {x ∈ A} into any equivalent statement, including one that
involves a change of variables. For example, the two following statements are equivalent:

{X < a} = {log(X) < log(a)}.
This is useful if another rv Y is defined as Y = log(X). In that case, evaluating the
probability of {Y < b}, b = log(a), gives the same numerical result as evaluating the
probability of {X < a}.

1.4.16. Average of f(X). The average (or mean, or expectation value) of a function f
of a rv X is defined as:

⟨f(X)⟩ ≡
∫ ∞

−∞
f(x)p(x)dx.

1.4.17. Statistical Moments, Deviation and Dispersion.

1.4.18. Moments: Mean, Variance, Skewness, Kurtosis. Let X be a rv. Take
f(x) = xn in the above formula. This gives the n-th moment of X:

⟨Xn⟩ ≡
∫ ∞

−∞
p(x)xndx.

The case n = 1 (first moment) is called the mathematical expectation or mean value of X:

⟨X⟩ ≡
∫ ∞

−∞
xp(x)dx. “mathematical expectation”
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We assumed that X takes values in the range (−∞,∞). When X takes values in a set X
the limits of integration in all our integrals must be changed accordingly:

⟨X⟩ ≡
∫
X
xp(x)dx.

We shall often write as shorthand:
µX ≡ ⟨X⟩.

As we have seen in the previous lecture, the variance of X is defined as:

σ2 ≡
∫ ∞

−∞
p(x)(x− µX)

2dx,

which also equals σ2 = ⟨X2⟩ − µ2X . Thus, the variance is the second moment of X minus
the square of the average of X. Variance is also known as the second central moment of
X.

The n-th central moment of X is defined as:

⟨X − µX⟩n ≡
∫ ∞

−∞
p(x)(x− µX)

ndx.

Why are moments important? Moments describe the probability distribution. There is a
theorem of mathematics that says if we know the moments of all orders, we can reconstruct
the entire distribution function. You already know how to obtain the sample mean and
variance. The mean is just the center of mass of the distribution whereas the variance is
related to its width (about the mean).

Also of interest are the skewness (3rd central moment)

Skew[X] =
⟨X − µX⟩3

⟨X − µX⟩2]3/2
=

⟨X − µX⟩3

σ3
,

and the kurtosis (4th central moment):

Kurt[X] =
⟨X − µX⟩4

[⟨X − µX⟩2]2
=

⟨X − µX⟩4

σ4
.

The skewness measures the asymmetry of the distribution about its mean whereas the
kurtosis is often used to assess by how much a distribution deviates from the bell-shape.
For example, if a distribution looks like a bell shape but has much longer tails, the kurtosis
will reflect this.

1.4.19. Median, Percentile. The median of a rv X is the value of x50 such that

P(X ≥ x50) = P(X ≤ x50) ≡
∫ x50

−∞
p(x)dx =

1

2
.
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The median is a special case of percentile. The 10-th percentile of X is the value of x10
such that:

P(X ≤ x10) ≡
∫ x10

−∞
p(x)dx = 0.10.

The n-th percentile of X is the value xn such that:

P(X ≤ xn) ≡
∫ xn

−∞
p(x)dx =

n

100
.

1.4.20. Mode. The mode is the value that appears most often in a set of data values. If
X is a discrete rv, the mode is the value that is most likely to be sampled. For example,
in a sample {1, 1, 6, 7, 5, 9, 10, 1} the mode is 1. In a sample {1, 1, 6, 5, 7, 7} there are two
modes: 1 and 7. A distribution with more than one mode is called multimodal. The most
extreme case of a multimodal distribution occurs for uniform distributions, where all values
occur equally often. This definition can be adapted for continuous rv by discretizing the
PDF into a histogram and finding the value(s) of x for which the histogram is highest.

Another definition of mode for continuous distribution is the set of local maxima. When
the PDF of a continuous distribution has multiple local maxima those are called the modes
of the distribution (any peak is a mode). It may be tempting to define the mode of a PDF
p(x) as the set of points x for which dp(x)/dx = 0; however, this method does not always
work. There are shapes of PDFs that have a mode, but at which the derivative of the PDF
is not zero. The Laplace distribution being an obvious example:

p(x) =
1

2b
exp

(
−|x− µ|

b

)
.

The mode is µ but the derivative at µ does not exist since the derivative of |x| does not
exist at x = 0. We note that a continuous rv’s mode is not the value of X most likely
to occur, as was the case for discrete rv. Furthermore, for some densities, even when the
derivative is 0, it doesn’t imply there’s a mode there. Consider the beta density as an
example, where setting p′(x) = 0 will find a local minimum rather than a maximum.

1.4.21. Average Absolute Deviation (AAD). We have seen that the center of a dis-
tribution can be quantified by the mathematical expectation (mean), the mode and the
median. There are likewise many possible descriptors of the dispersion of a rv. The vari-
ance is one example. Another example is the average absolute deviation (AAD). AAD of
a data set is the average of the absolute deviations from a central point. The central point
can be a mean, median, mode or any other point of reference. The two most common
AADs are the mean absolute deviation and the median absolute deviation (MAD).

Let X be a rv. The mean absolute deviation of a random sample {xi = X(ωi)}ni=1 of X is

MAD(x1, . . . , xn) =
1

n

n∑
i=1

|xi −m(X)|,
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wherem(X) is the reference value (typically, the mean or median). This arithmetic average
provides an estimate of the expectation value ⟨|X −m(X)|⟩ given a random sample. The
median absolute deviation is defined similarly, except that we compute the median of
|X −m(X)| instead of its mean.

More generally, a dispersion can be defined by

Dp(x1, . . . , xn) =
p
√

⟨|X −m(X)|⟩p ≈ p

√√√√ 1

n

n∑
i=1

|xi −m(X)|p,

where p = 0, 1, 2, . . . ,∞ and {x1, . . . , xn} is a random sample of X. For p = ∞ we get the
maximum absolute deviation. For p = 1 we get the average absolute deviation. For p = 2
we get the mean squared error.

1.4.22. Remark: ⟨f(X)⟩ is NOT the Same as f(⟨X⟩).
1.4.22.1. Example 1: Suppose that the kinetic energy, K(v) = 1

2mv
2, of an object of mass

m is to be calculated using experimentally measured values of the velocity v. Thus, v is a rv.
Since v is a random variable, K(v) is also a random variable. We may denote it as V . You
determine from experiments that the velocities, V , are Gaussian-distributed around 100

m/s, with a standard deviation of 1 m/s, i.e. p(v) = 1√
2π
e−(v−100)2/2. What is the average

kinetic energy, ⟨K(V )⟩? You expect that ⟨K(V )⟩ should be close to K(100) = 1
2m(100)2.

However, the exact value of ⟨K(V )⟩ will depend on the distribution p(v). We need to
calculate:

⟨K(V )⟩ =
∫ ∞

−∞

1

2
mv2

1√
2π
e−(v−100)2/2dv

=
m

2
√
2π

∫ ∞

−∞
v2e−(v−100)2/2dv ≈ m

2
1.0001 · 104.

So fairly close to K(100) but slightly higher.

1.4.22.2. Example 2: Suppose that f(θ) = cos(θ) and p(θ) = 1 for θ ∈ [−1
2 ,

1
2 ] and p = 0

elsewhere (uniform distribution). Denote the random variable as Θ. Using p(θ) you can

easily check that Θ =
∫ 1/2
−1/2 θ dθ = 0. The average of cos(Θ) is:

cos(Θ) =

∫ 1/2

−1/2
cos(θ)dθ ≈ 0.9589.

Note: it is not equal to 1 even though the average of Θ is 0.

1.4.22.3. Example 3: In physics and chemistry, the notations ⟨r⟩ and r are used inter-
changeably to denote the mathematical expectation. Consider the dipole-dipole interaction
between two electric dipoles. The energy of interaction depends on 1/r3, where r is the
distance separating the two point dipoles. It is easy to show that in general,

〈
1
r3

〉
̸= 1

⟨r⟩3 .
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r is a rv due to molecular diffusion. It has an average value r and deviation δr:

r = r + δr,

where r is deterministic and δr is random with zero mean. The average of 1/r3 is Taylor-
expanded about the mean r:〈

1

r3

〉
=

〈
1

(r + δr)3

〉
=

〈
1

r3

〉
−
〈

3

r4
δr

〉
+

〈
12

r5
(δr)2

〉
+O(|δr|3)

The first term is 1/r3 since r is deterministic. In the second term, 3
r4

can come out of

the angle bracket because it is a deterministic quantity. Similarly for 12
r5

in the third term.
Thus, 〈

1

r3

〉
=

1

⟨r⟩3
− 3

⟨r⟩4
⟨δr⟩+ 12

⟨r⟩5
⟨(δr)2⟩+O(|δr|3)

and you can see that
〈

1
r3

〉
is in general different from 1

⟨r⟩3 . Since ⟨δr⟩ = 0 we have:6〈
1

r3

〉
=

1

⟨r⟩3
+

12

⟨r⟩5
⟨(δr)2⟩+O(|δr|3).︸ ︷︷ ︸

extra terms (nonzero)

We sometimes see in the literature 1
⟨r⟩3 in lieu of

〈
1
r3

〉
. This is technically incorrect.

However, for small values of ⟨|δr|⟩/⟨r⟩, it is a good approximation.

1.4.23. Jensen’s Inequality. A topic related to the previous section is Jensen’s inequal-
ity. Let φ(x) be a convex function, i.e.

φ(tx1 + (1− t)x2) ≤ tφ(x1) + (1− t)φ(x2), x1 < x2, t ∈ [0, 1]

This can be generalized for λ1 + · · ·+ λn = 1, λi ≥ 0 as:

φ(λ1x1 + λ2x2 + · · ·+ λnxn) ≤ λ1φ(x1) + λ2φ(x2) + · · ·+ λnφ(xn),

for any x1, . . . , xn. Let X be a rv. Then,

φ(⟨X⟩]) ≤ ⟨φ(X)⟩

Proof:

φ(⟨X⟩) =φ
(∫ 1

0
xp(x)dx

)
= lim

n→∞
φ

 2n∑
j=0

2−n(j · 2−np(j · 2−n))


≤ lim
n→∞

2n∑
j=0

2−nφ
(
j · 2−np(j · 2−n)

)
=

∫ 1

0
φ(xp(x))dx = ⟨φ(X)⟩].

As an example application of this inequality we have:

(⟨|X − µX |⟩)2 ≤ ⟨|X − µX |2⟩ = var(X).

6For our definition r = r + δr to hold, we need ⟨δr⟩ = 0.
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Taking the square root of both sides:

⟨|X − µX |⟩ ≤
√
var(X).

We conclude that the mean absolute deviation from the mean is less than or equal to the
standard deviation.

1.4.24. Remark: Discrete Random Variables as Special Case. Suppose that we
roll a die and a rv X (i.e. value of the top face of die) takes values in a discrete set,
such as X = {1, 2, 3, 4, 5, 6}. It is said to be a discrete rv because the set X is countable.
In the general case X may take values in a discrete set {x1, . . . , xN}. Let pi ≥ 0 be the
probability of observing the value xi. Define the PDF in terms of Dirac delta functions
and PMF {pi}Ni=1:

p(x) =

N∑
i=1

piδ(x− xi)

Since the PDF is normalized, we must have:∫ ∞

−∞
p(x)dx =

∫ ∞

−∞

N∑
i=1

piδ(x− xi)dx =

N∑
i=1

pi = 1.

All of our previous definitions hold if we replace integrals by summations. For example:

µX ≡ ⟨X⟩ =
∫ ∞

−∞
x · p(x)dx =

∫ ∞

−∞
x ·

N∑
i=1

piδ(x− xi)dx =

N∑
i=1

pixi.

The variance:

var(X) =

∫ ∞

−∞
(x− µX)

2p(x)dx =
N∑
i=1

pi(xi − µX)
2.

Similarly,

⟨f(X)⟩ =
∫ ∞

−∞
f(x) · p(x)dx =

N∑
i=1

pif(xi).

Here, xi ∈ X are the possible values X can take, whereas pi ≡ P(X = xi) are the corre-
sponding probabilities.

1.4.25. Two (Continuous) Random Variables. If we are to compute the average of
an expression that is a function of more than one rv, we need to use the joint probability
density pXY (x, y), which is everywhere non-negative (pXY (x, y) ≥ 0) and integrates to 1:∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)dxdy = 1.

The joint PDF is obtained from the joint CDF analogously to the single-variable case:

(1.10) pXY (x, y) =
∂2

∂x∂y
P(X < x, Y < y).
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The average of a function g(X,Y ) would be:

⟨g(X,Y )⟩ =
∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)g(x, y)dxdy.

Given a joint probability density function, pXY (x, y), the marginal density function for X
is obtained by integrating over y:

pX(x) =

∫ ∞

−∞
pXY (x, y)dy.

Similarly, the marginal density for Y is obtained by integrating over all x:

pY (y) =

∫ ∞

−∞
pXY (x, y)dx.

Note: you can easily check that both marginals pX(x) and pY (y) are bona fide densities,
i.e. nonnegative and normalized to 1.

1.4.26. Statistical Independence. The marginal density is a useful concept if you are
asked to check whether or not two rv are statistically independent. Two rv X and Y
are statistically independent if the joint probability density is written as the product of
densities of each variable:

pXY (x, y) = pX(x) · pY (y),
where pX(x) and pY (y) are the marginal densities of X and Y , respectively. They can be
computed from pXY (x, y) by integrating.

There are at least two consequences of statistical independence that we can immediately
point out. First, one concerns expectation values. Consider the average of a function
g(X,Y ) of two rv X and Y :

⟨g(X,Y )⟩ =
∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)g(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
pX(x)pY (y)g(x, y)dxdy.

If g factors as a product of a function ofX times a function of Y , for example g(X,Y ) = XY
then the expectation value of XY is equal to the product of expectation values of X and
that of Y :

⟨XY ⟩ =
∫ ∞

−∞

∫ ∞

−∞
pX(x)pY (y)xy dxdy =

∫ ∞

−∞
pX(x)xdx ·

∫ ∞

−∞
pY (y)ydy

= ⟨X⟩ · ⟨Y ⟩.
Thus, the expectation value of a product of rv’s factorizes as a product of expectation
values for each rv:

⟨XY ⟩ = ⟨X⟩ · ⟨Y ⟩.
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The second consequence pertains to the calculation of probabilities in general, which also
factors as a product. For example, the joint probability:

P(X ∈ A, Y ∈ B) =

∫
{(x,y)|x∈A,y∈B}

pXY (x, y)dxdy

=

∫
{(x,y)|x∈A,y∈B}

pX(x)pY (y)dxdy

=

∫
{x|x∈A}

pX(x)dx ·
∫
{y|y∈B}

pY (y)dy

=P(X ∈ A) · P(Y ∈ B).

As a special case, take the intervals A = (−∞, x] and B = (−∞, y] and we get the result
that the CDFs also factorize:

P(X ≤ x, Y ≤ y) = P(X ≤ x) · P(Y ≤ y).

1.4.27. Calculating Probabilities: Two Variables. Probabilities of an event A are
calculated by integrating the PDF over the relevant set of points which make the event A
true. That is, for a single rv X:

(1.11) P(X ∈ A) =

∫
{x|x∈A}

pX(x)dx,

where {x|x ∈ A} denotes the set of all points x such that x ∈ A. For example, if A = [a, b]
(interval), we have:

P(a ≤ X ≤ b) =

∫ b

a
pX(x)dx.

If A is the union of two disjoint (non-overlapping) intervals [a, b] and [c, d], i.e. A =
[a, b] ∪ [c, d], then the probability of X taking a value in A is the sum of two integrals:

P(X ∈ A) =

∫ b

a
pX(x)dx+

∫ d

c
pX(x)dx.

For two or more rv’s we integrate the joint probability density over all such points (x, y)
that meet the sought criterion:

P(X ∈ A, Y ∈ B) =

∫ ∫
{(x,y)|x∈A,y∈B}

pXY (x, y)dxdy,

where {(x, y)|x ∈ A, y ∈ B} denotes the set of all points (x, y) such that x ∈ A and y ∈ B.

In general, for a given set of points over which the probability needs to be calculated, we
must translate what this means in terms of the upper and lower limits of integration. Let
us look at some specific examples. Let (X,Y ) be a 2-dimensional (bivariate) rv with joint
density pXY (x, y). The probability that the vector (X,Y ) will lie in the first quadrant of
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the 2D plane is:

P(X > 0, Y > 0) =

∫ ∫
{(x,y)|x>0,y>0}

pXY (x, y)dxdy

=

∫ ∞

0

∫ ∞

0
pXY (x, y)dxdy.

Suppose again that we have a random experiment involving two rv X and Y . The proba-
bility that the outcome will lie in one of the first two quadrants:

P(X > 0) = P(X > 0, Y ∈ (−∞,∞)) =

∫ ∫
{(x,y)|x>0}

pXY (x, y)dxdy

=

∫ ∞

−∞

(∫ ∞

0
pXY (x, y)dx

)
dy.

1.4.28. Product of X and Y . Let X and Y be independent rv’s and let Z = XY . The
PDF of Z is:

pZ(z) =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx.

Proof:

P(Z ≤ z) =P(XY ≤ z) = P(XY ≤ z,X > 0) + P(XY ≤ z,X ≤ 0)

=P(Y ≤ z/X,X > 0) + P(Y ≥ z/X,X ≤ 0)

=

∫ ∞

0
pX(x)

∫ z/x

−∞
pY (y)dydx+

∫ 0

−∞
pX(x)

∫ ∞

z/x
pY (y)dydx

Differentiating with respect to z, we get the PDF:∫ ∞

0
pX(x)pY (z/x)

1

x
dx−

∫ 0

−∞
pX(x)pY (z/x)

1

x
dx =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx.

See also Problem 7.

1.4.29. Sum of X and Y . Here is another application of the Leibniz formula (see Sec-
tion 9.9). Suppose we have two rv’s X,Y with joint density pXY (x, y). What is the density
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of their sum, X + Y ? Since the density is the derivative of the CDF:

pX+Y (z) =
d

dz
P(X + Y < z) =

d

dz

∫
{(x,y)|x+y<z}

pXY (x, y)dxdy

=
d

dz

∫
{(x,y)|x<z−y}

pXY (x, y)dxdy

=

∫ ∞

−∞

∂

∂z

(∫ z−y

−∞
pXY (x, y)dx

)
dy

=

∫ ∞

−∞
pXY (z − y, y)dy.

This is as far as we can go without further information about X,Y . If X and Y are
independent, the joint PDF factorizes into a product, pXY (z − y, y) = pX(z − y) · pY (y),
and the last operation becomes a convolution:

pX+Y (z) =

∫ ∞

−∞
pX(z − y) · pY (y)dy.

Thus, the PDF of Z = X + Y is the convolution of the PDFs of X and Y , whenever X
and Y are statistically independent.

1.4.30. Several Variables. Suppose we have several rv’s X1, X2, . . . , Xn. Probabilistic
expressions involving these rv’s can be evaluated if we know the joint distribution:

P(X1 < b1, . . . , Xn < bn) =

∫ b1

−∞
dx1· · ·

∫ bn

−∞
dxn pX1,...,Xn(x1, . . . , xn),

where pX1,...,Xn(x1, . . . , xn) is the joint PDF of X1, . . . , Xn and P(X1 < b1, . . . , Xn < bn) is
the joint CDF.

We can also ask about the probability of the following event:

{X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn}.
Then, using the joint PDF:

P{X1 ∈ B1, . . . , Xn ∈ Bn} =

∫
B1

dx1· · ·
∫
Bn

dxn pX1,...,Xn(x1, . . . , xn).
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As in the single-variable case, we can write probabilities over intervals in terms of the
CDFs. For example, let X,Y be two rv’s and let B1 = (a1, a2) and B2 = (b1, b2). Then,

P(X ∈ B1, Y ∈ B2) =P(a1 < X < a2, b1 < Y < b2)

=

∫ a2

a1

dx

∫ b2

b1

dy pXY (x, y)

=

∫ a2

a1

dx

(
∂

∂x
P(X < x, Y < b2)−

∂

∂x
P(X < x, Y < b1)

)
=P(X < a2, Y < b2)− P(X < a1, Y < b2)

− P(X < a2, Y < b1) + P(X < a1, Y < b1).

We have made use of Eq. (1.10), i.e.

pXY (x, y) =
∂2

∂x∂y
P(X < x, Y < y),

and invoked the fundamental theorem of calculus (twice).

1.4.31. Additional Properties of rv’s.

1.4.31.1. Linearity of the Expectation Value. Let X and Y be rv’s and a, b constants. From
the linearity of the expectation value operator:

⟨aX + bY ⟩ =
∫ ∞

−∞

∫ ∞

−∞
(ax+ by)pXY (x, y)dxdy

=a

∫ ∞

−∞

∫ ∞

−∞
xpXY (x, y)dxdy + b

∫ ∞

−∞

∫ ∞

−∞
ypXY (x, y)dxdy

=a

∫ ∞

−∞
xpX(x)dx+ b

∫ ∞

−∞
ypY (y)dy

=a⟨X⟩+ b⟨Y ⟩,

where pXY (x, y) is the joint probability density of x and y.7 pX(x) is the marginal density
of X. Similarly for pY (y). This can be generalized to any number of rv’s, e.g. for X =
X1 +X2 + · · ·+Xn it also follows that

⟨X⟩ = ⟨X1⟩+ ⟨X2⟩+ · · ·+ ⟨Xn⟩.

It is also trivial to show that the same result holds in the case of discrete rv’s.

1.4.31.2. Scaling Property of the Variance. From the definition of the variance of a rv X
(let µX ≡ ⟨X⟩),

var(X) ≡ ⟨X − µX)
2⟩ = ⟨X2⟩ − 2⟨XµX⟩+ (µX)

2 = ⟨X2⟩ − µ2X

7Note: while the exact form of pXY (x, y) may be unknown, its knowledge was not required to demonstrate linearity.
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we deduce that

var(aX) = a2var(X).

1.4.31.3. Variance of a Product of Independent Random Variables. Let v be the velocity
of a particle and t the time variable. If both are statistically independent rv’s, the mean
displacement factors as a product of means, ⟨vt⟩ = ⟨v⟩ · ⟨t⟩, whereas its variance is

var(vt) =⟨(vt)2⟩ − ⟨vt⟩2

=⟨v2t2⟩ − ⟨v⟩2⟨t⟩2

=⟨v2⟩ · ⟨t2⟩ − ⟨v⟩2⟨t⟩2.
Thus, by statistically independence, we can express the mean and variance of the displace-
ment x = vt in terms of the mean and variance of v and t.

1.4.31.4. Variance Between Pairs of Random Variables: The Covariance. The covariance
of X and Y is defined as (let µX ≡ ⟨X⟩ and µY ≡ ⟨Y ⟩):

cov(X,Y ) ≡ ⟨(X − µX)(Y − µY )⟩ = ⟨XY ⟩ − µX · µY .

We note that the covariance of two independent rv’s is zero since ⟨XY ⟩ = ⟨X⟩·⟨Y rangle =
µX · µY .
1.4.31.5. Variance of the Sum of Two Random Variables. Using the covariance, we may
write the variance of the sum X + Y as

var(X + Y ) =⟨(X + Y − ⟨X + Y ⟩)2⟩
=⟨(X − µX)

2⟩+ ⟨(Y − µY )
2⟩+ 2⟨(X − µX)(Y − µY )⟩

=var(X) + var(Y ) + 2cov(X,Y ).(1.12)

If X and Y are statistically independent, cov(X,Y ) = 0, and var(X + Y ) = var(X) +
var(Y ), i.e. the error in X+Y is related to the errors in X and Y by adding the variances.

1.4.31.6. Corollary: Adding Experimental Errors. Suppose X and Y are independent rv’s
with standard deviations σX and σY , respectively. Let Z = X + Y . Then the variances
add quadratically:

σZ =
√
σ2X + σ2Y .

This formula is often used in the analysis of laboratory experimental results. It is only
valid in the case where X and Y are independent. How can you verify of X and Y are
statistically independent?

1.4.31.7. Sample Covariance. In Formula (1.12) the covariance must be added to get the
error in the sum of two rv’s, X + Y . The covariance is zero if the two rv’s are statistically
independent. It is difficult to check for independence. However, it is easy to check for
statistical correlation by computing the sample covariance. Suppose that the following
pairs are measured experimentally {(xi, yi)}ni=1. This random sample is described by the
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empirical joint PDF:

p̂XY (x, y) =
1

n

n∑
i=1

δ(x− xi)δ(y − yi).

Substitution into the definition of covariance:

cov(X,Y ) ≡⟨(X − µX)(Y − µY )⟩

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )

1

n

n∑
i=1

δ(x− xi)δ(y − yi)dxdy

=
1

n

n∑
i=1

(xi − µX) · (yi − µY )

where µX and µY are the means of X and Y , respectively. Since we have experimental
data at our disposal, we take them to be sample means. This is normally adjusted by
replacing 1/n by 1/(n− 1) on the basis that a degree of freedom has been lost due to our
use of experimental data to obtain statistical estimators for the means (µ̂X and µ̂Y ):

covn−1(X,Y ) =
1

n− 1

n∑
i=1

(xi − µ̂X) · (yi − µ̂Y ).

This formula provides us with an explicit prescription for computing the covariance of X
and Y from experimental data. One may as well directly use Formula (1.12), since it
enables us to determine the amount of covariance between them, and add its contribution
to the error estimate, if needed.

1.4.31.8. Correlation Coefficient. A concept that is related to the covariance is the corre-
lation coefficient:

ρ(X,Y ) =
cov(X,Y )

σX · σY
,

where σX =
√
var(X) and σY =

√
var(Y ). ρ takes values in the range −1 ≤ ρ(X,Y ) ≤ 1.

The correlation coefficient is a measure of linear dependence between X and Y . It is
more useful than the covariance in the sense that ρ is a dimensionless quantity which is
normalized to the magnitude of X and Y . A value of ρ = 1 means that X and Y are
correlated. A value of ρ = −1 means they are anti-correlated. A value of ρ = 0 means they
are uncorrelated. Please note that if X and Y are independent then ρ = 0. However, the
converse is not true. That is, ρ = 0 does not always imply that X and Y are independent.

The reader can easily check8 that if Y = aX + b (a, b constants) we have cov(X,Y ) =
a · var(X) and

ρ(X,Y ) =
a

|a|
=

{
1 a > 0

−1 a < 0
.

8Start by the numerator: cov(X,Y ) = cov(X, aX + b) = ⟨(X − µX)(aX + b− µaX+b)⟩, but since µaX+b = aµX + b,
this reduces to cov(X, aX + b) = ⟨(X − µX)(aX − aµX)⟩. = a⟨(X − µX)2⟩ = a · var(X).
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Thus, the correlation coefficient is a measure of linear dependence. In this example, ρ = 1
if Y = aX + b and a > 0 (X and Y are correlated), whereas ρ = −1 if a < 0 (X and Y are
anti-correlated). This result is independent of the magnitude of a; it only depends on its
sign. For example, Y = 0.00001 ·X and Y = 10000 ·X both give ρ = 1.

Q: Can you find examples of rv’s X and Y where ρ is not equal to −1, 0 or 1 but some
intermediate value (say 0.5)? What is the meaning of a correlation coefficient that is not
equal to 0 or 1?

1.4.31.9. Linear Correlation. Suppose that two random variables X and Y depend on each
other linearly:

Y = a+ bX.

The correlation coefficient becomes:

ρ(X,Y ) =
cov(X,Y )

σX · σY
=
cov(X, a+ bX)

σX · σY
=
b · cov(X,X)

σX · σY
=
b · σX
σY

Therefore, the slope b is related to the value of the correlation coefficient (as well as the
variances of X and Y ):

b = ρ(X,Y )
σY
σX

.

1.4.31.10. Sample Correlation Coefficient. Let X,Y be rv’s with mean µX and µY , re-
spectively. Let x1, x2, . . . , xn be measurements of X. Similarly for Y . The correlation
coefficient can be estimated from experimental data, {(xi, yi)}ni=1, using the sample corre-
lation coefficient:

rX,Y =
1

n−1

∑n
i=1(xi − µ̂X) · (yi − µ̂Y )√

1
n−1

∑n
i=1(xi − µ̂X)2 ·

√
1

n−1

∑n
i=1(yi − µ̂Y )2

,

where n is the number of data points and µ̂X is the sample mean

µ̂X =
1

n

n∑
i=1

xi,

and similarly for µ̂Y . They are uncorrelated if rX,Y = 0. You can also check for possible
correlation between X and Y using a scatter plot. This is done by plotting the set of
ordered pairs {(xi, yi)} as points on the same graph.

1.4.31.11. Uncorrelated but not Independent. Let X and Y be rv’s related by Y = X2. Let
µX be the mean of X, µX2 its second moment, etc. Clearly, these rv’s are not independent
of each other. However,

cov(X,Y ) = cov(X,X2) = ⟨(X − µX)(X
2 − µX2)⟩ = µX3 − µXµX2 .

If the distribution of X is such that µX3 = µXµX2 (for example, if the mean and skewness
are zero, which is the case for a zero-mean normal distribution), then cov(X,Y ) = 0 and
the rv’s X and Y are uncorrelated even though they are clearly dependent on each other.
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Figure 1.4. Correlations between rv’s (X,Y ).

This can easily be illustrated in MATLAB. Let’s create two plots. One for the equation
Y = X + η (linear case), where X and η are independent standard normal rv’s:

1 X=randn([1 10000]);
2 Y=X+randn([1 10000]);

and one for Y = X2+η (quadratic case), where X and η are independent standard normal
rv’s.

1 X=randn([1 10000]);
2 Y=X.ˆ2+randn([1 10000]);

You can think of the linear case as in the familiar form Y = a + bX, but for the special
case of a = 0, b = 1, and noise added (η). Same for the quadratic equation, it has noise
added to it, as a way to simulate the outcome of a random experiment.

In each case, a plot is generated by typing figure;plot(X,Y,'.') (see Fig. 1.4). The
sample correlation coefficient is obtained using the corrcoef command, e.g. for the linear
case

>> corrcoef(X,Y)

ans =

1.0000 0.7025

0.7025 1.0000

whereas for the quadratic case we get:



1.4. Distribution Functions, PMFs and PDFs 45

>> corrcoef(X,Y)

ans =

1.0000 -0.0089

-0.0089 1.0000

The diagonal elements are 1 (since X is perfectly correlated to X, as is Y correlated to
Y ). The off-diagonal elements are the correlation coefficients of X and Y . In the linear
case, we have strong (≈ 0.7) correlation between X and Y . We would expect 1 without the
additive noise, η (you can check this by reducing the amplitude of the additive noise). In
the quadratic case, the correlation coefficient is nearly 0, as it should because the Gaussian
rv X has zero skewness and zero mean.

1.4.32. Calculating Probabilities. If you are asked to compute the probability of a
random event involving X, your first reflex should be to write down an integral of the
PDF, pX(x), over the set of points that represent this event. Recall the formula (1.11)
introduced previously:

(1.13) P(X ∈ A) =

∫
{x|x∈A}

pX(x)dx,

In two dimensions you do the same thing except that the joint PDF is to be used, e.g.

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫
{(x,y)|a≤x≤b,c≤y≤d}

pXY (x, y)dxdy

=

∫ b

a

∫ d

c
pXY (x, y)dxdy.

This is for the specific case where the random even is {a ≤ X ≤ b, c ≤ Y ≤ d}. For a
general random event, we integrate over the set of points (x, y) such that the event is true.
It is not possible to enumerate all possible events we may encounter. Some examples are:

{X ∈ A, Y ∈ B}, {X/Y < a}, {X + Y > b},
{a < cos(X) · log(Y ) < b}, etc.

In each case, we integrate the joint PDF of X and Y , pXY (x, y), over the set of points
(x, y) that obey the conditions specified in the event.

To summarize the procedure involved when calculating probabilities, there are two main
steps. The first step is to write down the right hand side, but keeping in mind that the
random event will need to be expressed in a form suitable for integration. The second
step involves writing the integral in a form that can be solved. This sometimes involves a
change of variables, if the integration region needs to be simplified.

1.4.32.1. Single-Variable Case. In the first step, we often invoke some algebraic manipula-
tions in order to transform the logical statement X ∈ A into a form that allows us to apply
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the information known to us. Let use revisit the example already covered in Sections 1.4.11
and 1.4.10.8. Let Y = eX and X ∼ N (µ, σ2). You are asked to find the distribution of Y
given the distribution X (a normal law in the present case). At first sight, you may think
that P(Y < y) cannot be easily calculated because you are not given the distribution of
Y . However, the distribution of X is provided. So your goal is to transform the statement
Y < y into one that involves X instead. In Section 1.4.10.8 we worked out the case of the
log-normal distribution, Y = eX where X ∼ N (µ, σ2).

1.4.32.2. Two Variables Case. Another example is Y = U/V where U and V are inde-
pendent standard normal variables, i.e U ∼ N (0, 1) and V ∼ N (0, 1). The CDF of Y
is:

P(Y < a) = P(U/V < a) =

∫∫
{(u,v)|u/v<a}

pU (u)pV (v)dudv

Effecting a change of variables Y = U/V , Z = V (inverse: V = Z, U = ZY ) under the
integral sign and using the Jacobian of the transformation:

dudv =

∣∣∣∣∂(u, v)∂(y, z)

∣∣∣∣ dydz, where
∂(u, v)

∂(y, z)
≡
∥∥∥∥∂yu ∂zu
∂yv ∂zv

∥∥∥∥ =

∥∥∥∥z y
0 1

∥∥∥∥ = z

where ∥ · ∥ denotes “matrix determinant”, whereas | · | denotes absolute value. Then,

P(Y < a) =

∫∫
{(y,z)|y<a}

pU (yz)pV (z)|z|dzdy

=
1

2π

∫ ∞

−∞

{∫ a

−∞
e−

1
2
y2z2e−

1
2
z2 |z|dy

}
dz.

Using the change of variables w = 1
2z

2, dw = zdz and replacing
∫∞
−∞ dz by 2

∫∞
0 dz (this

replacement is allowed since its integrand is positive):

P(Y < a) =
1

π

∫ a

−∞

{∫ ∞

0
e−

1
2
z2(1+y2)zdz

}
dy

=
1

π

∫ a

−∞

{∫ ∞

0
e−w(1+y

2)dw

}
dy =

∫ a

−∞

1

π

dy

(1 + y2)
.

This is known as the Lorentzian (or Cauchy) distribution. The PDF of the Lorentzian
distribution is obtained by differentiating with respect to a:

pY (y) =
1

π

1

(1 + y2)
.

In another example we can ask what is the probability that a rv X takes on exactly the
value x:

P(X = x) = lim
dx→0

P(x < X ≤ x+ dx) = lim
dx→0

∫ x+dx

x
p(x)dx = lim

dx→0
p(x)dx = 0
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A B

Figure 1.5. Mutually exclusive random events A and B.

provided that p(x) is continuous. If p(x) is discontinuous at x, this result is not necessarily
zero. In this course, we will not be dealing with discontinuous probability functions.

1.4.33. Probability of Mutually Exclusive Random Events. If random events A1,
A2 and An are disjoint sets, i.e. Ai ∩ Aj = ∅, then the probability of any of the Ai events
is a sum of probabilities:

(1.14) P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An).

Such a set of random events is called mutually exclusive events. The “union” A1 ∪ A2 ∪
· · · ∪An of random events is equivalent to a “logical OR” operation, i.e.

P(A1 ∪A2 ∪ · · · ∪An) = P(A1 or A2 or . . . or An).

Suppose that we measure the number of radioactive counts within a 1-second time interval.
When we make the statement “12 or fewer counts were observed” (during a 1-second time
interval),

12 or fewer counts = 1 count or 2 counts or ... or 12 counts.

In other words, let X be a rv that represents the # of counts (in the 1-second time interval).

{X ≤ 12} = {X = 1} ∪ {X = 2} ∪ {X = 3} ∪ · · · ∪ {X = 12}.
Decomposing the event {X ≤ 12} as a union of mutually exclusive random events, i.e.
{X = 1} ∩ {X = 2} = ∅, etc., offers some advantages when calculating the probabilities of
events. It enables us to invoke formula (1.14).

Two mutually exclusive events A and B have no overlap can be represented as shown
in Fig. 1.5. What should we do if the random events are not mutually exclusive? For
simplicity, consider only 2 events, A and B. Mutual exclusivity means that A ∩ B = ∅.
If the intersection is nonzero, then we have the situation illustrated in the Venn diagram
(Fig. 1.6).

In this case, we should avoid overcounting by subtracting the intersection:

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Let us look at the example of rolling a die. Let X be the numerical result of the die roll (#
appearing on the top face). Define two random events, A and B, as follows: A = {X ≤ 3}
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A ∩ BA B

Figure 1.6. Events that are not mutually exclusive share common outcomes (as repre-
sented here by the overlap region).

and B = {X is odd}. It is helpful to decompose these random events into a union of
mutually exclusive “elementary events”:

A = {X ≤ 3} = {X = 1} ∪ {X = 2} ∪ {X = 3},
and

B = {X is odd} = {X = 1} ∪ {X = 3} ∪ {X = 5}.
The union of A and B is:

A ∪B = {X = 1} ∪ {X = 2} ∪ {X = 3} ∪ {X = 5}.
The intersection of A and B is:

A ∩B = {X = 1} ∪ {X = 3}.
If the die is unbiased, i.e. P(X = xi) = 1/6 for xi ∈ {1, 2, . . . , 6}, then P(A ∪ B) = 2/3,
P(A) = 1/2, P(B) = 1/2 and P(A ∩ B) = 1/3. This verifies the formula P(A ∪ B) =
P(A) + P(B)− P(A ∩B) for this particular choice of random events.

1.4.34. Discrete Random Variables. A discrete rv X takes values in a discrete set
X = {xi}Ni=1, where N is the number of possible values X can take (cardinality of the set
X ) and xi ∈ X are the possible values. The word discrete refers to the “state space”. X ,
which is countable (discrete) and in the present case, contains N elements (N can also be
infinite). Discrete rv’s can be described using the PDF formed with Dirac delta functions:

pX(x) =
N∑
i=1

piδ(x− xi), pi ≥ 0,
∑
i

pi = 1.

In this section we explicitly state the main formulas pertaining to the properties of discrete
rv’s by way of discrete sums and the “probability mass function” or PMF. Either description
is valid.

1.4.34.1. Properties of Discrete Random Variables. The rv is defined by the probability
distribution {pi} (also known as the “probability mass function” or PMF), where pi ≥ 0



1.4. Distribution Functions, PMFs and PDFs 49

for all i. The normalization condition is
N∑
i=1

pi = 1

pi: probability that rv X takes the value xi.

N : can be finite or infinite; in any case, the {pi} must sum to 1.

We note that from the definition of pi as the probability that X takes the discrete value
xi, and the fact that the events {X = xi} are mutually exclusive random events, it follows
that

P(X ≤ xj) =P({X = x1} ∪ {X = x2} ∪ · · · ∪ {X = xj})

=

j∑
i=1

P({X = xi}) =
j∑
i=1

pi.

The mean value of X is

⟨X⟩ =
N∑
i=1

pixi.

The n-th moment of X is

⟨Xn⟩ =
N∑
i=1

pix
n
i .

The mean or mathematical expectation of f(X) is

⟨f(X)⟩ ≡
N∑
i=1

pif(xi).

The variance of X is (let µX = ⟨X⟩)

σ2 = Var(X) = ⟨X − µX⟩2 =
N∑
i=1

pi(xi − µX)
2.

The variance is also equal to ⟨X2⟩− (µX)
2. When calculating averages of functions of rv’s,

we proceed by replacing the rv X by its value xi, multiplying the expression by pi and
summing over all i. For example,

⟨exp(−X)⟩ =
∑
i

pi exp(−xi), ⟨g(X)⟩ ≡
∑
i

pig(xi).

This is analogous to the continuous case covered in the previous lecture where
∫
p(x)

replaces
∑

i pi:

⟨exp(−X)⟩ =
∫ ∞

−∞
p(x) exp(−x)dx, ⟨g(X)⟩ =

∫ ∞

−∞
p(x)g(x)dx.
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When we deal with two discrete rv’s X and Y , the joint probability can be written

pij ≡ P(X = xi ∩ Y = yj)

where P(X = xi ∩ Y = yj) denotes the probability of X taking the value xi and Y taking
the value yj . The pij are normalized to 1:∑

i,j

pij = 1.

The average of a function g(X,Y ) is:

⟨g(X,Y )⟩ =
∑
ij

pijg(xi, yj).

As before, if X and Y are statistically independent, the mean of XY equals the product
of the means of X and Y :

⟨XY ⟩ =
∑
ij

xiyjP(X = xi ∩ Y = yj)

=
∑
i

xiP(X = xi)
∑
j

yjP(Y = yj) = ⟨X⟩ · ⟨Y ⟩,

and similarly, we have:
⟨XnY m⟩ = ⟨Xn⟩ · ⟨Y m⟩.

A consequence of this result is

⟨f(X)g(Y )⟩ = ⟨f(X)⟩ · ⟨g(Y )⟩,
because sufficiently nice functions f, g can be expanded as a power series, enabling us to
apply the result ⟨XnY m⟩ = ⟨Xn⟩ · ⟨Y m⟩ to each term of the expansion.

1.4.34.2. Poisson Distribution. The Poisson distribution is a discrete probability distribu-
tion which is frequently used to describe counts of rare events. The main assumptions
are:

• The events counted are rare events.

• All events are statistically independent.

• Average count rate does not change over time.

The typical application of this distribution is radioactive counting (for example, with a
Geiger counter), where the average count n in a given time is given by the formula:

n = λτ

where λ is average count rate and τ is time interval. For example: λ = 1.5 s−1, τ = 10 s
gives n = 15. n does not have to be an integer number.
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Figure 1.7. Poisson distribution (PMF) for two different parameter values.

1.4.34.3. Probability Mass Function. The probability distribution is completely described
by a single parameter, n,9

P(n;n) =
e−nnn

n!
, n = 0, 1, 2, . . .

In the usual interpretation, P (0;n) gives the probability of observing 0 counts in a time
interval τ , P (1;n) gives the probability of observing 1 count, etc. It is easy to check that
this PMF is normalized to 1:

∞∑
n=0

P(n;n) =
∞∑
n=0

e−nnn

n!
= e−n

∞∑
n=0

nn

n!
= e−nen = 1,

since the Taylor expansion of exp(x) is
∑∞

k=0 x
k/k!. Figure 1.7 shows plots of the Poisson

distribution for n = 3 and n = 10. Notice that the distribution looks more like a Gaussian
at large n.

These plots were generated in MATLAB using the commands:

1 Nbar=2;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
2 Nbar=5;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
3 Nbar=10;N=0:20;figure;plot(N,exp(-Nbar)*(Nbar.ˆN)./factorial(N),'o');
4 figure;ezplot('exp(-((x-10)ˆ2)/(2*10))',[0,20]);

Two more properties of the Poisson distribution which you can easily verify are:

average of n =
∑

P(n;n)n = n, var(n) = σ2 = n = λτ.

9This is in contrast to the Gaussian distribution, whose description requires two parameters: X and σ2.
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Thus, the mean and variance are both equal to n. The standard deviation, σ =
√
n, gives

the error in the measurement. For the mean, the proof is trivial and left as an exercise.
For the variance, the proof is easy but requires more steps.10

1.4.34.4. Error Bars of a Measurement. If the experiment yields a mean count of n, the
best estimate of the error11 in this quantity is

√
n. We report this measurement as

n±
√
n.

While it may seem that the error grows with n, the fractional uncertainty actually decreases
with n:

δn

n
=

√
n

n
=

1√
n

i.e., larger n result in smaller fractional uncertainty.

1.4.34.5. Poisson Counts. This example was taken from the book by Hughes & Hase and
modified. A bridge cannot hold too many cars at once due to the potential for structural
damage. A particular bridge is designed to hold less than 13 cars (safe level) per time
interval (1 min.). In a random sample, the total number of cars recorded crossing the
bridge in 10 hours was 1980.

Q: What is the average number of cars crossing per minute and its error? A: λ = 1980
10×60 =

3.30 cars/min.

δλ =

√
1980

10× 60
= 0.07 cars/min.

Q: What is the probability that during a random one-minute interval 13 cars will be
observed crossing? A: n = λτ = 3.30, with n = 13

P(n = 13; 3.3) =
e−3.33.313

13!
= 3.3× 10−5

Q: What is the probability that the bridge will fail (due to too many cars crossing)? A:

P(13 or more cars) =1− P(12 or fewer cars)

=1− {P(0; 3.3) + P(1; 3.3) + · · ·+ P(12; 3.3)}
=4.2× 10−5.

During 1 minute of observation, this is the probability that the bridge will fail.

10A proof can be found at: https://proofwiki.org/wiki/Variance of Poisson Distribution
11Sometimes, all we have is 1 count. While this may not be the mean count, it is all that we have. The best we can
do in this case is report n±

√
n.
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1.4.34.6. Poisson Distribution in the Limit of Large Means. For large means, the Poisson
distribution converges to a Gaussian distribution:

e−nnn

n!
≈ 1√

2πµX
exp

(
−(x− µX)

2

2µX

)
where:

n (discrete) → x (continuous)

n→ µX (variance, mean)
√
n→ √

µX (standard deviation)

The proof makes use of Stirling’s approximation

log n! ≈ n log n− n+O(log n),

and
|n− n|
n

≪ 1.

These two conditions (Stirling approx. and n close to n) imply that our proof is valid in
the limit of large means. If the mean is not large, the Stirling approximation cannot be
used.

e−nnn

n!
= exp {−n− log n! + n log n}

= exp {−n− n log n+ n+ n log n}
= exp {(n− n) + n log(n/n)}

= exp

{
(n− n) + n log

[
1 +

(
n− n

n

)]}
≈ exp

{
−(n− n)2

2n

}
≈ exp

{
−(n− n)2

2n

}
The first step was to invoke the Stirling’s approximation, log n! ≈ n log n− n. The second
step was to expand about mean (n) for large n). Then we Taylor expanded log(1 + x) ≈
x − x2/2 + O(x3). In the last step we have used the approximation n ≈ n near the mean
for the denominator in the argument of the exp.

The prefactor 1√
2πn

could have been recovered had we used the slightly more accurate form

of the Stirling’s formula:

n! ≈
√
2πn

(n
e

)n
,

and of course, followed by the application of |n−n|
n ≪ 1 to justify replacing

√
2πn by

√
2πn.

See Problem 21.
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1.4.34.7. Statistical Independence (Discrete Case). The notion of statistical independence
is the same as in the continuous case. Let X and Y be two rv’s. Independence of X and
Y means that the joint probability factors as a product:

(1.15) pXYij = pXi · pYj , for all i, j

where pXY is the joint PMF for X and Y . pXi is a marginal PMF:

pXi ≡
∑
j

pXYij .

Likewise, pYj is also a marginal PMF:

pYj ≡
∑
i

pXYij .

1.4.35. Example 1. Consider a random experiment that involves rolling a die

X ∈ {1, 2, 3, 4, 5, 6}
and tossing a coin

Y ∈ {H,T}.
You are asked to determine whether or not X is statistically independent from Y . Intu-
itively, this should be the case (i.e., why would a coin toss affect the outcome of rolling a
die?).

For this random experiment, there are 12 possible “elementary” outcomes:

(X,Y ) =(1, H), (X,Y ) =(1, T ),

(X,Y ) =(2, H), (X,Y ) =(2, T ),

(X,Y ) =(3, H), (X,Y ) =(3, T ),

(X,Y ) =(4, H), (X,Y ) =(4, T ),

(X,Y ) =(5, H), (X,Y ) =(5, T ),

(X,Y ) =(6, H), (X,Y ) =(6, T ).

To get the joint PMF we must repeat this experiment many times and record the results.
Suppose that we repeat the experiment 10,000 times and count the number of times each
elementary outcome occurs. Let’s do this in MATLAB:

>> X=randi([1 2],[1 10000]);

>> Y=randi([1 6],[1 10000]);

We then plot a 2D histogram (see Fig. 1.8):

>> figure; h=histogram2(X,Y)

h =
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Figure 1.8. Bivariate histogram of the die & coin experiment.

Histogram2 with properties:

Data: [10000x2 double]

Values: [2x6 double]

NumBins: [2 6]

XBinEdges: [0.5000 1.5000 2.5000]

YBinEdges: [1x7 double]

BinWidth: [1 1]

Normalization: ’count’

FaceColor: ’auto’

EdgeColor: [0.1500 0.1500 0.1500]

The histogram is an approximation to the PMF. As you can see, this distribution is uniform.
The values used to plot the histogram are:

>> h.Values

ans =

818 816 807 827 870 831

861 847 824 837 811 851

Dividing by the number of experiments performed (10,000):

>> h.Values/10000
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X\Y heads tails sum

1 1/12 1/12 1/6
2 1/12 1/12 1/6
3 1/12 1/12 1/6
4 1/12 1/12 1/6
5 1/12 1/12 1/6
6 1/12 1/12 1/6

sum 1/2 1/2

Table 1.5. Joint PDF for an experiment that involves rolling a die (X ∈ {1, 2, 3, 4, 5, 6})
and tossing a coin (Y ∈ {H,T}).

ans =

0.0818 0.0816 0.0807 0.0827 0.0870 0.0831

0.0861 0.0847 0.0824 0.0837 0.0811 0.0851

gives an approximation to the joint PMF. Each entry is approximately equal to 1/12. A
PMF with entries equal to 1/12 can be represented as a matrix (see Table 1.5). The mar-
ginal PMFs for X and Y are obtained by summing along rows and columns, respectively.
You can check that for the data shown in Table 1.5), Eq. (1.15) holds for all i, j. Therefore,
X and Y are statistically independent.

We also know that statistical independence implies the variables are uncorrelated. Let’s
check this by computing the correlation coefficient:

>> corrcoef(X,Y)

ans =

1.0000 -0.0115

-0.0115 1.0000

The MATLAB command corrcoef computes the matrix of correlation coefficients,
[
ρ(X,X) ρ(X,Y )
ρ(Y,X) ρ(Y,Y )

]
.

The diagonal elements should be 1 (since X is fully correlated with X; same for Y ) whereas
the off-diagonal elements should be zero. Indeed, the off-diagonal elements are two orders
of magnitude smaller than 1, indicating the lack of correlation between X and Y .

A counter-example illustrating statistical dependence would be the joint PMF shown in
Table 1.6, which differs from Table 1.5 only in the second row. Namely, when the result
from rolling the die is 2, the coin toss always yields “tails”. (Don’t try too hard to imagine
how this can possibly happen in the lab; it is perhaps easier to imagine that a magician is
doing the experiment for you.) Because pXY2,1 = 0 ̸= pX2 · pY1 = 1

6 ·
1
2 , we are unable to prove

statistical independence of X and Y .
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X\Y heads tails sum

1 1/12 1/12 1/6
2 0/12 1/6 1/6
3 1/12 1/12 1/6
4 1/12 1/12 1/6
5 1/12 1/12 1/6
6 1/12 1/12 1/6

sum 1/2 1/2

Table 1.6. Joint PDF for an experiment that involves rolling a die (X ∈ {1, 2, 3, 4, 5, 6})
and tossing a coin (Y ∈ {H,T}). This joint PMF is the same as that of Table 1.5 except
for the second row.

1.4.36. Example 2. The joint distribution of the bivariate rv (X,Y ) is given by

pXY (xi, yj) =

k
|xi|
2yj

xi = −1, 1; yj = 1, 2, 3, . . . (to infinity)

0 otherwise

(a) k is a constant. Find the value of k.∑
i

∑
j

pij = k2
∑
j

1

2yj
= k2 · 1 = 2k. k = 1/2.

(b) Find the marginal probability distributions of X and Y .

pX(xi) =
∑
j

pij =
∑
j

1

2
|xi|

1

2yj
=

1

2
|xi|. xi = −1, 1.

pY (yj) =
∑
i

pij =
1

2yj
. yj = 1, 2, 3, . . .

(c) Are X and Y statistically independent?

Forming the product of marginal distributions,

pX(xi)pY (yj) =
1

2
|xi| ·

1

2yj
= pXY (xi, yj)

Hence X and Y are independent.

1.4.36.1. Bernoulli(p) pmf.

pX(x) =


p if x = 1,

q := 1− p if x = 0,

0 otherwise

;
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1.4.36.2. binomial(n, p) pmf.

pX(x) =

{
b(n, p;x) if x = 0, 1, . . . , n

0 otherwise;
;

If X has the Bernoulli(p) pmf, then we say that X has the Bernoulli(p) distribution and
write

X ∼ Bernoulli(p),

with similar remarks for the binomial(n, p) and Poisson(λ) distributions. Of course, the
distribution function of a discrete r.v. with pmf pX satisfies

P(X < x) =
∑
y≤x

pX(y) :=
∑

Z∋y≤x
pX(y),

and, for a, b ∈ Z with a < b, we have

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) =
b∑

y=a+1

pX(y).

1.4.37. Cross-Correlation in Image Analysis. The concept of covariance leads to the
cross-correlation analysis. Cross-correlation is a type of covariance that involves comparing
two signals (or images) together through pixel-by-pixel multiplication of a window (or ROI)
that is translated across different regions of a target signal (or image). If the two signals
(or images) are of the same size, a single value is obtained. If the sliding window is smaller
than the target signal (or image), the output is a function of the translation coordinate(s).

The 2D cross-correlation of a M ×N matrix, X, and a P × Q matrix, H, is a matrix C,
of size M + P − 1 by N +Q− 1. Its elements are given by:

C(x, y) =
M−1∑
m=0

N−1∑
n=0

X(m,n)H(m− x, n− y),

{
−(P − 1) ≤ x ≤M − 1,

−(Q− 1) ≤ y ≤ N − 1,

where the bar denotes complex conjugation. Likewise, a 1D signal can also be compared
to another signal, for purposes of comparison or pattern recognition. The true cross-
correlation sequence of two random samples {xn} and {yn} is

Rxy(m) = ⟨xn+my∗n⟩ = ⟨xny∗n−m⟩,
where −∞ < n <∞ and asterisk denotes complex conjugation. The raw cross-correlation
is computed as:

R̂xy(m) =

{∑N−m−1
n=0 xn+my

∗
n, m ≥ 0,

R̂∗
xy(−m), m < 0.

In MATLAB these two commands are implemented as xcorr2 and xcorr, respectively.
For more information including examples, see the MATLAB documentation:
https://www.mathworks.com/help/signal/ref/xcorr2.html

https://www.mathworks.com/help/matlab/ref/xcorr.html
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1.5. Conditional Probability and Conditional Expectation

1.5.1. Conditional densities. The conditional density of X given Y is defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
,

where pX,Y (x, y) is the joint PDF of X and Y , pY (y) is the marginal PDF of Y . This is a
consequence of the formula for conditional probability,

P(A|B) =
P(A ∩B)

P(B)

with A = {X = x} and B = {Y = y}, i.e.

P(x < X ≤ x+ dx|y < Y ≤ y + dy)dx

=
P(x < X ≤ x+ dx, y < Y ≤ y + dy)dxdy

P(y < Y ≤ y + dy)dy
.

An interpretation of pX|Y (x|y) is obtained by integrating it:

P(a < X ≤ b|Y = y) =

∫ b

a
pX|Y (x|y)dx

(i.e. the probability that X ∈ [a, b] given that Y = y). However, the left hand side {Y = y}
is an event with probability zero, which is ill-defined. We instead use a limit to circumvent
this difficulty:

P(a < X ≤ b|Y = y) = lim
ϵ→0

P(a < X ≤ b||Y − y| < ϵ).

The conditional expectation of X given Y = y is defined as

⟨X|Y = y⟩ =
∫ ∞

−∞
xpX|Y (x|y)dx.

A consequence of this definition is:

⟨Y ⟩ =
∫ ∞

−∞

∫ ∞

−∞
ypX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
y
[
pY |X(y|x)pX(x)

]
dxdy

=

∫ ∞

−∞

[∫ ∞

−∞
ypY |X(y|x)dy

]
pX(x)dx

=

∫ ∞

−∞
⟨Y |X = x⟩pX(x)dx.

An analogous concept of “conditional probability mass” exists for the case of discrete rv’s.
See Problems 38 and 39 for more on conditional densities.
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1.5.2. Conditional Expectation. We may also calculate expectation values under some
condition. This is the same idea as calculating the normal expectation value, except that
we use the conditional density instead of the regular density. For (a) the condition involves
a random event H. If X is a rv, H is a random event and pX|H(x) is the conditional
density of X under the condition H, the expectation value of X under the condition H is:

⟨X|H⟩ ≡
∫
xpX|H(x)dx,

where the integral is over all possible values of X (i.e., the “range” of X). As an example,
the event H could be H = {Y = 10}, or it could be H = {Y = y} (where the value y
remains unspecified). You can check that ⟨X|H⟩ is still linear in X. For (b) the condi-
tion is a rv, e.g., ⟨X|Y ⟩. The conditional expectation ⟨X|Y ⟩ is obtained by calculating
⟨X|Y = y⟩. The result will be a function of y. Then replace y by the rv Y . Notice that the
end result for ⟨X|Y ⟩ is itself a rv. In other words, to get ⟨X|Y ⟩ we use ⟨X|Y = y⟩ together
with y = Y (ω). The meaning of ⟨X|Y ⟩ is “the function of Y that best approximates X”.

From these definitions many properties follow. For example, it is easy to check that

⟨⟨Y |X⟩⟩ =
∫ ∞

−∞

[∫ ∞

−∞
y pY |X(y|x) dy

]
pX(x) dx =

∫ ∞

−∞
y pY (y) dy = ⟨Y ⟩.

We used the definitions of conditional probability pY |X(y|x)pX(x) = pXY (x, y) and mar-

ginal density pY (y) =
∫∞
−∞ pXY (x, y)dx. More properties of conditional expectations can

be found at this site (click on Proof to obtain the proofs of various results):

https://www.randomservices.org/random/expect/Conditional.html

In Problem 40 you are asked to calculate expectation values under some condition.

1.6. Signal Averaging Reduces Relative Error

An important concept in experimental science is that of “signal averaging”. This is done
to reduce the noise error, or equivalently, to reduce the size of the error bars relative to
the measurement. Suppose X is a rv and we perform n measurements of X. We obtain
the data set {xi = X(ωi)}ni=1. Another way to view this experiment is to consider the
simultaneous measurement of n independent rv’s X1, . . . , Xn, each of which has the same
distribution as X: each has mean µX and variance (var(Xi) <∞). We form the average:

Xav(ω) =
X1(ω) +X2(ω) + · · ·+Xn(ω)

n
,

where a single value of ω is used, as we assumed simultaneous measurement of X1, . . . , Xn.
The variance of this sum is

var(Xav) =

∑n
i=1 var(Xi)

n2
∝ 1

n
,
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where we used the property var(aX) = a2var(X). The noise is the square root of the

variance σ =
√
var(Xav). Thus, signal averaging reduces the noise from random errors.

We have just derived the formula for standard error: the mean ofXav(ω) =
X1(ω)+X2(ω)+···+Xn(ω)

n

is µX (where µX = ⟨X⟩) and its standard deviation is
√
var(X)/n = σX/

√
n. We recognize

this as the standard error.

If the Xi are iidrv the signal-to-noise ratio (SNR) is defined as:

SNR =
signal

noise
=

Xav√
var(Xav)

∝
√
n

Thus, SNR improves with signal averaging.

1.7. Some Theorems on Random Variables

1.7.1. Normal Linear Transform Theorem. The normal linear transform theorem is:

α+ βN1(µ, σ
2) = N2(α+ βµ, β2σ2).

(We denoted N with subscripts 1 and 2 to emphasize that they are different rv’s, i.e., the
rv on the right hand side is created from the rv on the left hand side.)

Proof: Let Y = α+ βX, where X ∼ N1(µ, σ
2). Write

P(Y < a) = P(α+ βX < a) = P(X < (a− α)/β)

=

∫ (a−α)/β

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx.

and make a substitution of variables y = α+ βx, dy = βdx to get an integral of the form∫ a
−∞ pY (y)dy:

=

∫ a

−∞

1√
2πσ2

e−((y−α)/β−µ)2/2σ2
(dy/β) =

∫ a

−∞

1√
2πβ2σ2

e−(y−α−βµ)2/2β2σ2
dy,

which is the CDF of a normal rv with mean α+ βµ and variance β2σ2. In the special case
µ = 0, σ2 = 1 we have:

α+ βN1(0, 1) = N2(α, β
2).

1.7.2. Normal Sum Theorem. The normal sum theorem is:

N3(µ1 + µ2, σ
2
1 + σ22) = N1(µ1, σ

2
1) +N2(µ2, σ

2
2),

where on the right-hand-side is the sum of two statistically independent rv’s. In other
words, let X ∼ N1(µ1, σ

2
1) and Y ∼ N2(µ2, σ

2
2) be independent rv’s. (We denoted N with

subscripts 1, 2 and 3 to emphasize that they are different rv’s.) We are asking what is the
distribution of the new rv U = X + Y . The proof of this involves handling a 2D integral
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of the joint PDF of X and Y :

P(X + Y < a) =
1

2πσ1σ2

∫∫
{(x,y)|x+y<a}

e
− (x−µ1)

2

2σ2
1 e

− (y−µ2)
2

2σ2
2 dxdy.

With some effort, you should be able to simplify this double-integral and show that it is
the CDF of the rv X + Y (use the change of variables V = X + Y , Z = Y ).

1.7.3. Sum of Independent Gaussians. Suppose thatX1, . . . , Xn are iidrv and normal,
say, N (0, 1). The distribution of their sum is also normal. This can be proven by induction,
using the result from Section 1.7.2.

1.7.4. Sum of Two Independent Cauchy’s. Let X,Y be independent Cauchy rv’s.
What is the distribution of their sum X + Y ? We start with the CDF:

P(X + Y < a) =

∫∫
{(x,y)|x+y<a}

1

π2
1

(1 + x2)

1

(1 + y2)
dxdy.

Let us effect a change of variables: u = x+y and v = y. The inverse is y = v and x = u−v.
The area element is:

dxdy =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ dudv =

∣∣∣∣det(1 1
0 1

)∣∣∣∣dudv = dudv.

In the new coordinates, the integral is:

P(X + Y < a) =
1

π2

∫ a

−∞
du

∫ ∞

−∞
dv

1

(1 + (u− v)2)

1

(1 + v2)
.

To solve the integral over v go to www.wolframalpha.com and type:

integrate (1/(1+(u-v)^2))*(1/(1+v^2)) from v=-infinity to infinity

The result is: ∫ ∞

−∞
dv

1

(1 + (u− v)2)

1

(1 + v2)
=

2π

4 + u2
.

This gives the CDF in integral form. Differentiating with respect to a gives the PDF:

pX+Y (a) =
1

π

2

(4 + a2)
=

1

π

1

2(1 + (a/2)2)
.

The general Cauchy distribution has PDF p(x) =

[
πγ

(
1 +

(
x−x0
γ

)2)]−1

, where x0 is the

center and γ is the scale parameter (related to the width). Thus, adding two Cauchy rv’s
centered at 0 with “scale parameter” of γ = 1 results also in a Cauchy distribution centered
at 0, but with γ = 2 (i.e. it is twice as broad as the γ = 1 case).

1.7.5. Central Limit Theorem. One of the most important theorems in probability
theory is the central limit theorem (CLT). The CLT describes many important physical
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phenomena observed in nature that arise from the sum of many independent random effects
(e.g. microscopic forces). Loosely speaking, the central limit theorem states that regardless
of the distribution of these random effects, the limiting distribution is Gaussian.

Let (X1, . . . , Xn) be a sequence of iidrv (independent identically distributed rv), each
having mean µX and variance σ2. Then,

lim
n→∞

rv

{
1

n

n∑
i=1

(Xi − µX)

}
d→ 1√

n
N (0, σ2).

This is equivalent to saying that the arithmetic average 1
n

∑n
i=1Xi converges

12 (in distri-

bution) to a normal law with mean µX and variance
σ2

n
:

lim
n→∞

rv

{
1

n

n∑
i=1

Xi

}
d→ N

(
µX ,

σ2

n

)
.

The quantities {Xi} are rv’s. Their sum is also a rv; the CLT states that the sum will be
Gaussian-distributed.

Note: that the arithmetic average should also have the mean µX comes as no surprise.

But also that the variance σ2

n scales as 1/n should come as no surprise if you recall the
definition of standard error, which states that the error in the mean scales as 1/

√
n.

The central limit theorem is very important in the physical sciences because many physical
measurements yield Gaussian distributions as a result of the effects of many small additive
forces. For example, the Brownian motion of a particle is the result of many small collisions
with solvent molecules, yielding a Gaussian distribution for the net displacement.

The CLT is illustrated in Fig. 1.9. The histogram on the left represents the probability
distribution of a single rv, X1. The histogram in the center is the distribution of the
average of two such iidrv 1

2(X1 +X2). The histogram on the right is the distribution for

the average of 10 iidrv, 1
10(X1 + X2 + · · · + X10). As can be seen, while each rv has a

uniform (flat) distribution, as the histogram on the left shows, the more rv’s we average,
the closer the distribution of the average approaches a normal (bell-shaped) distribution.

1.7.5.1. Random Walk in One Dimension. The random walk, which is an application of
the CLT, is important in the physical sciences. Brownian motion is a limit of the random
walk.

Let Xi be the rv which denotes the displacement at the i-th step

Xi ∈ {−σ,+σ}

12Convergence in distribution means that the distribution functions converge pointwise:

lim
n→∞

P(Xn ≤ x) = Fn(x),

where Fn(x) denotes the CDF of the normal random variable with mean µ and variance σ2/n and Xn = 1
n
(X1 +

· · ·+Xn).
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Figure 1.9. Illustration of the central limit theorem.

and each outcome occurs with equal probabilities, i.e.

pσ =
1

2
and p−σ =

1

2
.

These displacements at different points in time are assumed to be statistically independent.
After n such steps the net displacement is

Sn = X1 + · · ·+Xn,

where Xi =
1
2σ + 1

2(−σ) = 0. Therefore, Sn = 0. Also, varXi =
1
2(σ

2) + 1
2(−σ)

2 = σ2.
Then,

varXi = X2
i −Xi

2
= σ2.

By statistical independence of the Xi’s:

S2
n =

n∑
i=1

varXi = nσ2,

The total duration of the random walk is t = n∆t. We have

S2
n =

(
σ2

∆t

)
t = 2D t.

The quantity D = σ2

2∆t is called the diffusion constant (or diffusion coefficient). D has units

of length square divided by time (e.g. m2/s).

By the central limit theorem, we have that

lim
n→∞

Sn = X1 + · · ·+Xn ∼ N (0, nσ2)

limSn ∼ N (0, nσ2) means that its PDF is

pSn(x, t) =
1√
4πDt

exp

[
− x2

4Dt

]
.
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This PDF is also called transition probability density.13 It is the probability of finding the
particle at (x, t) under the condition that it was at position x = 0 at time t = 0.

The average position of the random walker after the n-th step is zero: Sn = 0. This means
that if we repeat the random walk experiments, say 10,000 times, the average position after
n steps will be zero. It does not mean that the random walker automatically returns to the
origin. It is merely a statement about the random walk when the walk is repeated many
times.

On the other hand, the result S2
n = 2D t about the mean square displacement being

proportional to t (or root mean square displacement, x, being proportional to
√
t) should

be contrasted to the case of ballistic motion for which x = vt (displacement proportional
to t). The different powers of t reflect the fact that in diffusional motion, there is a lot of
back-and-forth, leading to a shorter displacement over time.

1.7.5.2. Random Walk in Three Dimensions. In three dimensions, the displacement is a 3-
components vector R = (X,Y, Z). If the components X,Y, Z are statistically independent
of each other, the joint probability density is a product:

pXY Z(x, y, z, t) = pX(x, t)pY (y, t)pZ(z, t),

where pX(x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
, etc. (for each component). Applying the result of the

previous section for each direction (component), we obtain the joint probability density for
the 3D random walk:

pXY Z(x, y, z, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
where r2 = x2 + y2 + z2, r⃗ = (x, y, z).

In 3D the mean square displacement (MSD) is14

⟨r2⟩ = ⟨x2 + y2 + z2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩ = 2Dt+ 2Dt+ 2Dt = 6Dt.

In the general case of d dimensions, r⃗ = (x1, . . . , xd), the MSD is:

⟨r(t)2⟩ = ⟨x21 + · · ·+ x2d⟩ = 2dDt.

13A transition probability density is written p(x, t|y, s) to the denote the probability of finding a particle at position

x at time t given that it was initially at position y at some earlier time s.
14

⟨r(t)2⟩ ≡
1

(4πDt)3/2

∫∫∫
R3
r2 exp

(
−
r2

4Dt

)
d3r

.
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1.8. Importance Sampling

1.8.1. Law of Large Numbers (LLN). Let X1, . . . , Xn be a sequence of iiddv each
with mean µ. We form the sample mean:

Xn =
1

n

n∑
i=1

Xi =
1

n
(X1 + · · ·+Xn).

Then, for any ϵ > 0,

lim
n→∞

P(|Xn − µ| > ϵ) = 0.

This is the weak law of large numbers (WLLN). For a proof of the WLLN, see Problem 17.
Xn is the sample mean. The strong law of large numbers is15

P
(
lim
n→∞

|Xn − µ| > ϵ
)
= 0.

Both weak and strong LLN are statements about how the sample mean converges to the
real mean. However, there is an important difference: the weak LLN tells us how sequences
of probabilities (P) converge whereas the strong LLN tells us how the sequence of rv Xn

behaves in the limit. The CLT, on the other hand, is a much stronger16 statement: the
sample mean (arithmetic average) rv converges (in distribution) to a normal law. The
central limit theorem (CLT) should not be confused with the LLN.

1.8.1.1. WLLN In Words. The statement limn→∞ P(|Xn−µ| > ϵ) = 0 for any ϵ > 0 simply
means that if we take any sequence of iidrv’s X1, . . . , Xn, their arithmetic average tends
to their mathematical expectation as n → ∞. Thus, we can approximate mathematical
expectations (which may be difficult to compute, especially if the distribution is unknown),
using arithmetic averages formed using experimental data. The larger n is, the better the
approximation of the mathematical expectation.

Since Xi are rv’s, the WLLN formulation also applies to functions of rv’s, Yi = f(Xi),
since the latter are also rv’s. If desired, f could be almost any formula. For example,
suppose that Xi is the acceleration of a particle, ai (i.e., Xi ≡ ai). The force is mass times
acceleration: F (Xi) = ma = mXi. The WLLN allows us to compute not only the average
acceleration, ⟨Xi⟩, but the average force, ⟨F (Xi)⟩, by simply renaming Yi = f(Xi) and
applying it to the sequence {Yi}.

1.8.2. Expectation With Respect To Probability Measure. The mathematical ex-
pectation of X was defined as:

⟨X⟩ =
∫
R
xp(x)dx,

15The proof of the strong law requires the Borel-Cantelli lemma, which we have not covered.
16This is a stronger statement because it is a statement about the entire distribution law of a rv, not just its mean
and variance.
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where p(x) is the PDF of X and the integral is taken over the range of X (here, R). p(x)dx
is the probability measure. It will be useful to use the notation ⟨X⟩p to emphasize that the
PDF used to calculate the mathematical expectation is p. This way, there is no ambiguity
as to which probability measure is used. For example, if the PDF of Y is q(y), then we
write:

⟨Y ⟩q =
∫
yq(y)dy.

(Note: y is a dummy integration variable; the choice of symbol is unimportant.) The
WLLN states that if Y is distributed according to q(y), then its mathematical expectation
can be approximated by the arithmetic average:

⟨Y ⟩q ≈
1

n

n∑
i=1

Yi,

where the Yi’s are sampled according to the distribution q. If instead the PDF of Y had
been some other function f , we would have written ⟨Y ⟩f for

∫
yf(y)dy. The two numerical

values ⟨Y ⟩f and ⟨Y ⟩q can, of course, be different, since f and q may be different functions.

As far as the WLLN is concerned, it is meant to enable us to approximate mathematical
expectations of rv’s (or functions of rv’s) by arithmetic averages constructed using exper-
imental data. We present several examples below to illustrate applications of the WLLN.
The WLLN is best explained by working out specific examples.

1.8.3. Numerical Integration by Monte-Carlo Method. Monte-Carlo methods can
be used to estimate the numerical value of integrals. For example, suppose we want to
compute the integral:

I =

∫ b

a
h(x)dx

which is the same as

I =

∫ b

a

h(x)(b− a)

(b− a)
dx =

∫ b

a
u(x)p(x)dx = ⟨u(X)⟩p

where ⟨·⟩p denotes the mathematical expectation with respect to the PDF p(x) and

u(x) = h(x)(b− a), p(x) =
1

(b− a)
.

Thus, p(x) is the PDF of a uniformly distributed rv. This integral can be evaluated by
generating random numbers X1, . . . , Xn that are iidrv and uniformly distributed on the
interval [a, b]. By the WLLN, the following estimator converges to I:

Î =
1

n

n∑
i=1

u(Xi) → ⟨u(X)⟩p =
∫ b

a
u(x)p(x)dx = I.

This gives us a way to evaluate integrals by generating random numbers. For multi-
dimensional integrals, this method has important advantages. Namely, the generation of
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random numbers followed by estimation of I is less computationally intensive than the
direct numerical integration (by quadratures) of the multi-dimensional integral.

There is no special reason to pick the uniform distribution. In fact, any distribution p(x)
can be used. In some cases, special choices of p(x) may be advantageous. For example,
sampling the domain [a, b] may be a waste of time if most of the points within that interval
correspond to regions where h(x) is zero or nearly zero. In that case, we instead want to
sample regions of the domain where |h(x)| > 0 is concentrated.

In other words, let

I =

∫ b

a
h(x)dx =

∫ b

a

h(x)

p(x)
p(x)dx = ⟨u(X)⟩p, u(x) =

h(x)

p(x)

and choose p(x) such that the “peaks” of p correspond to the peaks of h. The numerical
value of I can be estimated by sampling iidrv X1, . . . , Xn according to p(x) and computing
the sum:

I ≈ 1

n

n∑
i=1

u(Xi) =
1

n

n∑
i=1

h(Xi)

p(Xi)
, Xi ∼ p(x).

1.8.4. Change of Distribution. Suppose that X is a rv with PDF p(x) and we want to
calculate the average of a function, f(X) of X. Let q(x) > 0 be another PDF on the same
probability space as p. Then,

⟨f(X)⟩p =
∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx = ⟨

(
f(X)p(X)

q(X)

)
⟩q.

Here, ⟨f(X)⟩p denotes the mathematical expectation of f calculated using the PDF p(x)

for X, whereas ⟨
(
f(X)p(X)
q(X)

)
⟩q is the expectation of fp/q calculated by associating the PDF

q(x) to X instead.

In the first case, X1, . . . , Xn random numbers are sampled from the distribution p(x) and
the integral is estimated as:

⟨f(X)⟩p ≈
1

n

n∑
i=1

f(Xi).

Convergence is assured by the LLN. In the second case, X1, . . . , Xn are sampled from the
distribution q(x) and the integral is estimated as

⟨
(
f(X)p(X)

q(X)

)
⟩q ≈

1

n

n∑
i=1

f(Xi)p(Xi)

q(Xi)
.

The correction factor p/q is called the likelihood ratio. This method, of course, requires us
to be able to compute the ratio p/q for any value of X that we may sample. The idea is
to choose an importance distribution q that leads to faster convergence than the nominal
distribution p. We generally want to choose q such that its spikes correspond to those of
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fp; in fact, it can be shown that q should be proportional to fp. Choosing q can be done
using an “educated guess” or by random sampling of the function.

1.8.5. Calculation of Probabilities. Since probabilities are expectation values of indi-
cator functions, the WLLN can also be used to speed up the calculation of probabilities.
This is especially useful for rare events. For example, suppose we want to calculate the
probability of an event {X ∈ A}, where the PDF for X is p(x). From experimental
measurements X1, . . . , Xn, this would normally be approximated by

P(X ∈ A) = ⟨1X∈A⟩p =
∫
R
1A(x)p(x)dx ≈ 1

n

n∑
i=1

1A(Xi) =
# draws in A

n

where 1A(x) is the indicator function of A, i.e. it is a function that equals 1 when x ∈ A
and 0 otherwise. However, if p(x) is such that this event rarely happens, we are going to
need n very large or else the result will be zero.

On the other hand, the WLLN enables us to reweigh the integral, if we can find a better
distribution q(x) that samples values that are closer to the set A:

⟨1X∈A⟩p = ⟨[1A(X)p(X)

q(X)
]⟩q ≈

1

n

n∑
i=1

1A(Xi)p(Xi)

q(Xi)
. Xi ∼ q(x)

If the event is rare, the ratio p/q will be small (yielding the correct probability for the rare
event), whereas the summation will count several non-zero terms, giving a more accurate
answer (for the same n).

A special case of P(X ∈ A) is the estimation of the CDF, P(X < x), which can be expressed

as ⟨1{X<x}⟩p, and which equals to ⟨
[
1{X<x}p(X)

q(X)

]
⟩q. And if q(x) is a better distribution than

p(x), we can use the latter formula, together with the WLLN, to approximate the CDF by
a summation.

1.8.6. Generalization to d-Dimensions. All of the above formulas are valid in d-
dimensions. x ∈ R and X ∈ R are replaced by x ∈ Rd and X ∈ Rd, respectively. Likewise,
dx stands for ddx, the d-dimensional volume element in the d-dimensional integral.

1.9. Comparing Distributions

Given some random samples x1, . . . , xn and y1, . . . , yn of two rv’s X and Y , respectively.
It is natural to compare them to see if there is a difference between them. We have already
mentioned that one may compare sample means, sample variances and sample covariance.
However, these statistical quantifiers are the lowest order moments (first, second) of the
distributions. They do not provide a complete comparison. Two rv’s are identical if and
only if their distributions match. To compare distributions, we must use distance metrics.
In this section we discuss a number of popular methods: the Kolmogorov-Smirnov test,
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the cross entropy, the Bhattacharyya distance, Wasserstein metric and the Kullback-Leibler
divergence.

In mathematics a metric on a setX is a function d : X×X → [0,∞) that obeys the following
conditions for all x, y, z ∈ X: 1) d(x, y) = 0 if and only if x = y. 2) d(x, y) = d(y, x)
(symmetry). 3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

1.9.1. Kolmogorov-Smirnov test.

1.9.2. Cross entropy.

1.9.3. Bhattacharyya distance.

1.9.4. Wasserstein metric.

1.9.5. Kullback-Leibler divergence and the Relative Entropy.

1.9.5.1. Entropy. Suppose we have a rvX taking values x in the set X each with probability
p(x). The Shannon entropy

H[X] = −
∑
x∈X

P(X = x) logP(X = x) (discrete rv X)

or

H[X] = −
∫
p(x) log p(x)dx (continuous rv X)

quantifies the “lack” of information about the system described by p(x). For example, if
we have a system that can be found in 6 possible states with probabilities (1, 0, 0, 0, 0, 0),
the entropy is lowest (H = 0). On the other hand, if the probability distribution is
(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) (uniform distribution) the entropy is maximal. The uniform
distribution shows the system can be found in any of its 6 states with equal probability;
therefore we do not know anything about its state. In the case of the first distribution we
know exactly which state the system is in (the first state). If entropy quantifies the lack
of information, the negative of the entropy quantifies information.

There are other measures of entropy. The Renyi entropy measure is

HR
α [X] =

1

1− α
log
∑
x∈X

P(X = x)α.

The Tsallis entropy measure is

HT
α [X] = c

∑
x∈X P(X = x)α − 1

1− α
.

Here, α > 0 is a positive parameter and c is a positive constant depending on the particular
units used. Both of these families include the Shannon measure as a special case in the
limit α→ 1, where HR

1 (p) = HT
1 (p) = H(p). We may interchangeably write H(p) for H[X]
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and vice versa, since X is defined by its distribution p. From this, we see that

H(p) = − 1

n
log p(xn)

where p(xn) =
∏n
i=1 p(xi). This expression for H(p) is called the empirical entropy of the

empirical probability distribution.

1.9.5.2. Empirical entropy. The above definitions presume that we know the distributions.
Suppose that instead we have data x1, x2, . . . , xn all taking values in the discrete set X .
The empirical PMF is:

p(x) =
1

n

n∑
i=1

δx(xi),

where δx(xi) is the Kronecker delta function and x ∈ X . Using the definition of entropy:

H(p) = −
∑
x∈X

p(x) log p(x) = −
∑
x∈X

1

n

n∑
i=1

δx(xi) log p(x) = − 1

n

n∑
i=1

log p(xi).

In the last step we have interchanged the order of the two sums and used∑
x∈X

δx(xi) log p(x) = log p(xi).

1.9.5.3. KL Divergence. Suppose that we have two PDFs q(x) and p(x) defined on the
same probability space (i.e. the range of values is the same x ∈ X , and the set of all
possible random events is identical) with PDFs q(x) and p(x). Here we assume that the
range is X = (−∞,∞). The relative entropy between q and p is defined by:

DKL[p(x) : q(x)] =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx.

This can easily be generalized to discrete rv’s by taking

p(x) =
N∑
i=1

piδ(x− xi), q(x) =
N∑
i=1

qiδ(x− xi),

where N is the number of possible values x ∈ X the rv can take. This gives:

DKL[p : q] =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
=

N∑
i=1

pi log

(
pi
qi

)
.

We note that DKL is not symmetric, i.e. DKL[p : q] ̸= DKL[q : p], and nor does it satisfy
the triangle inequality. Therefore, it is not technically a metric. It is possible to make it
symmetric by taking the sum DKL[p : q] +DKL[q : p] in order to obtain a metric.
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1.9.5.4. Relationship to cross-entropy. Cross-entropy is closely related to relative entropy
or KL-divergence that computes distance between two probability distributions. For ex-
ample, in between two discrete PMFs, the relation between them is:

H(p, q) = −
∑
x∈X

p(x) log q(x) cross entropy

H(p) = −
∑
x∈X

p(x) log p(x) entropy

DKL[p : q] =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
relative entropy

H(p, q) = H(p) +DKL[p : q]

Expressing the KL divergence in the form

DKL[p : q] =
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x)

yields the interpretation of the KL divergence to be something like the following: if P is
the “true” distribution, then the KL divergence is the amount of information “lost” when
expressing it via Q.

1.9.6. Density Estimation. So far we have worked dealt with parametric statistics
meaning that we assumed knowledge of the PDF in order to compute statistics involv-
ing rv’s. For example, concepts such as mean and variance were defined in terms of PDFs.
The PDF is either given to us, or it is estimated from the data by fitting its parameters (e.g.
mean, variance) to the histogram. This procedure has limited capabilities, as it requires
choosing a model for the PDF. Non-parametric statistics makes no assumptions about the
form of the PDF. The density function (PDF) is instead derived from the data. Recall
that (rescaled) histograms are a discrete approximation to the PDF. In this section, we
will show that non-parametric estimates of the density can be constructed using a sum of
kernel functions.

1.9.6.1. Kernels. Kernels are best described informally as “bump functions”. An example
is the Gaussian function, also known as radial basis function

Kx(y) = K(x, y) = e−
∥x−y∥2

2σ2 ,

which is a fundamental solution to the heat equation describing the response to a point
source of heat in thermodynamics. Another example is the polynomial kernel:

Kx(y) = K(x, y) = (x · y + 1)d.

Kernels in statistics must be non-negative, real-valued integrable functions Kx : R → X
satisfying symmetry, Kx(−y) = Kx(y) and normalization,

∫∞
−∞Kx(y)dy = 1.
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A reproducing kernel Kx operates on a Hilbert space H of functions that are defined on a
set X. A function K : X ×X → R defined by the inner product on H:

K(x, y) = ⟨Kx,Ky⟩H
that has the property of taking a function f and evaluating it at x:

⟨f,Kx⟩H = f(x),

is called reproducing because it maps a function f to its value f(x). An example is the
Dirac measure δx(y) and the Hilbert space L2(R):

⟨f, δx⟩L2 =

∫ ∞

−∞
f(y) · δx(y)dy =

∫ ∞

−∞
f(y)δ(x− y)dy = f(x).

1.9.6.2. Kernel Density Estimation. Kernel density estimation (KDE) is method for esti-
mating the probability density function of a rv. It can also be viewed as a data smoothing
technique where inferences about the population are made (PDF), based on a finite data
sample (histogram).

Let (x1, x2, . . . , xn) be independent and identically distributed samples drawn from some
univariate distribution with an unknown density f at any given point x. We are interested
in estimating the shape of this function f . Its kernel density estimator is

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
where K is the kernel — a non-negative function — and h > 0 is a smoothing parameter
called the bandwidth. We note that Kx(y) in the previous section is now denoted K(y−x).
A kernel with subscript h is called the scaled kernel and defined as Kh(x) = (1/h) ·K(x/h).
The KDE can be though of as a weighted average, where the weight is:

wi =
1

h
K
(x− xi

h

)
.

The choice of bandwidth h matters in practice. Wider bandwidths smooth out the data
more (low variance). Narrower bandwidths result in noisier data (high variance). Obvi-
ously, if we pick too low a bandwidth, the density estimation has a generally greater bias
because the moving average (trendline) is less responsive to changes in the data points.

Suppose that we measure a signal Yi that is the sum of the underlying signal f(xi) and
some additive noise ξi:

Yi = f(xi) + ξi

where one usually assumes that
ξi ∼ N (0, σ2).

Here, xi represents some internal variables that are not directly measured. We denote them
as xi rather than Xi, to emphasize that those variables have already been “fixed” at the
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time of the measurement, i.e.

f(xi) = ⟨f(Xi)|Xi = xi⟩.
Taking the conditional expectation given Xi = xi we find:

⟨Yi|Xi = xi⟩ = ⟨f(Xi)|Xi = xi⟩.
We will obtain in the next section an expression for ⟨Yi|Xi = xi⟩.
1.9.6.3. Kernel Regression. The problem of kernel regression can be summarized as follows.
We want to estimate the conditional expectation ⟨Y |X = x⟩, which is a function of x. First
note that:

⟨Y |X = x⟩ =
∫
ypY (y|x)dy =

∫
y
pXY (x, y)

pX(x)
dy.

However, this requires knowledge of the densities. We use the following kernel density
estimates:

p̂XY (x, y) =
1

n

n∑
i=1

Kh(x− xi)Kh(y − yi), p̂X(x) =
1

n

n∑
i=1

Kh(x− xi),

where the hat denotes estimate. We get the following estimate:

Ê[Y |X = x] =

∫
y
∑n

i=1Kh(x− xi)Kh(y − yi)∑n
j=1Kh(x− xj)

dy,

=

∑n
i=1Kh(x− xi)

∫
yKh(y − yi)dy∑n

j=1Kh(x− xj)
,

=

∑n
i=1Kh(x− xi)yi∑n
j=1Kh(x− xj)

,

We have used the reproducing property of kernels:∫
yKh(y − yi)dy = yi.

1.10. Problems

Problem 1. The height of a person is measured over time, every month from birth to
The data set consists of the person’s age in months and her height in centimeters. The
summary statistics for the data are provided below:

x = age, in months

y = height, in centimeters

x = 44 sx = 8.5 y = 82 sy = 4.1

Also, the correlation coefficient between x and y is r = 0.860
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(a) What is the slope of the LSRL? (Round to the nearest hundredth.)
(b) What is the y-intercept of the LSRL? (Round to the nearest hundredth.)
(c) Find the equation of the least-squares regression line (with y as the response variable)
(d) What percentage of the variation in predicted height can be explained for by the LSRL

Problem 2. Suppose that we have an amplifier that takes a voltage and amplifies it by
a factor of 10×, i.e. f(x) = 10x. Suppose that we feed this amplifier the following input
voltages:

X = {2.53, 2.55, 2.45, 2.49, 2.50, 2.52, 2.47, 2.48, 2.56, 2.49}

(a) What is the sample variance at the output of the amplifier?

(b) Suppose that we have two rv’s, X and Y and they are statistically independent. Fur-
thermore, suppose that var(X)=2.7 and var(Y )=2.5. Compute the value of var(X + Y )
and var(X − Y ).

(c) Given that var(X)=2.7, var(Y )=2.5 and ρ(X,Y )=0.9 (correlation coefficient), what is
var(X + Y ) and var(X − Y )?

(d) IfX, Y and Z are statistically independent and var(X)=1.7, var(Y )=2.3 and var(Z)=1.4.
What is var(0.3X + 0.7Y + 0.5Z)?

Solution. (a) First, calculate the sample variance of X and then multiply by 100. Then
multiply each Xi by 10 and then calculate the sample variance of the multiplied values.
The sample variance of the X’s is 0.001249. Multiply this by 100 to get 0.1249. Multiplying
each X by 10 and taking the sample variance we get 0.1249, which is the same as the first
method. From this we confirmed the validity of the formula var(aX) = a2var(X).

(b) By statistical independence we have

var(X + Y ) = var(X) + var(Y ) = 2.7 + 2.5 = 5.2.

Then from
var(aX + bY ) = a2var(X) + b2var(Y ),

with a = 1 and b = −1 we have

var(X − Y ) = (1)2var(X) + (−1)2var(Y ) = var(X) + var(Y ) = 2.7 + 2.5 = 5.2.

From this, we conclude that when X and Y are statistically independent, var(X + Y ) =
var(X − Y ) = var(X) + var(Y ).

(c) From the definition of the correlation coefficient

ρ(X,Y ) =
cov(X,Y )√
var(X)var(Y )

we have cov(X,Y ) = ρ(X,Y )
√
var(X)var(Y ). Then, inserting this into:

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y )
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we get:

var(X + Y ) = var(X) + var(Y ) + 2ρ(X,Y )
√
var(X)var(Y )

from which we can obtain a numerical value:

var(X + Y ) = 2.7 + 2.5 + 2(0.9)[(2.7)(2.5)]1/2 = 9.877.

For var(X − Y ) we have:

var(X − Y ) = var(X) + var(−Y ) + 2ρ(X,−Y )
√
var(X)var(−Y )

and since var(−Y ) = (−1)2var(Y ) = var(Y ), we have:

var(X − Y ) = var(X) + var(Y ) + 2ρ(X,−Y )
√
var(X)var(Y )

Now, using the property cov(aX, bY ) = ab · cov(X,Y ), we see that

ρ(aX, bY ) =
cov(aX, bY )√
var(aX)var(bY )

=
ab · cov(X,Y )

|a||b|
√
var(X)var(Y )

=
ab

|a||b|
ρ(X,Y ).

For a = 1 and b = −1,

ρ(1 ·X,−1 · Y ) =
(1) · (−1)

|1|| − 1|
ρ(X,Y ) = −ρ(X,Y ).

Hence,

var(X − Y ) = var(X) + var(Y )− 2ρ(X,Y )
√
var(X)var(Y )

and then we have

var(X − Y ) = 2.7 + 2.5− 2(0.9)[(2.7)(2.5)]1/2 = 0.5235.

We conclude that var(X + Y ) is not equal to var(X − Y ) when X and Y are correlated
to some extent.

(d) If X, Y and Z are statistically independent, then we can write:

var(aX + bY + cZ) = a2var(X) + b2var(Y ) + c2var(Z),

where a, b, c are constants. Hence,

var(0.3X + 0.7Y + 0.5Z) = (0.3)2var(X) + (0.7)2var(Y ) + (0.5)2var(Z)

= (0.3)21.7 + (0.7)22.3 + (0.5)21.4 = 1.630.

■

Problem 3. Suppose that X is a rv with distribution pX(x) and Y = g(X) is another rv
related to X via a continuous differentiable function g. Prove that the density of Y can be
written as:

pY (y) =

∫ ∞

−∞
pX(x)δ(y − g(x))dx.
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Figure 1.10. Partition of the region x2 + y2 > 1 into 4 regions.

Solution. Starting with the CDF:

P(Y < a) = P(g(X) < a) =

∫
{x:g(x)<a}

pX(x)dx =

∫ ∞

−∞
1g(x)<a(x)pX(x)dx.

Using the fact that the Dirac delta function is the derivative of the Heaviside function:

δ(x) =
d

dx
θ(x), θ(x) := 1x>0(x)

And if the origin is shifted to x0, we may change variables to x = x̃− x0:

δ(x̃− x0) =
d

dx̃
θ(x̃− x0), θ(x̃− x0) := 1x̃>x0(x̃)

Taking the derivative with respect to a we get the PDF, pY (a):∫ ∞

−∞

d

da
1a>g(x)(x)pX(x)dx =

∫ ∞

−∞
δ(a− g(x))pX(x)dx.

■

Problem 4. Find the probability distribution function of the rv Z = X2 +Y 2 in terms of
the distribution of X and Y .

Solution. The probability that the vector (X,Y ) lies outside the unit circle {(x, y)|x2 +
y2 = 1} is:

P(X2 + Y 2 > 1) =

∫∫
{(x,y)|x2+y2>1}

pXY (x, y)dxdy.

This can be calculated explicitly by splitting the integration domain (R2−{unit disc}) into
4 regions (Fig. 1.10).
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P(X2 + Y 2 > 1) =

∫ ∞

−∞

(∫ −1

−∞
pXY (x, y)dx

)
dy︸ ︷︷ ︸

Region 1

+

∫ ∞

−∞

(∫ ∞

1
pXY (x, y)dx

)
dy︸ ︷︷ ︸

Region 4

+

∫ 1

−1

({∫ −
√
1−x2

−∞
+

∫ ∞

√
1−x2

}
pXY (x, y)dy

)
dx.︸ ︷︷ ︸

Regions 2 and 3

Another way to calculate this would be to convert pXY (x, y) to polar coordinates pR,Θ(r, θ)
and integrate from r = 1 to ∞ while letting θ range from 0 to 2π. ■

Problem 5. Find the probability distribution function of the rv Z =
√
X2 + Y 2 in terms

of the distribution of X and Y .

Solution. Suppose that X,Y ∼ N (0, σ2) (zero-mean Gaussians) are independent rv’s.
Consider the transformation to polar coordinates:

R =
√
X2 + Y 2, Θ = tan−1(Y/X).

The inverse transformation is:

x = r cos θ, y = r sin θ.

What is the distribution of Θ and R? Let us do R. The CDF of R is found by writing:

P(R < r) =

∫∫
{(x,y)|

√
x2+y2<r}

1

2πσ2
e−(x2+y2)/(2σ2)dxdy.

It will be convenient to transform to polar coordinates. The Jacobian of the transformation
yields the new area element:

dxdy =

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣drdθ,
where

∂(x, y)

∂(r, θ)
=

∥∥∥∥∂rx ∂θx
∂ry ∂θy

∥∥∥∥ =

∥∥∥∥cos θ −r sin θ
sin θ r cos θ

∥∥∥∥ = r.

Then,

P(R < r) =
1

2πσ2

∫ 2π

0
dθ

∫ r

0
dre−r

2/(2σ2) · r = 1

σ2

∫ r

0
dre−r

2/(2σ2) · r.

The corresponding PDF is obtained by differentiating with respect to r:

pR(r) =
r

σ2
e−r

2/(2σ2).

We have recovered the Rayleigh distribution, by constructing the rv R =
√
X2 + Y 2, where

X,Y ∼ N (0, σ2).
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Figure 1.11. Scatter plot of the ordered pairs {(Xi, Yi)}10,000i=1 , where Xi, Yi ∼ N (0, 1)
are all independent.

The derivation of the distribution for Θ is trivial. Recall that Θ = tan−1(Y/X). Then,

P(Θ < θ) =

∫∫
{(x,y)| tan−1(y/x)<θ}

1

2πσ2
e−(x2+y2)/(2σ2)dxdy.

Transformation to polar coordinates gives:

P(Θ < θ) =

∫ θ

0
dθ

∫ ∞

0
dr

1

2πσ2
e−r

2/(2σ2)r.

The integral over r can be solved with the substitution w = r2/(2σ2), dw = rdr/σ2. Thus,
our CDF is:

P(Θ < θ) =
1

2π

∫ θ

0
dθ =

θ

2π
,

where θ ∈ [0, 2π]. The PDF is that of a uniform distribution:

pΘ(θ) =
1

2π
,

with θ ∈ [0, 2π]. Thus, R is Rayleigh whereas Θ is uniform. This can be seen in Fig. 1.11,
which is a scatter plot of the pairs (X,Y ), where X,Y ∼ N (0, 1). This plot was generated
in MATLAB as follows:

>> X=randn([1 10000]); Y=randn([1 10000]);

>> figure;plot(X,Y,’.b’);title(’(X,Y)~N(0,1)’);

>> set(gca,’fontsize’,16);
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The distributions of R and Θ can be plotted by taking the pairs (X,Y ) and generating
R,Θ. Histograms of R and Θ are shown in Fig. 1.12. It can be seen that R is Rayleigh
and Θ is uniform. These plots were generated in MATLAB using the following commands:

>> R=sqrt(X.^2+Y.^2); theta=atan(Y./X);

>> figure;hist(R,50);

>> set(gca,’fontsize’,16);

>> title(’R=(X^2+Y^2)^{1/2}’);
>> figure;hist(theta+pi/2,50);set(gca,’fontsize’,16);

>> title(’\theta=tan^{-1}(Y/X)’);
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(b) Θ

Figure 1.12. Histograms of R and Θ, as generated from a sequence of rv’s {(Xi, Yi)}10,000i=1 ,
where Xi, Yi ∼ N (0, 1) are all independent.

■

Problem 6. The median of a finite list of numbers is the “middle” number, when those
numbers are listed in order from smallest to greatest. (A set of an even number of obser-
vations has no distinct middle value and the median is usually defined to be the arithmetic
mean of the two middle values.)

(a) Prove that given a random sample x1, . . . , xn (take n as odd, so there is a middle value)
of a rv X, the median is the value x50 that is the middle data point in the ordered list of
the random sample.

(b) Explain the relationship between median and mean. When would you use one vs the
other?
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Solution. (a) The median is defined as the value x50 satisfying:∫ x50

−∞
p(x)dx =

1

2
.

Substituting the empirical distribution

p(x) =
1

n

n∑
i=1

δ(x− xi),

into the definition of median:

1

2
=

∫ x50

−∞

1

n

n∑
i=1

δ(x− xi)dx =
1

n
(n/2),

i.e. for this integral to equal 1/2 it must evaluate to (n/2)/n = 1/2. In other words,
half the terms in the summation contribute. Which terms? The integral is over the range
(−∞, x50], i.e. begins at −∞ and ends at x50. Integration will therefore pick out all the
terms labeled xi that are found in the interval (−∞, x50]. Each term is a Dirac delta
function that integrates to 1. Thus, it is a counter of sorts. Once we have found the
midway point of the ordered list, the corresponding value x50 is called the median.

(b) The median, like the mean, attempts to produce some kind of average of a random
sample. The media ignores the extreme and outlier values since it only picks the central
value. The mean is affected by outliers. ■

Problem 7. We have learned that given two independent rv’s X and Y , we may form a
new rv Z that is the sum of X and Y , i.e. Z = X + Y , and that the probability density of
Z is the convolution of the densities of X and Y , i.e.

pX+Y (a) =

∫ ∞

−∞
pX(a− y)pY (y)dy

or in terms of CDFs:

P(X + Y ≤ a) =

∫∫
{(x,y):x+y≤a}

pX(x)pY (y)dxdy

=

∫ ∞

−∞

(∫ a−y

−∞
pX(x)dx

)
pY (y)dy

=

∫ ∞

−∞
P(X ≤ a− y)pY (y)dy

Please note: limits of integration (−∞,∞) should be replaced by the domain of definition
of the rv if different from (−∞,∞).

(a) Suppose that X and Y are independent and let X ∼ Uni(0, 1), Y ∼ Uni(0, 1) (uni-
formly distributed over the interval [0,1]), i.e. PDF is pX(x) = 1 for 0 ≤ x ≤ 1 and same
for pY (y). What is the PDF of X + Y ?
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(b) Show that if X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) then X + Y ∼ N (µ1 + µ2, σ

2
1 + σ22).

(c) Suppose that you play 2 lotteries. In the first lottery you either win $1000 with
probability 1/2 or lose (with probability 1/2) and get nothing. In the second lottery you are
guaranteed of winning something; however the payout is less: the payout follows a Rayleigh

distribution with mode equal to $100. (The Rayleigh PDF is pY (y) = (y/σ2)e−x
2/(2σ2),

where σ is the mode, the mean is σ
√
π/2.). You can assume thatX and Y are independent.

What is the PDF describing the total payout from both lotteries? Plot the PDF. What is
the average amount you’d expect to win?

(d) Consider Newton’s law, F = ma, where m is mass and a is acceleration. Given the
distributions of m and a as N (10, 1) and N (10, 0.1), respectively. What is the distribution
of F?

(e) Find the mode of the following PDF, which approximates the thumb length X in inches
in a particular country:

p(x) =

{
π
4 sin

(
π(x−2)

2

)
, 2 ≤ x ≤ 4

0, elsewhere

Solution. (a) The convolution is

pX+Y (a) =

∫ 1

0
pX(a− y)pY (y)dy =

∫ 1

0
pX(a− y)dy =

∫ 1

0
1[0,1](a− y)dy,

where 1A(y) is the indicator function over the set A. The latter results in an integral equal
to zero unless a − y ∈ [0, 1], or −y ∈ [0, 1] − a or y ∈ a + [−1, 0]. The overlap between
a + [−1, 0] and the limits of integration [0, 1] can be split into 2 regions: a ∈ [0, 1] and
a ∈ [1, 2]. In the first region the overlap progressively increases; in the second region it
decreases. Performing the integral we obtain the tent function:

pX+Y (a) =

∫ 1

0
1[0,1](a− y)dy =


∫ a
0 dy = a 0 ≤ a ≤ 1∫ 1
a−1 dy = 2− a 1 < a ≤ 2

0 otherwise

(c) Let Z = X + Y and pX(x) = p0δ(x− xl) + p1δ(x− xw), with xl = $0 and xw = $103.
pY (y) is given to us with σ = $100. The PDF of Z is the convolution (a > 0):

pX+Y (a) =

∫ ∞

0
pX(a− y)pY (y)dy

=

∫ ∞

0
[p0δ(a− y) + p1δ(a− y − xw)]

y

σ2
e−y

2/(2σ2)dy

=p0
a

σ2
e−a

2/(2σ2) + p1
(a− xw)

σ2
e−(a−xw)2/(2σ2)1[xw,∞)(a),

where σ = $100, xw = $103, p1 = 1/2 and p0 = 1/2.
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The mean value:

⟨Z⟩ = p0
σ2

∫ ∞

0
a2e−a

2/(2σ2)da+
p1
σ2

∫ ∞

0
(a− xw)ae

−(a−xw)2/(2σ2)1[xw,∞)(a)da

=p0σ

√
π

2
+
p1
σ2

∫ ∞

0
a′(a′ + xw)e

−(a′)2/(2σ2)da′

=p0σ

√
π

2
+
p1
σ2

(5× 105)(20 +
√
2π) ≈ $562.50

which is right about somewhere between the two peaks, as we would expect the average to
be, based on the center-of-mass of this PDF. (We have used wolframalpha.com to obtain
a numerical value for this integral in the last line.)

(d) Let Z = XY . The PDF of Z is:

pZ(z) =

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx (∗)

Plugging in the distributions for X and Y : N (10, 1) and N (10, 0.1), we have:

pZ(z) =
1√
2π

1√
2π(0.12)

∫ ∞

−∞
e−(x−10)2/2e−(z/x−10)2/2(0.12) 1

|x|
dx

A proof is:

P(Z ≤ z) =P(XY ≤ z) = P(XY ≤ z,X > 0) + P(XY ≤ z,X ≤ 0)

=P(Y ≤ z/X,X > 0) + P(Y ≥ z/X,X ≤ 0)

=

∫ ∞

0
pX(x)

∫ z/x

−∞
pY (y)dydx+

∫ 0

−∞
pX(x)

∫ ∞

z/x
pY (y)dydx
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Differentiating with respect to z, we get the PDF:

pZ(z) =

∫ ∞

0
pX(x)pY (z/x)

1

x
dx−

∫ 0

−∞
pX(x)pY (z/x)

1

x
dx

=

∫ ∞

−∞
pX(x)pY (z/x)

1

|x|
dx

(e) The mode here can be found by setting the derivative to zero: p′(x) = 0. In the

nonzero region 2 ≤ x ≤ 4 the derivative of π
4 sin

(
π(x−2)

2

)
is p′(x) = π2

8 cos
(
π(x−2)

2

)
.

Setting the derivative equal to zero we must solve cos
(
π(x−2)

2

)
= 0. Taking the inverse

cosine, π(x−2)
2 = π

2 + kπ, k ∈ Z, or x − 2 = 1 + 2k and x = 3 + 2k. The solution in the
interval 2 ≤ x ≤ 4 is x = 3. ■

Problem 8. The Poisson’s law with parameter a (a > 0) is defined by:

P[k events] = e−a
ak

k!
,

where k = 0, 1, 2, . . . . With a = λτ , where λ is the average number of events per units
time and τ is the length of the interval (t, t+ τ), the probability of k events in τ is

P(k; t, t+ τ) = e−λτ
(λτ)k

k!
.

This equation assumes that λ is independent of t. If λ depends on t, the product λτ gets

replaced by the integral
∫ t+τ
t λ(ξ)dξ, and the probability of k events in the interval (t, t+τ)

is

P(k; t, t+ τ) = exp

[
−
∫ t+τ

t
λ(ξ)dξ

]
1

k!

[∫ t+τ

t
λ(ξ)dξ

]k
.

The parameter λ is called the rate parameter. λ(t) is the rate function. Suppose that
a company manufactures superconducting wire. Upon close examination of the product
on the assembly line, you find that the defect density along the length of the wire is not
uniform. For wire strips of length D, the defect density λ(x) along the wire length x varies
as

λ(x) = λ0 +
1

2
(λ1 − λ0)

(
1 + cos(

2πx

D
)

)
, λ1 > λ0

for 0 ≤ x ≤ D due to greater wire contamination at the edges x = 0 and x = D.

(i) What is the meaning of λ(x) in this case?

(ii) What is the average number of defects for a wire strip of length D?

(iii) Find an expression for the probability of k defects on a wire strip of length D?

Solution. (i) Bearing in mind that λ(x) is a defect density, i.e., the average number of
defects per unit length at x, we conclude that λ(x)∆x is the average number of defects in
the tape from x to x+∆x.
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Figure 1.13. Integration in the x < y region.

(ii) Given the definition of λ(x) we conclude that the average number of defects along the
whole wire is merely the integral of λ(x), i.e.,∫ D

0
λ(x)dx =

∫ D

0

[
λ0 +

1

2
(λ1 − λ0)

(
1 + cos

2πx

D

)]
dx =

λ0 + λ1
2

D = Ω.

(iii) Assuming the Poisson law holds, use the equation with x and ∆x (distances) replacing
t and τ (times). Thus,

P(k;x, x+∆x) = exp(−
∫ x+∆x

x
λ(ζ)dζ)

1

k!
(

∫ x+∆x

x
λ(ζ)dζ)k.

In particular, with x = 0 and x+∆x = D, we obtain

P(k; 0, D) = Ωk
e−Ω

k!
■

Problem 9. Let X and Y be independent rv’s having the exponential distribution with
parameters λ and µ respectively. (Recall that if rv X has exponential distribution with
parameter λ > 0, its CDF is P(X < x) ≡ 1 − e−λx, x ≥ 0, whose density is dP(X <
x)/dx = λe−λx.) Let U = min{X,Y }, V = max{X,Y } and W = V − U . Find the
probability P(U = X) = P(X ≤ Y ). Show that U and W are statistically independent.

Solution. First you should realize that the logical statements U = X and X ≤ Y mean
the same thing. Indeed, U = min{X,Y } less than or equal to X implies that both X ≤ X
(if min{X,Y } = X) and Y ≤ X (if min{X,Y } = Y ). The former (X ≤ X) is a trivial
statement which is true at all times. Thus, it can be ignored. The only non-trivial statement
left is Y ≤ X, hence the equivalence of the two statements U = X and X ≤ Y . If the two
statements are equivalent, then their probabilities are also equal: P(U = X) = P(X ≤ Y ).
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P(U = X) = P(X ≤ Y ) can be computed since it is in terms ofX and Y whose distributions
are known. Since P(X ≤ Y ) involves both X and Y we must integrate the joint PDF of
X and Y over the set of all points (x, y) such that x < y is satisfied:

P(X ≤ Y ) =

∫
{(x,y)|x<y}

pXY (x, y) dxdy.

Let’s integrate along horizontal strips, as shown in Fig. 1.13. Thus,

P(X ≤ Y ) =

∫ y

0
dx

∫ ∞

0
dy pXY (x, y) =

∫ y

0
dx

∫ ∞

0
dy pX(x)pY (y),

where in the second equality we invoked the statistical independence of X and Y and wrote
the integrand as a product of densities in X and Y . Now, we invoke the shorthand notation
P(X ≤ y) =

∫ y
0 pX(x)dx and use the fact that pY (y) = µe−µy and rewrite this as:

P(X ≤ Y ) =

∫ ∞

0
P(X ≤ y)µe−µydy =

∫ ∞

0
(1− e−λy)µe−µydy =

λ

µ+ λ
.

For w > 0, P(U ≤ u,W > w) = P(U ≤ u,W > w,X ≤ Y ) + P(U ≤ u,W > w,X > Y ).17

Thus, there are two terms to calculate. For the first one:

P(U ≤ u,W > w,X ≤ Y ) =P(X ≤ u, Y > X + w)

=

∫∫
{(x,y)|x≤u,y>x+w}

pXY (x, y) dxdy

=

∫ u

0
dxλe−λx

∫ ∞

x+w
dy µe−µy︸ ︷︷ ︸

−e−µy ]∞x+w

=

∫ u

0
λe−λxe−µ(x+w)dx

=
λ

λ+ µ
e−µw(1− e−(λ+µ)u)

and similarly, P(U ≤ u,W > w,X > Y ) = µ
λ+µe

−λw(1 − e−(λ+µ)u). Hence, for 0 ≤ u ≤
u+w <∞, we have an expression which factorizes into the product of a function of u with
a function of w. Hence U and W are independent:

P(U ≤ u,W > w) = (1− e−(λ+µ)u)

(
λ

λ+ µ
e−µw +

µ

λ+ µ
e−λw

)
.

■

Problem 10. A coin is flipped n times. The outcome is a rv X, which can take the value
heads or tails (X = heads or X = tails). For n measurements, there are n such rv’s

17Since the two events {U ≤ u,W > w,X ≤ Y } and {U ≤ u,W > w,X > Y } are mutually exclusive whereas the
event {X ≤ Y } ∪ {X > Y } is always true. Recall that two events A and B are mutually exclusive if there is no

overlap: A ∩B = ∅.
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(and corresponding results): X1, X2, . . . , Xn. The coin is possibly biased. Therefore, the
probabilities of each outcome are not necessarily 1/2. Instead they are given in term of a
parameter −1/2 ≤ θ ≤ 1/2 quantifying the bias:

P(X = heads) = 1/2 + θ, P(X = tails) = 1/2− θ.

(a) Explain how the numerical value of the bias parameter, θ, can be determined experi-
mentally (empirically) by flipping the coin several times, i.e. find an explicit formula for

θ̂n, the estimator of θ, in terms of X1, . . . , Xn. Show that, under specific circumstances, θ̂n
converges to θ in probability, i.e. show that P(|θ̂n − θ| > ϵ) → 0, as n→ ∞ for any ϵ > 0.

(b) Denote the number of times where you get heads as the result by H (and H is a rv,
because its value may differ each time this experiment is done). Write down an explicit
expression for H in terms of the experimental data. Find the mathematical expectation of
H.

(c) Find the variance of H. For which value(s) of θ is the variance a minimum? A
maximum?

(d) Calculate the “signal-to-noise ratio” of H. Explicitly give the dependence of SNR on
n.

(e) For a fixed value of n, find the conditions for which the SNR is 1) infinite and 2)
undetermined/undefined. Give a physical explanation of those two different situations.

(f) Find the limiting (n large) distribution of H.

Solution. (a) The probability P(X = heads) can be determined by counting the number
of heads, i.e. let fH be the empirical probability

fH =
1

n

n∑
i=1

1{Xi=heads},

where 1{Xi=heads} equals 1 if Xi = heads and 0 otherwise. Taking the mathematical
expectation we get

⟨fH⟩ =
1

n

n∑
i=1

⟨1{Xi=heads}⟩,

where
⟨1{Xi=heads}⟩ =

∑
{xi:xi=heads}

P(Xi = heads) = P(Xi = heads)

Therefore (the Xi are iidrv, with the same distribution as X),

⟨fH⟩ = P(X = heads).
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By the law of large numbers (LLN), fH converges to P(Xi = heads) as n increases. Now,

since P(X = heads) = 1/2 + θ, which is also equal to ⟨fH⟩, we take our estimator θ̂ to be:

θ̂n =

(
1

n

n∑
i=1

1{Xi=heads}

)
− 1

2
,

which implies that θ̂n converges to P(X = heads) − 1
2 , as n increases. However, P(X =

heads)− 1
2 is also equal to θ, by the LLN. Thus, θ̂n → θ.

(b)

H =
n∑
i=1

1{Xi=heads}

where 1Xi=heads equals 1 when Xi = heads and 0 when Xi = tails. Taking expectation
value:

⟨H⟩ =
n∑
i=1

⟨1{Xi=heads}⟩ =
n∑
i=1

P({Xi = heads}) =
n∑
i=1

(1/2 + θ) = n(1/2 + θ).

(c) Variance:

var(H) =
n∑
i=1

var(1{Xi=heads}) =
n∑
i=1

⟨(1{Xi=heads})
2⟩ − ⟨1{Xi=heads}⟩

2

= n(1/2 + θ)− n(1/2 + θ)2.

since (1{Xi=heads})
2 = 1{Xi=heads}. The variance reaches a maximum when θ = 0 and a

minimum when θ = ±1/2.

(d) Find the dependence of SNR on n:

SNR =
n(1/2 + θ)

√
n
√
1/4− θ2)

∝
√
n.

(e) SNR is undetermined when θ = −1/2 (probability of heads=0). 1) SNR is infinite when
θ = 1/2 (probability of heads=1).

(f) By the CLT, the limiting distribution is Gaussian. The mean is n(1/2+θ) and variance
is n(1/2 + θ)− n(1/2 + θ)2. ■

Problem 11. Consider a die which is unbiased. (a) You roll the die once. What is the
probability of getting a “1” vs a “4”?

(b) You roll the die twice. What is the probability of getting a total of “2” (i.e. “1” on
both trials) versus the probability of getting a total of “7” (“Total” means you add the
two results together.)

(c) You roll the die 10,000 times and record the results. What is the probability distribution
of the mean (i.e. the mean of all the results), its first moment and variance?

Solution. (a) 1/6 and 1/6
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(b) 2: 1/6 times 1/6 = 1/36

7: 6 times 1/6 times 1/6 = 1/6

(c) by the CLT the distribution converges to the normal law, N (3.5, σ2/10000), where the
value of σ2 is:

σ2 =

6∑
i=1

(xi − µ)2pi = 2.917

■

Problem 12. What power of t (time) does the root-mean-square displacement in a 1D
random walk depend on? How does this differ from the case of ballistic motion. Explain.

Solution. For random walk the root mean square displacement is proportional to
√
t

whereas for ballistic motion it depends on t. The
√
t dependence can be explained by the

large number of “back-and-forth” steps in the random walk. ■

Problem 13. Consider the normal (Gaussian) distribution with parameters µ and σ2, i.e.
let X ∼ N (µ, σ2). Show all calculations.

(a) Calculate moments of all orders (n = 0, 1, 2, 3, . . . ) for X.

(b) Calculate the central moments of all orders for X.

(c) Define a new function K(t) = log⟨etX⟩, and Taylor expand K(t) in powers of t:

K(t) =

∞∑
n=1

κn
tn

n!
.

Find a general expression for the coefficients κn.

(d) Define a new function M(t) = exp(K(t)). Show how the moments can be obtained
from M(t) in terms of the κn’s.

(e) Show how the density of X, p(x), can be constructed from a knowledge of the statistical
moment, or from the central moments, or from the κn’s.

(f) Explain why the method in (e) of reconstructing p(x) is important from an experimental
science standpoint.

Solution. (a) The moments of odd orders are all zero because the integral of an odd
function (n-th moment of X, where n is odd) times an even function (Gaussian PDF)
vanishes because the integrand is odd. On the other hand, the moment ⟨Xn⟩, where n is
even are non-zero. They are calculated as follows:

⟨Xn⟩ =
∫
R

1√
2πσ2

e−(x−µ)2/2σ2 · xn dx,

where we use ∫ ∞

0
e−ax

2
xndx =

(n− 1)!!

2n/2+1an/2

√
π

a
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for n even. The result is:
⟨Xn⟩ = σn(n− 1)!!.

The first few moments are:

order moment central moment

n = 1 µ 0

n = 2 µ2 + σ2 σ2

n = 3 µ3 + 3µσ2 0

n = 4 µ4 + 6µ2σ2 + 3σ4 3σ4

n = 5 µ5 + 10µ3σ2 + 15µσ4 0

see https://en.wikipedia.org/wiki/Normal distribution#Moments

(b) See solution to (a).

(c) Expand etX =
∑∞

i=0
tiXi

i! and take the average, ⟨etX⟩ =
∑∞

i=0
ti⟨Xi⟩
i! . On the other

hand, take the exponential of K(t),

eK(t) = e
∑∞

n=1 κn
tn

n! = 1 +
∞∑
n=1

κn
tn

n!
+

1

2

( ∞∑
n=1

κn
tn

n!

)2

+
1

3!

( ∞∑
n=1

κn
tn

n!

)3

+ . . . .

We can now identify the like powers of t (let µr = ⟨Xr⟩):

t1 :µ1 = κ1 µ1 = κ1

t2 :µ2/2 = κ2/2 + κ21/2 µ2 = κ2 + κ21

t3 :µ3/6 = κ3/6 + κ1κ2/2 + κ31/6 µ3 = κ3 + 3κ1κ2 + κ31
...

...

This can be “inverted” to give:
κ1 = µ1
κ2 = µ2 − µ21
κ3 = µ3 − 3µ2µ1 + 2µ31
...

(d) M(t) = ⟨etX⟩ = ⟨
∑∞

i=0 t
iXi/i!⟩ =

∑∞
i=0 t

i⟨Xi⟩/i!. The moments are obtained by
differentiation with respect to t and setting t = 0:

µr ≡ ⟨Xr⟩ = dr

dtr
M(t)

∣∣∣∣
t=0

.
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(e) Consider the quantity ⟨etX⟩,

M(t) =
∞∑
r=0

trµr
r!

= ⟨etX⟩ ≡
∫ ∞

−∞
etxp(x)dx.

We can solve for p(x) by invoking the inversion formula:

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
e−stM(s)ds =

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
e−st

[∫ ∞

−∞
esxp(x)dx

]
ds.

=
1

2π
lim
T→∞

∫ ∞

−∞

∫ T

−T
eγ(x−t)ei(x−t)τp(x)dxdτ.

Then integrating over τ and invoking δ(x− a) = 1
2π

∫∞
−∞ ei(x−a)tdt:

=

∫ ∞

−∞
eγ(x−t)δ(x− t)p(x)dx = p(t).

(f) This is important because if we know all the moments, we can reconstruct p(x). The
moments can be estimated from experimental data. ■

Problem 14. The scores in a chemistry class from 2016 were as follows (out of 100):

40.311 33.386 44.142 65.631 41.066 47.051 42.322 50.752 30.730 28.777 50.885 45.143 29.997
34.107 31.045 39.684 25.157 38.825 41.838 35.716 26.620 44.827 50.506 63.251 32.622 59.843
56.967 50.783 51.961 39.746 50.895 36.447 26.660 49.376 29.302 37.166 33.532 33.627 34.030
34.816 52.107 58.384 50.539 37.568 39.806 54.394 42.399 40.042 47.231 21.915

(a) If the course policy is to assign ’A’ grades to the top 10-percentile of the class and ’F’
to the rest, how many students obtained an F?

(b) Draw a histogram of the exam results.

(c) Calculate the mean, standard deviation and median of the exam and indicate those
quantities on the histogram. (Explain how those quantities are calculated from the data.)

(d) In units of standard deviation (σ), how far is the 10-percentile from the mean?

(e) Reconstruct the PDF of this rv X (score), using the numerical data.

(f) Suppose that the 2017 scores were:

59.378 102.006 54.660 39.713 61.877 46.731 17.570 45.646 71.654 19.959 58.948 57.506
78.838 31.859 20.175 31.766 39.408 41.096 31.092 52.754 53.712 67.778 66.991 37.362 57.768
72.032 48.005 78.559 46.742 84.157 66.175 90.976 72.627 40.335 19.464 60.673 51.911 34.235
35.143 39.269 48.814 83.537 50.505 40.340 47.480 58.682 72.354 56.195 74.103 50.013
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Figure 1.14. Histogram.

Plot histogram and calculate distribution parameters. Are these scores significantly differ-
ent from those of 2016? (Why/why not?)

Solution. (a) The top 10-percentile is called the 90th percentile, and is the value of x90
such that ∫ x90

−∞
p(x)dx = 0.90.

Numerically, there is a function in MATLAB called prctile that will compute this for us.
I get 55.68 for the above data. This means that all scores below this get an ’F’; we count
45 of those.

(b) See Figure 1.14.

(c) Mean = 41.679 (use formula for sample mean), std = 10.372 (use formula for sample
standard deviation), median = 40.177 (order the numbers and pick the middle one).

(d) In MATLAB, we simply type (prctile(d,90)-mean(d))/std(d) and obtain 1.3500.

(e) From the raw data we can calculate the moments of the distribution:

r raw moment central moment

1 41.679 9.4502× 10−15

2 1842.5 105.43

3 8.5908× 104 325.47

4 4.1974× 106 2.6805× 104

5 2.1355× 108 2.0898× 105

and using the inversion formula, we can obtain p(x).
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(f) The mean/std are 53.371 ± 19.136. Compare this to 41.679 ± 10.372. These two
numbers are not significantly different because their error bars overlap considerably. ■

Problem 15. Prove, using the law of large numbers, that the histogram of a rvX converges
to its PDF, p(x).

Solution. Let X have CDF F (x). Let X1, X2, . . . , Xn be a random sample of F . Define
the indicator function 1(−∞,x](y) to be equal to 1 if y ≤ x and zero otherwise. Then,

⟨1(−∞,x](Xi)⟩ =
∫ x

−∞
p(xi)dxi = P(Xi ≤ x) = F (x).

For each n, the histogram of the random sample is:

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi)

Its expectation value is:

⟨Fn(x)⟩ =
1

n

n∑
i=1

⟨1(−∞,x](Xi)⟩ = F (x).

It then follows from the law of large numbers that Fn(x) converges to F (x). If the CDFs
converge, the PDFs also converge. ■

Problem 16. Prove, using the law of large numbers, that the empirical distribution of
random variable X, p̂(x) converges to its PDF, p(x).

Solution. The solution is identical to that of Problem 15. The empirical distribution
p̂(x) = 1

n

∑n
i=1 δ(x− xi) has the empirical CDF:

P(X ≤ x) =

∫ x

−∞
p̂(x)dx =

1

n
#{i : xi ≤ x},

where #{i : xi ≤ x} denotes the number of data points xi satisfying the condition xi ≤ x.
Let’s denote the random variables as Xi and xi, their corresponding values. Since n data
points are used to construct this CDF let us denote it as Fn(x). Its expectation value is

⟨Fn(x)⟩ =
1

n
⟨#{i : Xi ≤ x}⟩ = 1

n
⟨
n∑
i=1

1(−∞,x](Xi)⟩ = F (x),

where F (x) is the CDF of p(x) and #{i : Xi ≤ x} =
∑n

i=1 1(−∞,x](Xi). It then follows
from the law of large numbers that Fn(x) converges to F (x). Since the CDFs converge,
the PDFs also converge, as the PDF is obtained from the CDF by differentiation. ■

Problem 17. Consider the weak law of large numbers (WLLN): Let X1, X2, . . . be iidrv
with mean µ and variance σ2 <∞. Then, (1/n)

∑n
i=1Xi converges to µ in probability.

(a) Prove the WLLN.
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(b) Illustrate it using a numerical example, i.e. choose ϵ > 0, generate random sequences
X1, . . . , Xn, compute the sample mean Xn, record this value as m1. Generate a second
random sequence, and obtain the sample mean as m2. Repeat this process many times
(r times) and plot a histogram of the sample means (m1,m2, . . . ,mr). Then increase n
and repeat this process. You should now have several histograms as function of n. Then
plot the probability P(|Xn − µ| ≥ ϵ) as a function of n and show that it converges to 0
as n increases. Since we are dealing with experimental data, the probability should be
calculated empirically:

P(|Xn − µ| ≥ ϵ) =
1

r

r∑
j=1

1|mj−µ|≥ϵ

where 1|mj−µ|≥ϵ is an “indicator function”, i.e. equals 1 when |mj − µ| ≥ ϵ and equals 0
otherwise.

Solution. (a) Weak law: let Xn = (1/n)(X1 + X2 + · · · + Xn), var(Xn) = (1/n2)n ·
var(X1) = σ2/n, and xn = x1+···+xn

n . Then,

P(|Xn − µ| ≥ ϵ) =

∫
{(x1,...,xn)||xn−µ|≥ϵ}

p1(x1) · · · · · pn(xn)dx1 . . . dxn

≤
∫
{|xn−µ|≥ϵ}

(xn − µ)2

ϵ2
p1(x1) · · · · · pn(xn)dx1 . . . dxn

≤
∫
Rn

(xn − µ)2

ϵ2
p1(x1) · · · · · pn(xn)dx1 . . . dxn

=
var(Xn)

ϵ2
=

σ2

nϵ2
→ 0 as n→ ∞.

This completes the proof of the WLLN. The first inequality is justified because |xn−µ| ≥ ϵ,

and therefore, 1 ≤ |xn−µ|
ϵ , and consequently (squaring both sides), 1 ≤ |xn−µ|2

ϵ2
. The second

equality is justified because the integral is everywhere non-negative. Therefore, extending
the region of integration from the restricted set {(x1, . . . , xn) : |xn − µ| ≥ ϵ} to the whole
space Rn leads to an upper bound. This proof assumes the existence of the variance σ2 of
Xi.

(b) There are many possible solutions here. Here is mine. I used this code in MATLAB to
generate the random numbers and required plots:

1 m=10000; r=10000;
2 X=10*randn([m,r])+100;
3 for j=1:r,
4 Xn(j)=(1/j)*squeeze(sum(X(1:j,j),1));
5 end;
6 figure;plot(Xn);
7 figure;hist(X(100,1:100),20);
8 figure;hist(X(10000,1:10000),50);
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Figure 1.15. Law of large numbers illustrated.

Here we generated random variables ∼ N (100, 100). The first plot (Fig. 1.15) illustrates
the LLN because the arithmetic averages are shown to converge to the true mean (100)
as the number of terms in the sum increases. The histograms show that with only a few
terms, we do not get a nice Gaussian, whereas using 10,000 terms, we get a nice bell curve.
(If you chose a distribution other than normal, these histograms should reflect the chosen
distribution.) ■

Problem 18. Derive the probability distribution of a biased random walk (i.e. let pσ =
1/2 + δ and p−σ = 1/2− δ for some bias 0 ≤ δ ≤ 1/2).

Solution. By the CLT, the distribution will be Gaussian, of course. The mean step size
is µi = ⟨Xi⟩ = σ(pσ − p−σ) = σ(1/2 + δ − 1/2 + δ) = 2σδ. So the total displacement

Xtot = X1 +X2 + · · ·+Xn

has expectation value
⟨Xtot⟩ = 2σδn,

instead of 0. (i.e. it “drifts” linearly with time at constant speed 2σδ.)

The variance is var(Xi) = ⟨Xi−µi⟩2 = pσ(σ− 2σδ)2 + p−σ(−σ− 2σδ)2 = (1/2+ δ)σ2(1−
2δ)2 + (1/2 − δ)σ2(1 + 2δ)2 = σ2(1/2 + δ)(1 − 4δ + 4δ2) + σ2(1/2 − δ)(1 + 4δ + 4δ2) =
σ2[1− 4δ2]. The total variance is:

var(Xtot) = var(X1) + · · ·+ var(Xn) = σ2[1− 4δ2]n,

as opposed to σ2n. Thus, the variance is reduced. When δ = ±1/2 (meaning steps are
always to the left, or always to the right), then the variance is zero because the path is no
longer random, but instead becomes deterministic. ■

Problem 19. Prove that in 3D the mean square displacement is 6Dt, and in the general
case of d dimensions, it is equal to 2dDt (a direct calculation of the d-dimensional integral
requires the spherical volume element in d-dim, which includes some Gamma functions).
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Solution. In 3D the mean square displacement is

⟨r(t)2⟩ ≡ 1

(4πDt)3/2

∫
R3

r2 exp

(
− r2

4Dt

)
d3r

=
1

(4πDt)3/2

∫
R3

r2 exp

(
− r2

4Dt

)
r2drd(cos θ)dϕ

=
4π

(4πDt)3/2

∫ ∞

0
r4 exp

(
− r2

4Dt

)
dr

To integrate this we use the famous result
∫∞
−∞ e−ax

2
dx =

√
π/a, differentiate wrt a twice:∫∞

−∞ x4e−ax
2
dx = 3

4

√
πa−5/2.

4π

(4πDt)3/2

∫ ∞

0
r4 exp

(
− r2

4Dt

)
dr =

4π

(4πDt)3/2
3

8

√
π(4Dt)5/2 = 6Dt.

In the general case of d dimensions, the mean square displacement is:

⟨r(t)2⟩ = ⟨x21 + · · ·+ x2d⟩ = 2dDt.

There is no d-dimensional integral needed here, as each x21 contributes 2Dt, and there are
d such terms, for a total of 2dDt. ■

Problem 20. Prove that for the Poisson distribution the mean and variance are both
equal to the parameter of the distribution.

Solution. Proofs can be found here:
http://filestore.aqa.org.uk/subjects/AQA-MS03-W-2-SM.PDF

https://proofwiki.org/wiki/Variance of Poisson Distribution ■

Problem 21. Prove that Poisson distribution converges to a Gaussian in the limit of large
n. However, obtain the coefficient of the exponential as well (the prefactor), making use
of the slightly more accurate Stirling’s formula.

Solution. The calculation we did previously was:

e−nnn

n!
= exp {−n− log n! + n log n}

= exp {−n− n log n+ n+ n log n}
= exp {(n− n) + n log(n/n)}

= exp

{
(n− n) + n log

[
1 +

(
n− n

n

)]}
≈ exp

{
−(n− n)2

2n

}
≈ exp

{
−(n− n)2

2n

}
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The prefactor 1√
2πn

is recovered by using

n! ≈
√
2πn

(n
e

)n
.

Now, replace e−nnn

n! by 1√
2πn

e−nnn

(n
e )

n = 1√
2πn

e−nnne−n logn+n. This gives the desired result

with the correct prefactor. ■

Problem 22. Let X ∼ N (0, 1). Generate iid random numbers on a computer (say, 10,000
numbers). Those are the different realizations of X, i.e. x1, x2, . . . , x10,000. Next, consider
another random variable, Y .

(a) Let Y = X + 1, so that we now have 10,000 pairs of points: (x1, y1), (x2, y2), . . . ,
(x10,000, y10,000). Plot these 10,000 pairs {(xi, yi)} as dots on scatter plot. Fit a straight
line. What slope do you get? From the data, calculate the sample correlation coefficient.
Is Y correlated to X? Why?

(b) Let X be as previously defined. Let Z be distributed identically to X, but independent
of X. Generate random numbers on a computer to obtain pairs {(xi, zi)} of random
numbers. Define a new random variable Y = X + Z. Is Y correlated to X? Why? (Plot
XY pairs on a scatter plot, fit a straight line, calculate rX,Y .)

(c) Let X be as defined previously. Let Y ∼ N (0, 1). Generate random numbers for X
and Y , and plot the resulting pairs {(xi, yi)} on a scatter plot. Are X and Y correlated?
Why?

Solution. (a) Y is correlated to X (r = 1). On a scatter plot, we should see a perfect
straight line (no deviation from it).

(b) cov(X,Y ) = cov(X,X+Z) = cov(X,X)+ cov(X,Z) = var(X) = 1, hence r = 1. Here
on a scatter plot there will be random deviations from a straight line due to Z. However,
fitting a straight line will still give a slope of 1.

(c) Totally uncorrelated, since X and Y are independent. (Scatter plot looks random.) ■

Problem 23. Choose a distribution we have not used in class. Fix (choose) the parameters
of the distribution. Let X be a random variable distributed accordingly. Calculate the
mean and variance of X analytically (i.e. using the distribution function). Use a computer
to generate random numbers according to the distribution of X. (How do you generate
such random numbers?) Plot the histogram of X, compare to the PDF or PMF of X
(plot both on the same graph). Calculate numerically the mean and variance of X (using
the random numbers you generated). Compare to the true values of mean and variance
obtained from the PDF or PMF.

Problem 24. Let X be the result of rolling a die. Generate n random numbers on a
computer and obtain the random sample X1, X2, . . . , Xn. Take the arithmetic average:
Xn ≡ 1

n

∑n
i=1Xi. Plot Xn versus n. What do you conclude? What theorem does this

exercise illustrate?
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Solution. This illustrates the law of large numbers. See the article for the plot:
https://en.wikipedia.org/wiki/Law of large numbers ■

Problem 25. Let Y be a Poisson rv with parameter λ. Prove that Y can be written as
the sum

Y = X1 +X2 + · · ·+Xn,

where Xi are independent identically distributed rv’s, also with the Poisson distribution.
What should be the lambda parameter of the Xi?

Solution. Let’s do the case of two rv’s. Let Z = X +Y where X and Y are Poisson, with
parameters λ and µ, respectively. Then the PMF of Z is:

P(Z = z) =
z∑

x=0

e−λλx

x!

e−µµz−x

(z − x)!
=
e−(λ+µ)

z!

z∑
x=0

(
z

x

)
λxµz−x

Thus, Z is also Poisson, but with mean λ+µ. This can be extended to n Poisson variables.
Their sum will also be Poisson. If Y = X1 + · · ·+Xn has parameter λ, then each Xi must
have parameter λ/n. ■

Problem 26. Let X1, . . . , Xn be a sequence of independent random variables with CDF’s
Fn (Xi has CDF Fi, i = 1, . . . , n). Let X be a random variable with CDF F . The sequence
Xn is said to converge in distribution if the CDF’s converge pointwise, i.e.,

lim
n→∞

Fn(x) = F (x),

at all points x for which F is continuous.

(a) Show that convergence of the CDF’s also implies the PDF’s. i.e. let fi be the PDF of
independent rv’s Xi (i = 1, . . . , n) and f be the PDF of X. Prove that convergence of the
CDF’s implies:

lim
n→∞

fn(x) = f(x)

for all x.

(b) Prove that the sequence of independent rv’s Xi ∼ N (1/n, 1) converges in distribution
to a standard normal random variable.

Solution. Since
1√
2π

exp

(
−1

2

[
x− 1

n

]2)
→ exp

(
−x

2

2

)
,

it follows that Xn converges in distribution to X N (0, 1). ■

Problem 27. Let Xn ∼ N (0, 1/n) and let X = 0. Prove that for any ϵ > 0,

P(|Xn| > ϵ) → 0

as n → ∞. This is an example of convergence in probability, i.e. P(|Xn| > ϵ) → 0 implies
that Xn converges in probability to X (=0), since P(|Xn| > ϵ) = P(|Xn −X| > ϵ).
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Solution. First we note that P(|Xn| > ϵ) = P(|Xn|2 > ϵ2). The latter is the integral:∫
{x2n>ϵ2}

p(xn)dxn ≤
∫

{x2n>ϵ2}

x2n
ϵ2
p(xn)dxn ≤

∫
R

x2n
ϵ2
p(xn)dxn

=
⟨X2

n⟩
ϵ2

=
var(Xn)

ϵ2
=

1

nϵ2
→ 0

■

Problem 28. Let Xi be iidrv with uniform distribution over the interval [0,1]. Take the
sum Sn = X1 + X2 + · · · + Xn. Find the distribution of Xn analytically (i.e. find its
CDF and PDF). Show numerically (i.e. by generating random numbers on a computer)
the histogram of Sn from n = 1, 2, . . . , 10. What do you conclude?

Solution. This is straightforward and will be left as an exercise (simply generate random
numbers in MATLAB to construct Sn, and plot using the hist function). S1 has the
uniform distribution. S2 has the “tent” distribution. etc. whereas Sn for large n looks
more and more Gaussian as n increases, thanks to the CLT. Convergence to a Gaussian is
very fast and does not require n to be very large. ■

Problem 29. Suppose that X has a PDF, p(x) = 1
2 sin(x), where x ∈ [0, π], and equals

zero elsewhere. Calculate its mean and variance. Calculate its skewness and kurtosis.
Compare skewness and kurtosis to those of a normal distribution (with same mean and
variance).

Solution. We will do the first two moments (others are obtained similarly):

⟨X⟩ =
∫ π

0

1

2
sin(x)xdx =

π

2
.

⟨X − π

2
⟩2 =

∫ π

0

1

2
sin(x)(x− π

2
)2dx =

1

4
(π2 − 8).

Those results can be obtained from WolframAlpha by typing:
integrate x*(1/2)*sin(x) from 0 to Pi

integrate ((x-Pi/2)^2)*(1/2)*sin(x) from 0 to Pi ■

Problem 30. Let X ∼ N (0, 1). What is the distribution of Y = X3 + 5?

Solution.

P(Y < y) = P(X3 + 5 < y) = P(X ≤ 3
√
y − 5) =

∫ 3√y−5

−∞

1√
2π
e−x

2/2dx.

It is also ok to calculate its PDF by differentiating the above CDF with respect to y,
making use of the Leibniz formula. ■
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Problem 31. Calculate the mean and the variance of a random variable X distributed
according to the PDF:

p(x) =
γ

(x− µ)2 + γ2
.

Solution. For the mean we have an integral of the type (set γ = 1, µ = 0 without loss of
generality, since I analyze the “tail” of the function here):∫ ∞

−∞

1

x2 + 1
xdx

When x is large, this integral behaves like
∫
1/x ∼ log(x), which diverges with x. Thus,

the mean does not exist. For the variance, we have an integral of the type∫ ∞

−∞

1

x2 + 1
x2dx ∼

∫
dx ∼ x→ ∞

which also diverges. Thus, it has no variance. ■

Problem 32. The probability of k successes in n trials is (k = 0, 1, . . . , n, 0 ≤ p ≤ 1):

P(k successes) =

(
n

k

)
pk(1− p)n−k.

B is a random variable distributed as such. Prove that B has mean np and variance
np(1− p).

Solution. See https://en.wikipedia.org/wiki/Binomial distribution ■

Problem 33. Suppose that you have a string instrument (e.g., electric guitar) whose
strings, when plucked, behave like oscillators. The potential energy of the string is modeled
by an anharmonic oscillator which consists of the sum of quadratic and quartic terms:

V (x) = ax2 + bx4. a, b non-negative constants

The potential V is transferred to kinetic energy, which is then measured by the guitar’s
pick-up coils and sent to the amplifier. The noise statistics of V are important for the
design of the guitar amplifier circuits.

If the position x (x: extension of the center of the string from its equilibrium position)
is measured experimentally using an interferometer whose instrument noise is known to
be normally distributed with mean µ and variance σ2, what would you expect the noise
statistics of V to look like? (i.e. find the probability distribution of V ) Note: you can
assume there are no temporal correlations in the noise.

(a) When b = 0 and a is nonzero (no anharmonicity).

(b) When a = 0 and b is nonzero (anharmonic part only).
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Solution. (a) When V = ax2, the probability of V < v, P(V < v), is:

P(ax2 < v) = P(−
√

v
a < x <

√
v
a) =

1√
2πσ2

√
v
a∫

−
√
v
a

e−(x−µ)2/2σ2
dx.

Differentiating with respect to v gives the PDF, pV (v) =
dP(V <v)

dv :

e−(
√
v/a−µ)2/2σ2

√
2πσ2

· d

dv

√
v/a− (lower limit) =

e−(
√
v/a−µ)2/2σ2

+ e−(
√
v/a+µ)2/2σ2

√
8avπσ2

(b) When V = bx4 the probability of V < v, P(V < v), is (imaginary roots are discarded,
because probabilities are non-negative quantities):

P(bx4 < v) = P(−(v/b)
1
4 < x < (v/b)

1
4 ) =

1√
2πσ2

(v/b)1/4∫
−(v/b)1/4

e−(x−µ)2/2σ2
dx.

The PDF is obtained by differentiation, pV (v) =
dP(V <v)

dv :

e−((v/b)1/4−µ)2/2σ2

√
2πσ2

· d

dv
(v/b)1/4 − (lower limit)

=
1

v3/4
e−((v/b)1/4−µ)2/2σ2

+ e−((v/b)1/4+µ)2/2σ2

√
32πσ2 b1/4

■

Problem 34. The joint density of X and Y is

pXY (x, y) =

{
2 if 0 ≤ x ≤ y ≤ 1;

0 otherwise.

Another rv Z is independent from X and Y and has the same distribution as X. (a) Find
the covariance matrix of the vector (X,Y, Z). (b) Calculate the first two moments of a new
rv that is the sum of all 3, i.e. X + Y +Z. (c) Compute cov(X,Y +Z). (d) Compute the
covariance matrix of the vector (X,X + Z, Y + Z).
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Solution. (a) Let v = (X,Y, Z). Then, since Z is independent of X and Y , we can
immediately put 0’s in a few places:

cov(v,v) =

cov(X,X) cov(X,Y ) cov(X,Z)
cov(Y,X) cov(Y, Y ) cov(Y,Z)
cov(Z,X) cov(Z, Y ) cov(Z,Z)


=

 var(X) cov(X,Y ) 0
cov(Y,X) var(Y ) 0

0 0 var(Z)


For var(X) and var(Y ), we need the marginal PDFs:

pX(x) =

∫
{y∈[0,1]|y>x}

pXY (x, y)dy =

∫ 1

x
2dy = 2 y|y=1

y=x = 2(1− x).

pY (y) =

∫
{x∈[0,1]|x<y}

pXY (x, y)dx =

∫ y

0
2dx = 2 x|x=yx=0 = 2y.

where 0 ≤ x, y ≤ 1. Using the marginal PDFs,

⟨X⟩ =
∫ 1

0
xpX(x)dx =

∫ 1

0
x2(1− x)dx =

1

3
,

var(X) =

∫ 1

0
(x− 1

3
)2pX(x)dx =

1

18
.

⟨Y ⟩ =
∫ 1

0
ypY (y)dy =

∫ 1

0
y2ydx =

2

3
,

var(Y ) =

∫ 1

0
(y − 2

3
)2pY (y)dy =

1

18
.

Finally, for cov(X,Y ) we use the joint PDF:

cov(X,Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩ =
∫ 1

0
dx

∫ 1

x
(x− 1

3
)(y − 2

3
)2 dy

=

∫ 1

0

1

9
(1− 3x)2(1− x)dx =

1

36
.

The covariance matrix is:

cov(v,v) =

 1
18

1
36 0

1
36

1
18 0

0 0 1
18

 .
(b) First moment:

m1 = ⟨X + Y + Z⟩ = ⟨X⟩+ ⟨Y ⟩+ ⟨Z⟩ = 2⟨X⟩+ ⟨Y ⟩ = 2

3
+

2

3
=

4

3
.

Second moment:

m2 = ⟨X + Y + Z⟩2 = ⟨X2⟩+ ⟨Y 2⟩+ ⟨Z2⟩+ 2⟨XY ⟩+ 2 ⟨Y Z⟩+ 2⟨XZ⟩.
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Since Z is independent of X and Y and has the same distribution as X:

m2 = 2⟨X2⟩+ ⟨Y 2⟩+ 2⟨XY ⟩+ 2⟨Y ⟩⟨Z⟩+ 2⟨X⟩⟨Z⟩.
where

⟨X2⟩ =
∫ 1

0
x22(1− x)dx =

1

6

⟨Y 2⟩ =
∫ 1

0
y22ydx =

1

2

⟨XY ⟩ =
∫ 1

0
dx

∫ 1

x
xy2 dy =

∫ 1

0
(x− x3)dx =

1

4
.

Therefore,

m2 = 2 · 1
6
+

1

2
+ 2 · 1

4
+ 2 · 2

3
· 1
3
+ 2 · 1

3
· 1
3
= 2.

(c) By linearity, and independence of Z from X:

cov(X,Y + Z) = cov(X,Y ) + cov(X,Z) = cov(X,Y ) =
1

36
.

(d) Let v = (X,X + Z, Y + Z). The covariance matrix is:

cov(v,v) =

 var(X) cov(X,X + Z) cov(X,Y + Z)
cov(X + Z,X) var(X + Z) cov(X + Z, Y + Z)
cov(Y + Z,X) cov(Y + Z,X + Z) var(Y + Z)


=

[
var(X) cov(X,X)+cov(X,Z) cov(X,Y )+cov(X,Z)

cov(X,X)+cov(Z,X) var(X+Z) cov(X,Y )+cov(X,Z)+cov(Y,Z)+cov(Z,Z)
cov(Y,X)+cov(Z,X) cov(X,Y )+cov(X,Z)+cov(Y,Z)+cov(Z,Z) var(Y+Z)

]
Since Z is independent of X and Y , this simplifies to:

=

[
var(X) var(X) cov(X,Y )
var(X) var(X) cov(X,Y )+var(Z)
cov(Y,X) cov(X,Y )+var(Z) var(Y )

]
=

 1
18

1
18

1
36

1
18

1
18

1
36 + 1

18
1
36

1
36 + 1

18
1
18


=

 1
18

1
18

1
36

1
18

1
18

3
36

1
36

3
36

1
18


■

Problem 35. The covariance matrix of the vector (X,Y, Z) iscov(X,X) cov(X,Y ) cov(X,Z)
cov(Y,X) cov(Y, Y ) cov(Y,Z)
cov(Z,X) cov(Z, Y ) cov(Z,Z)

 =

2 0 1
0 4 −1
1 −1 4

 .
(a) Calculate the variance of the rv X +Y +Z. (b) Compute cov(X,Y +Z). (c) Compute
the covariance matrix of the random vector (X,X + Z, Y + Z).
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Solution. (a)

var(X + Y + Z) = cov(X + Y + Z,X + Y + Z) = 2 + 4 + 4 + 1 + 1− 1− 1 = 10.

(b)
cov(X,Y + Z) = cov(X,Y ) + cov(X,Z) = 0 + 1 = 1.

(c) Let v = (X,X + Z, Y + Z). Then,

cov(v,v) =

 cov(X,X) cov(X,X + Z) cov(X,Y + Z)
cov(X + Z,X) cov(X + Z,X + Z) cov(X + Z, Y + Z)
cov(Y + Z,X) cov(Y + Z,X + Z) cov(Y + Z, Y + Z)


=

[
cov(X,X) cov(X,X)+cov(X,Z) cov(X,Y )+cov(X,Z)

cov(Z,X)+cov(X,X) cov(X,X)+2cov(X,Z)+cov(Z,Z) cov(X,Y )+cov(X,Z)+cov(Z,Y )+cov(Z,Z)
cov(Y,X)+cov(Z,X) cov(Y,X)+cov(Y,Z)+cov(Z,X)+cov(Z,Z) cov(Y,Y )+2cov(Y,Z)+cov(Z,Z)

]

=

 2 2 + 1 0 + 1
1 + 2 2 + 2(1) + 4 0 + 1 + (−1) + 4
1 + 0 0 + (−1) + 1 + 4 4 + 2(−1) + 4

 =

2 3 1
3 8 4
1 4 6


■

Problem 36. Distribution of the sum of two random variables. (a) Prove that the sum
of two discrete and independent rv’s (e.g. X + Y , where X and Y are independent) has
distribution function (PMF) given by the convolution of two PMFs (one for X, one for Y ),
i..e,

P(X + Y = k) =

k∑
l=0

P(X = l)P(Y = k − l).

Let X and Y be two independent rv’s. X is Poisson with parameter 2. Y is Poisson with
parameter 3. (b) Find the expectation and the variance of the sum X + Y . (c) Find the
probability mass function (PMF) of the rv X + Y .

Solution. (a) Let Z = X + Y (X and Y are independent), then

P(X + Y = k) =
∑

x+y=k

P(X = x, Y = y)

=
k∑
x=0

P(X = x, Y = k − x)

=
k∑
x=0

P(X = x)P(Y = k − x)

(b) For Z Poisson with parameter λ, ⟨Z⟩ = var(Z) = λ. Thus, ⟨X⟩ = 2, ⟨Y ⟩ = 3 and
⟨X + Y ⟩ = ⟨X⟩+ ⟨Y ⟩8 = 2 + 3 = 5. Next, we have var(X) = 2, var(Y ) = 3 and since X
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and Y are independent, we have var(X + Y ) = var(X) + var(Y ) = 2 + 3 = 5. Then,

P(X + Y = k) =

k∑
x=0

e−λλx

x!

e−µµk−x

(k − x)!

=
e−(λ+µ)

k!

k∑
x=0

(
k

x

)
λxµk−x

=
e−(λ+µ)(λ+ µ)k

k!
and the sum of two Poisson rv’s is also Poisson with additive parameters λ+µ. Therefore,
X + Y is Poisson with parameter 2+3=5. The distribution is P(X + Y = k) = e−5ek/k!
for k = 0, 1, 2, . . . . ■

Problem 37. X1, X2, . . . , Xn are independent rv’s, such thatXj is Poisson with parameter
2, j = 1, 2, . . . , n. Find the expectation, the variance and standard deviation of the variable:

X =
X1 +X2 + · · ·+Xn

n
.

Solution. If Z is Poisson with parameter λ, ⟨Z⟩ = var(Z) = λ. Here, Xj is Poisson with

parameter 2. We have ⟨X⟩ = ⟨ 1n
∑n

j=1Xj⟩ =
∑n

j=1
1
n⟨Xj⟩ = 1

nn · 2 = 2. Since X1, . . . , Xn

are independent we have var(X) = 1
n2 var(X1+X2+· · ·+Xn) =

1
n2 (var(X1)+· · ·+var(Xn))

= 1
n2n · 2 = 2

n and σX =
√

2
n . ■

Problem 38. Let X ∼ N (0, 1) and Y ∼ N (0, 4) be independent rv’s. What is the
conditional density of Z = X + Y given X = 3 (i.e. under the condition X = 3).

Solution. Recall that the sum of two independent Gaussians is also Gaussian with additive
means and variances. Since Z = X + Y we have that Z given X = 3 has the same
distribution as 3 + Y given X = 3. Since Y is independent from X and 3 + Y ∼ N (3, 4)
this yields that the rv Z|X = 3 ∼ N (3, 4). Thus, pZ|X=3(z) =

1
2
√
2π

exp(−1
8(z − 3)2). ■

Problem 39. X1, X2, . . . , X10 are iidrv’s with Xj ∼ N (0, 4), j = 1, . . . , 10. Find the
conditional density of X1 under the condition X1 +X2 + · · ·+X10 = 3.

Solution. We have Y = X2+X3+ · · ·+X10 ∼ N (0, 9 ·4) = N (0, 36). Using the definition
of conditional probability

pX1|X1+Y=3(x1) =
pX1,X1+Y (x1, 3)

pX1+Y (3)
=
pX1,Y (x1, 3− x1)

pX1+Y (3)
.

Since X1 and Y are independent, we have

pX1,Y (x1, 3− x1) = pX1(x1)pY (3− x1)

=
1

2
√
2π

exp(−1

8
(x1)

2)
1

6
√
2π

exp(− 1

72
(3− x1)

2).
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We also have X1+Y ∼ N (0, 10 · 4) and pX1+y(3) =
1√
80π

exp(− 1
803

2). Finally we find that

pX1|X1+Y=3(x1) =
1√

2π·18/5
exp(− 1

2·18/5(x1 − 0.3)2). ■

Problem 40. Exercise on conditional expectations: (a) By applying the above definitions,
check the trivial case ⟨X|X⟩ = X. Here, X is a random variable, i.e., ⟨X|X⟩(ω) = X(ω).
(b) Check also that ⟨Y |X⟩ = ⟨Y ⟩ when X and Y are independent. Here, ⟨Y ⟩ is the random
variable taking the constant value ⟨Y ⟩ for any ω, i.e. ⟨Y |X⟩(ω) = ⟨Y ⟩(ω).
Let X ∼ N (0, 1) and Y ∼ N (0, 4) be independent rv’s. Let Z = X + Y . (c) Compute
⟨Z|X = 3⟩ (expectation value calculated using the conditional density of Z under the
condition X = 3). (d) Calculate ⟨Z|X⟩.

Solution. (a) First let’s check that ⟨X|X⟩ = X. First we start with ⟨X|X = x′⟩, whose
definition is ⟨X|X = x′⟩ =

∫
xpX,X=x′(x)dx. Notice that pX,X=x′(x) = δ(x − x′) is the

only possible PDF (i.e. the probability that X = x given that X = x′ can only be non-zero
iff x = x′). Hence, ⟨X|X = x′⟩ = x′. Replace x′ by X and get ⟨X|X⟩ = X.

(b) To prove ⟨Y |X⟩ = ⟨Y ⟩, we write pY |X=x(y) =
pY,X(y,x)
pX(x) = pY (y)pX(x)

pX(x) = pY (y) since

X and Y are independent. Then, ⟨Y |X = x⟩ =
∫
ypY |X=x(y)dy =

∫
ypY (y)dy = ⟨Y ⟩.

Therefore, ⟨Y |X⟩ = ⟨Y ⟩.
(c) From Problem 38 we have already calculated the conditional density of Z. Using that
density, we get that ⟨Z|X = 3⟩ = 3. (d) Conditional expectation is linear: ⟨Z|X⟩ =
⟨X + Y |X⟩ = ⟨X|X⟩+ ⟨Y |X⟩ = X + ⟨Y ⟩ = X. ■

Problem 41. Let X1, . . . , X10 be iidrv with Xj ∼ N (0, 4), j = 1, . . . , 10. Let S =
X1 + · · ·+X10. (a) Calculate ⟨X1|S = 3⟩. (b) Calculate ⟨X1|S⟩.

Solution. (a) Using the conditional distribution obtained in Problem 6, we get ⟨X1|S =
3⟩ = 0.3. Another solution: by symmetry, for j = 1, 2, . . . , 10 we get ⟨X1|S = 3⟩ = ⟨Xj |S =

3⟩. Hence 10⟨X1|S = 3⟩ =
∑10

j=1⟨X1|S = 3⟩ =
∑10

j=1⟨Xj |S = 3⟩ = ⟨
∑10

j=1Xj |S = 0⟩ =

⟨S|S = 3⟩ = 3. Hence ⟨X1|S = 3⟩ = 0.3. (b) In a similar way as in (a), using symmetry
we get ⟨X1|S⟩ = S/10. ■

Problem 42. Choose a space craft pilot in the nearest galaxy at random and call N the
number of accidents during a year for this pilot. The number of accidents N depends on
another random variable, P , which quantifies the pilot’s skills. The number of accidents
given some skillset P = p has Binomial(4, p) distribution, i.e., N |P = p ∼ Binomial(4, p).
The parameter P among the population of pilots has P ∼ U([0, 1]) (uniform distribution).
(a) Find the marginal distribution of N . (b) Find ⟨N |P ⟩. (c) Find ⟨N⟩.

Solution. (a) The marginal distribution of N reads as

P(N = n) =

∫ 1

0
P(N = n|P = p)pP (p)dp =

∫ 1

0

(
4

n

)
pn(1− p)4−ndp
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for n = 0, 1, 2, 3, 4 (this may be calculated explicitly but it is a bit time consuming). (b)
N |P = p ∼ Binomial(4, p) we have ⟨N |P = p⟩ = 4p thus ⟨N |P ⟩ = 4P . (c) We have

⟨N⟩ = ⟨⟨N |P ⟩⟩ = ⟨4P ⟩ = 4⟨P ⟩ = 4
∫ 1
0 p · 1dp = 41

2 p
2
∣∣p=1

p=0
= 2. ■

Problem 43. Let X be a random variable with the following distribution function (PMF):

P(X = 1) = 0.2

P(X = 2) = 0.3

P(X = 3) = 0.3

P(X = 4) = 0.2

Find ⟨X⟩, ⟨X2⟩, the variance and skewness.

Solution. The mean is:

⟨X⟩ = 1 ∗ 0.2 + 2 ∗ 0.3 + 3 ∗ 0.3 + 4 ∗ 0.2 = 2.5

Second moment:

⟨X2⟩ = 1 ∗ 0.2 + 4 ∗ 0.3 + 9 ∗ 0.3 + 16 ∗ 0.2 = 7.3

Variance:
σ2 = var(X) = ⟨X2⟩ − ⟨X⟩2 = 7.3− (2.5)2 = 1.05

Skewness:

⟨(X − ⟨X⟩)3⟩
σ3

=
0.2 ∗ (1− 2.5)3 + 0.3 ∗ (2− 2.5)3 + 0.3 ∗ (3− 2.5)3 + 0.2 ∗ (4− 2.5)3

(1.05)3/2
= 0

■

Problem 44. A random variable X has binomial distribution B(3, 0.4). See

https://en.wikipedia.org/wiki/Binomial distribution

Find P(X = 0), P(X = 2) and P(X = 10). Calculate the standard deviation of X.

Solution. Variance is npq, where p = 0.4 and q = 1−p = 0.6. Thus, npq = 0.72. Standard
deviation is the square root:

√
0.72 ≈ 0.8485. The PMF is(

n

k

)
pkqn−k

P(X = 0) =

(
3

0

)
p0q3−0 =

3!

0!(3− 0)!
(0.4)0(0.6)3 = 0.63 = 0.216

P(X = 2) =

(
3

2

)
p2q3−2 =

3!

2!(3− 2)!
(0.4)2(0.6)1 = 0.288

P(X = 10) does not exist since 10>3. ■
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Problem 45. Let X be Poisson with parameter 4. For which value k = 0, 1, . . . does X
attain the greatest probability? Calculate or estimate P(X ≤ 3) and P(X ≥ 5).

Solution. For k = 0, 1, . . . we have P(X=k+1)
P(X=k) = e−44k+1/(k+1)!

e−44k/k!
= 4

k+1 . Thus,
P(X=k+1)
P(X=k) > 1

for k = 0, 1, 2, P(X=k+1)
P(X=k) = 1 for k = 3 and P(X=k+1)

P(X=k) < 1 for k = 4, 5, . . . and we have

P(X = 0) < P(X = 1) < P(X = 2) < P(X = 3) = P(X = 4) > P(X = 5) > . . . . X attains
with the greatest probability values 3 and 4.

■

Problem 46. Find the value of the constant c such that f : R → R,

pX(x) =

{
0 if x < 1
c
x2

if x ≥ 1

is a bona fide PDF of a continuous rv X. Calculate P(X ≤ 2), P(X = 2), P(X ∈ [2, 3]).

Compute ⟨X2⟩ and ⟨
√
X⟩.

Solution. We calculate 1 =
∫∞
−∞ pX(x)dx =

∫∞
1

c
x2
dx =

∫∞
1 cx−2dx = cx

−2+1

−2+1

∣∣∣∞
1

=

c(− 1
x)
∣∣∞
1

= c(− 1
∞ − (−1

1)) = c(0 + 1
1) = c. Therefore, c = 1. We have P(X ≤ 2) =∫ 2

−∞ pX(x)dx =
∫ 2
1

1
x2
dx = (− 1

x)
∣∣2
1
= −1

2 − (−1
1) = 1

2 , P(X = 2) =
∫ 2
2 pX(x)dx = 0,

P(X ∈ [2, 3]) =
∫ 3
2 pX(x)dx =

∫ 3
2

1
x2
dx = (− 1

x)
∣∣3
2
= −1

3 − (−1
2) = 1

6 . Next, we calculate

⟨X2⟩ =
∫∞
−∞ x2pX(x)dx =

∫∞
1 x2 1

x2
dx = x|∞1 = ∞ − 1 = ∞, thus ⟨X2⟩ does not exist.

⟨
√
X⟩ =

∫∞
−∞ x1/2pX(x)dx =

∫∞
1 x1/2 1

x2
dx =

∫∞
1 x−3/2dx = x−3/2+1

−3/2+1

∣∣∣∞
1

= 0 − 1
−1/2 = 2,

thus ⟨
√
X⟩ is finite. ■

Problem 47. Compute the fourth moment of the normal random variable.

Solution. Solutions can be found at:

https://arxiv.org/pdf/1209.4340.pdf

https://www.le.ac.uk/users/dsgp1/COURSES/MATHSTAT/6normgf.pdf

Integrals can be computed explicitly. Let Ik(a) denote:

Ik(a) =
1√
2π

∫ ∞

a
uke−u

2/2du

The k = 0 case is given in terms of the standard normal CDF:

I0(a) =
1√
2π

∫ ∞

a
e−u

2/2du = 1− Φ(a)

The k = 1 case is obtained by direct integration:

I1(a) =
1√
2π

∫ ∞

a
ue−u

2/2du = − 1√
2π

[
e−u

2/2
]∞
a

=
1√
2π
e−a

2/2.
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The k = 2 case is obtained by integration-by-parts:

I2(a) =
1√
2π

∫ ∞

a
u2e−u

2/2du = − 1√
2π

[
ue−u

2/2
]∞
a

+
1√
2π

∫ ∞

a

[
e−u

2/2
]
du

=
1√
2π
ae−a

2/2 + (1− Φ(a))

These are solved using integration by parts For k = 3, we can also integrate by parts:

I3(a) =
1√
2π

∫ ∞

a
u3e−u

2/2du =
1√
2π

∫ ∞

a
u2
[
ue−u

2/2
]
du

=− 1√
2π

[
u2e−u

2/2
]∞
a

+ 2
1√
2π

∫ ∞

a
u
[
e−u

2/2
]
du

=
1√
2π
a2e−a

2/2 +
1√
2π

2e−a
2/2

For k = 4, we have

I4(a) =
1√
2π

∫ ∞

a
u4e−u

2/2du =
1√
2π

∫ ∞

a
u3
[
ue−u

2/2
]
du

=− 1√
2π

[
u3e−u

2/2
]∞
a

+ 3
1√
2π

∫ ∞

a
u2
[
e−u

2/2
]
du

The last integral was already solved in the k = 2 case. Substituting that results gives:

I4(a) =
1√
2π
a3e−a

2/2 + 3

[
1√
2π
ae−a

2/2 + (1− Φ(a))

]
We are, of course, interested in the limit a → −∞. For a normal N (µ, σ2) rv we simply
make the substitution u = x−µ

σ and use the above formulae. Specifically,

⟨X4⟩ =
∫ ∞

−∞
x4

1√
2πσ2

e−(x−µ)2/2σ2
dx

The substitution u = x−µ
σ , du = dx/σ:

⟨X4⟩ =
∫ ∞

−∞
(σu+ µ)4

1√
2π
e−u

2/2du

Expanding
(σu+ µ)4 = µ4 + σ4u4 + 4σ3u3µ+ 6σ2u2µ2 + 4µ3σu

gives

⟨X4⟩ = 1√
2π

∫ ∞

−∞

[
µ4 + σ4u4 + 4σ3u3µ+ 6σ2u2µ2 + 4µ3σu

]
e−u

2/2du

=µ4I0(−∞) + σ4I4(−∞) + 6σ2µ2I2(−∞) + 4µ2σI1(−∞)

=µ4 + σ4 · 3 + 6σ2µ2 + 4µ2σ · 0 = µ4 + 3σ4 + 6σ2µ2

The fourth moment of the normal distribution N (µ, σ2) is: µ4 + 6µ2σ2 + 3σ4. ■
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Problem 48. Find the formula for P(X > t) of X and the CDF of X when X has the
PDF:

pX(x) =

{
0 if x < 1
2
x3

if x ≥ 1

Solution. The CDF is P(X ≤ t) =
∫ t
−∞ pX(x)dx. For t < 1 we have 0 since the PDF is

zero in that region. For t ≥ 1, P(X ≤ t) =
∫ t
1

2
x3
dx = 2x

−3+1

−3+1

∣∣∣t
1
= 2

(
t−2

−2 − 1−2

−2

)
= 1 − 1

t2
.

Finally, P(X > t) = 1− P(X ≤ t) = 1 for t < 1 and 1
t2

for t ≥ 1. ■

Problem 49. Let rv X be Erlang-distributed with parameters 2 and 5, see for details:

https://en.wikipedia.org/wiki/Erlang distribution

Find the formula for P(X > t) of X and the CDF of X.

Solution. Erlang(2,5) distribution has PDF 52xe−5x. Then,
∫
xe−5xdx =

∫
x(−1

5e
−5x)′dx

= - x1
5e

−5x +
∫
x′ 15e

−5xdx = -15xe
−5x + 1

5

∫
e−5xdx = -15xe

−5x - 1
52
e−5x = - 1

25e
−5x(5x+1).

For t > 0, P(X > t) =
∫∞
t 25xe−5xdx = 25

∫∞
t xe−5xdx−e−5x(5x+ 1)

∣∣∞
x=t

= 0+e−5t(5t+1)
while for t ≤ 0 we have P(X > t) = 1. The CDF of X is P(X ≤ t) = 1− P(X > t), which
equals 1 for t < 0 and 1− e−5t(5t+ 1) for t ≥ 0. ■

Problem 50. Let the rv X have the following PMF (k = 1, 2, . . . ):

P(X = k) =
1

k4
− 1

(k + 1)4
.

Find the CDF of X. Compute P(X ≥ k) for k = 0, 1, 2, . . . .

Solution. For k = 1, 2, . . . we have P(X ≤ k) =
∑k

i=1 P(X = i) =
∑k

i=1

(
1
i4
− 1

(i+1)4

)
= 1

14
− 1

24
+ 1

24
− 1

34
+ · · · + 1

k4
- 1

(k+1)4
= 1 − 1

(k+1)4
. Now, for any t ∈ R we have

P(X ≤ t) = 0 for t < 1. Also, P(X ≤ t) = P(X ≤ ⌊t⌋) = 1− 1
(⌊t⌋+1)4

for t ≥ 1. To calculate

P(X ≥ k) for k = 1, 2, . . . we write P(X ≥ k) =
∑∞

i=k P(X = i) =
∑∞

i=k

(
1
i4
− 1

(i+1)4

)
=

1
k4

− 1
(k+1)4

+ 1
(k+1)4

− 1
(k+2)4

+ · · · = 1
k4
. ■

Problem 51. Let (X,Y ) be a pair of continuous rv’s whose joint density is

pXY (x, y) =
1

2
1[0,1](x)1[0,2](y),

where 1A(x) is the indicator function of the set A, i.e.

1A(x) =

{
1 if x ∈ A

0 otherwise

Find the CDF of the vector (X,Y ).
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Solution. Let s ≥ 0, t ≥ 0. The CDF is:

P(X < s, Y < t) =
1

2

∫ s

0
1[0,1](x)dx

∫ t

0
1[0,2](y)dy =

(s ∧ 1)(t ∧ 2)

2

where u ∧ v is the minimum of u and v. ■

Problem 52. The joint PMF of (X,Y ) is

Y=1 2 3

X=0 0.2 0.1 0
1 0.1 0.3 0
2 0 0 0.3

Find the marginal probability mass functions of X and Y . Find the conditional prob-
abilities P(X = 0|Y = 1), P(X = 1|Y = 1), P(X = 2|Y = 1), P(X = 0|Y = 2),
P(X = 1|Y = 2), P(X = 2|Y = 2).

Solution. The definition of conditional probability is P(A|B) = P(A∩B)
P(B) . To calculate

P(X = 0|Y = 1) =
P(X = 0, Y = 1)

P(Y = 1)
=

0.2

0.3
=

2

3
,

where P(Y = 1) = 0.2 + 0.1 + 0 = 0.3 and P(X = 0, Y = 1) = 0.2. Other conditional
probabilities are calculated similarly. We find:

P(X = 1|Y = 1) =
0.1

0.3
=

1

3

P(X = 2|Y = 1) =
0

0.3
= 0

P(X = 0|Y = 2) =
0.1

0.4
=

1

4

P(X = 1|Y = 2) =
0.3

0.4
=

3

4

P(X = 2|Y = 2) =
0

0.4
= 0

■

Problem 53. The random vector (X,Y ) is uniformly distributed over the following region
in the 2D plane:

D = {(x, y) ∈ R2 : x2 + y2 ≤ 2}
i.e., the joint PDF is

pXY (x, y) =
1

2π
1D(x, y) =

{
1
2π if x2 + y2 ≤ 2;

0 if x2 + y2 > 2.

Find the marginal densities of X and Y .
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Solution. We apply the formula

pX(x) =

∫ ∞

−∞
pXY (x, y)dy =

1

2π

∫ ∞

−∞
1D(x, y)dy

For x < −
√
2 and x >

√
2 we have x2+y2 > 2. Thus, 1D(x, y) = 0 and pX(x) = 0. Assume

that x ∈ [−
√
2,
√
2]. We have 1D(x, y) = 1 iff y ∈ [−

√
2− x2,

√
2− x2] and otherwise

1D(x, y) = 0. Then, pX(x) =
1
2π

∫∞
−∞ 1D(x, y)dy = 1

2π

∫ √
2−x2

−
√
2−x2 1dy = 1

π

√
2− x2. Similarly,

pY (y) = 0 for y < −
√
2 and y >

√
2, and pY (y) =

1
π

√
2− y2 for y ∈ [−

√
2,
√
2]. ■

Problem 54. Prove that X and Y , whose joint PDF is defined in Problem 53, are statis-
tically independent. Calculate the covariance between X and Y .

Solution. Using the marginal densities obtained in Problem 53,

pX(x) =
1
π

√
2− x2 for x ∈ [−

√
2,
√
2]

pY (y) =
1
π

√
2− y2 for y ∈ [−

√
2,
√
2],

and

pXY (x, y) =
1

2π
1D(x, y) =

{
1
2π if x2 + y2 ≤ 2;

0 if x2 + y2 > 2.

D ={(x, y) ∈ R2 : x2 + y2 ≤ 2}
we find that pXY (x, y) ̸= pX(x)pY (y). Thus X and Y are not statistically independent.
The covariance is defined as

cov(X,Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩ = ⟨XY ⟩ − ⟨X⟩ ⟨Y ⟩
Via direct computation:

⟨XY ⟩ = 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
xy 1D(x, y) dy =

1

2π

∫∫
D
xy dxdy

=
1

2π

∫ 2

−2
dx

√
2−x2∫

−
√
2−x2

xy dy

=
1

2π

∫ 2

−2
x
1

2

[
(2− x2)− (2− x2)

]
dx = 0

Also, we have that ⟨X⟩ = 0 and ⟨Y ⟩ = 0 since their marginal densities are symmetric.
Therefore, cov(X,Y ) = 0. This is an instance of two random variables that are statistically
independent but uncorrelated. ■

Problem 55. Let X and Y be rv’s whose joint PMF is given by:
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Y=1 2 3

X=0 0.2 0.1 0
1 0.1 0.3 0
2 0 0 0.3

Compute the covariance and correlation matrix of the random vector (X,Y ).

Solution. Let X = (X,Y ). The covariance matrix is:

cov(X) =

[
cov(X,X) cov(X,Y )
cov(Y,X) cov(Y, Y )

]
=

[
⟨(X − µX)

2⟩ ⟨(X − µX)(Y − µY )⟩
⟨(Y − µY )(X − µX)⟩ ⟨(Y − µY )

2⟩

]
The correlation matrix is the covariance matrix whose entries are normalized (see correla-
tion coefficient):

corr(X) =

 ⟨(X−µX)2⟩
σ2
X

⟨(X−µX)(Y−µY )⟩
σXσY

⟨(Y−µY )(X−µX)⟩
σXσY

⟨(Y−µY )2⟩
σ2
Y

 =

[
1 ⟨(X−µX)(Y−µY )⟩

σXσY
⟨(Y−µY )(X−µX)⟩

σXσY
1

]
Computing the matrix elements:

µX = ⟨X⟩ = 0.4 + 2 ∗ 0.3 = 1

µY = ⟨Y ⟩ = 1 ∗ (0.2 + 0.1) + 2 ∗ (0.1 + 0.3) + 3 ∗ (0.3) = 2

σ2X = ⟨(X − µX)
2⟩ = (0.2 + 0.1) ∗ (0− 1)2 + (0.1 + 0.3) ∗ (1− 1)2 + 0.3 ∗ (2− 1)2 = 0.6

σ2Y = ⟨(Y − µY )
2⟩ = (0.2 + 0.1) ∗ (1− 2)2 + (0.1 + 0.3) ∗ (2− 2)2 + 0.3 ∗ (3− 2)2 = 0.6

The off diagonal element is:

⟨(X − µX)(Y − µY )⟩ =0.2 ∗ (0− 1)(1− 2) + 0.1 ∗ (0− 1)(2− 2)

+ 0.1 ∗ (1− 1)(1− 2) + 0.3 ∗ (1− 1)(2− 2) + 0.3 ∗ (2− 1)(3− 2) = 0.5

Thus, we arrive at:

cov(X) =

[
1 0.5
0.5 2

]
, corr(X) =

[
1 0.25

0.25 1

]
■

Problem 56. Let rv X and Y have a joint PDF

pXY (x, y) =

{
1
2 if 0 ≤ x ≤ y ≤ 2;

0 otherwise
.

Are X and Y statistically independent? Compute the correlation matrix of the random
vector (X,Y ).



114 1. Probability

Solution.

⟨XY ⟩ =
∫ ∞

−∞

(∫ ∞

−∞
xy pXY (x, y)dy

)
dx =

∫ 2

0

(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x

(∫ 2

x
ydy

)
dx

=
1

2

∫ 2

0
x
1

2
y2
∣∣y=2

y=x
dx =

1

4

∫ 2

0
x(4− x2)dx =

1

4

∫ 2

0
(4x− x3)dx =

1

4
(4
1

2
x2 − 1

4
x4)

∣∣∣∣x=2

x=0

=
1

4
(2 · 22 − 1

4
24) = 1.

Next,

⟨X⟩ =
∫ ∞

−∞
x

(∫ ∞

−∞
pXY (x, y)dy

)
dx =

∫ 2

0
x

(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x

(∫ 2

x
1dy

)
dx

=
1

2

∫ 2

0
x · y|y=2

y=x dx =
1

2

∫ 2

0
x(2− x)dx =

1

2

∫ 2

0
(2x− x2)dx =

1

2
(2
1

2
x2 − 1

3
x3)

∣∣∣∣x=2

x=0

=
1

2
(22 − 1

3
23) =

2

3
and

⟨X2⟩ =
∫ ∞

−∞
x2
(∫ ∞

−∞
pXY (x, y)dy

)
dx =

∫ 2

0
x2
(∫ 2

x

1

2
dy

)
dx =

1

2

∫ 2

0
x2
(∫ 2

x
1dy

)
dx

=
1

2

∫ 2

0
x2 · y|y=2

y=x dx =
1

2

∫ 2

0
x2(2− x)dx =

1

2

∫ 2

0
(2x2 − x3)dx

=
1

2

(
2
1

3
x3 − 1

4
x4
)∣∣∣∣x=2

x=0

=
1

2

(
2
1

3
23 − 1

4
24
)

=
2

3
.

We also have

⟨Y ⟩ =
∫ ∞

−∞
y

(∫ ∞

−∞
pXY (x, y)dx

)
dy =

∫ 2

0
y

(∫ y

0

1

2
dx

)
dy =

1

2

∫ 2

0
y

(∫ y

0
1dx

)
dy

=
1

2

∫ 2

0
y · x|x=yx=0 dy =

1

2

∫ 2

0
y2dy =

1

2

1

3
y3
∣∣y=2

y=0
=

1

6
23 =

4

3

and

⟨Y 2⟩ =
∫ ∞

−∞
y2
(∫ ∞

−∞
pXY (x, y)dx

)
dy =

∫ 2

0
y2
(∫ y

0

1

2
dx

)
dy =

1

2

∫ 2

0
y2
(∫ y

0
1dx

)
dy

=
1

2

∫ 2

0
y2 · x|x=yx=0 dy =

1

2

∫ 2

0
y3dy =

1

2

1

4
y4
∣∣y=2

y=0
=

1

8
24 = 2.

Then,

ρ(X,Y ) =
cov(X,Y )

σXσY
=

⟨XY ⟩ − ⟨X⟩⟨Y ⟩√
⟨X2⟩ − ⟨X⟩2

√
⟨Y 2⟩ − ⟨Y ⟩2
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=
1− 2

3
4
3√

2
3 − (23)

2
√
2− (43)

2
=

1
9√
2
9

√
2
9

=
1

2

and the correlation matrix of (X,Y ) reads[
1 1

2
1
2 1

]
.

Since ρ(X,Y ) ̸= 0 the variables X and Y are dependent. ■

Problem 57. There is a bridge in Durham, NC nicknamed the “can opener” bridge.
Watch this 10-minutes long compilation:

https://www.youtube.com/watch?v=USu8vT tfdw

The meaning of the bridge’s name should be apparent from this video. Consider all over-
sized trucks shown in the video. The trucks either get through with significant damage
(can opener) or with minimal damage. We consider 2 different scenarios:

(A) While the truck is significantly oversized, the truck driver goes through anyways,
causing the truck to undergo carnage and decapitation.

(B) Truck either follows the sign and turns away, or goes through anyways and the truck
suffers minimal damage (small bump, then backing out) or barely scraping under (lucky
driver).

Count the number of times you observe scenarios A and B. From this data, assign proba-
bilities for events A and B. Suppose that type A events are associated with a low IQ truck
driver (IQ=60), whereas type B events are associated with a higher IQ driver (IQ=140).
Compute the average IQ of a truck driver in Durham, NC. (Note: This problem is a joke;
we are not implying that truck drivers from anywhere are idiots.)

Solution. Suppose we count 15 severely damaged trucks and 5 mildly damaged ones. The
probability of A is

P(A) =
15

20
= 0.75

The probability of B is:

P(B) =
5

20
= 0.25

The average IQ is:

⟨IQ⟩ = IQ(A) · P(A) + IQ(B) · P(B) = 60 · 0.75 + 140 · 0.25 = 80.

■

Problem 58. Watch 10 minutes of traffic video (preferably traffic that is not too dense,
so you are able to count events). This webcam appears suitable:

https://www.youtube.com/watch?v=5 XSYlAfJZM

Choose a landmark such as a line on the road. Pick a lane of traffic. Count the time
interval τ between consecutive vehicles crossing that lane. Plot a histogram of the time
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intervals. Compute the average ⟨τ⟩. What distribution does τ follow? Fit the histogram
to a suitable distribution. Obtain the parameters of the distribution.

Solution. An example data set is:

By inspection of this graph, ⟨τ⟩ ≈ 4 · 10−4 hours. The distribution is called “headway
distribution” or gap distribution. The commonly used distributions include the “displaced
exponential” (for low-medium flows) and “Schuhl’s composite exponential” (for normal-
heavy flows) distributions. ■

Problem 59. For the traffic problem (#2) pick a time interval, say 4 minutes. Count the
number of cars, n, that pass through the intersection/line (in a given lane) during that
time interval. Plot of histogram of n. Find the distribution of n. Obtain the parameters
of the distribution.

Solution. Suppose that we have 180 time windows (each lasting 4 seconds) and record
the following observations (x: number of vehicles arriving per 4 second interval):
x Obs. freq. Total vehicles Probability P (x) Theoretical freq.
0 94 0 0.539 97.0
1 63 63 0.333 59.9
2 21 42 0.103 18.5
3 2 6 0.021 3.8
> 3 0 0 0.004 0.8
Total 180 111 1.000 180.0
To get the histogram, we plot the vector of observed frequencies vs x. In MATLAB, we
could type

plot([94 63 21 2 0],’o’);

The graph doesn’t quite look like an exponential decay. On the other hand, a Poisson
distribution seems suitable. The probability distribution function for Poisson takes the
form:

P (k) =
mke−m

k!
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where λ is a parameter to be derived from the data. Its physical interpretation is the
average number of cars per 4-second time interval. Since there are 180 time intervals in
our experiment, and the total number of vehicles observed is 111:

m =
total vehicles

total periods
=

111

180
= 0.617; e−.617 = .539

P (x) =
(0.617)x

x!
e−.617 =

(.617)x(.539)

x!
In the above table the column P (x) is the probability calculated using the Poisson formula.
The calculated “theoretical frequency” is equal to 180 P (x). ■

Problem 60. For problems 57, 58 and 59 describe the probability space, the set of ele-
mentary outcomes, the random variable and the random events considered.

Solution. For problem 57, the set of possible outcomes, Ω, is the set of all possible tra-
jectories ω ∈ Ω that a given truck can take (this is best left as abstract). There are two
events considered here: A(ω) (high impact), B(ω) (low or no impact). The random variable
considered here is the IQ of a driver: IQ(ω), where ω refers to a particular truck/driver
trajectory.

For problem 58, the set Ω of possible outcomes (ω ∈ Ω) is the traffic flow, i.e. all traffic
scenarios giving rise to all possible gaps between consecutive cars (or some similar idea).
We may consider events of the type {τ = t}. Each of these events has probability zero
(since the time intervals/bins have zero duration), however, for purposes of plotting a his-
togram we need to consider finite intervals of the form {t1 ≤ τ ≤ t2}. The random variable
is τ(ω).

For problem 59, the set of outcomes is the same as in Problem 2, since the physical random
experiment is the same (traffic flow). The random variable is n(ω), the number of cars in
a given time interval. The events are of the form {n = x}, where x is an integer value (0,
1, 2, 3, ...). ■

Problem 61. In probability theory we often use integrals over sets. This is the same inte-
gral as you are used to, but written differently. For example, the integral of the exponential
distribution, e−x, over the set [0, 1] is:∫

[1,3]
e−xdx =

∫ 3

1
e−xdx = − e−x

∣∣3
1
= e−1 − e−3 = 0.318

Let A be a set over the positive real numbers. Denote:

Q(A) =

∫
A
e−xdx

Compute:
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(a) Q([5,∞))

(b) Q([1, 3] ∪ [3, 5])

(c) Q([0,∞))

Solution. (a) ∫ ∞

5
e−xdx = − e−x

∣∣∞
5

= e−5 ≈ 0.007

(b) ∫ 3

1
e−xdx+

∫ 5

3
e−xdx =

∫ 5

1
e−xdx ≈ 0.36114

(c) ∫ ∞

0
e−xdx = 1

■

Problem 62. The same can be done for multiple variables. For A ⊂ Rn, define the set
function:

Q(A) =

∫
· · ·
∫
A
dx1dx2 . . . dxn,

provided the integral exists. For example, ifA = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2, 0 ≤ xi ≤ 1,
for i = 2, 3, . . . , n}, then

Q(A) =

∫ 1

0

[∫ x2

0
dx1

]
dx2 ·

n∏
i=3

[∫ 1

0
dxi

]
=
x22
2

∣∣∣∣1
0

· 1 =
1

2
.

Let B = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}. Calculate the numerical value of
Q(B).

Solution.

Q(B) =

∫ 1

0

[∫ xn

0
. . .

[∫ x3

0

[∫ x2

0
dx1

]
dx2

]
. . . dxn−1

]
dxn =

1

n!

where n! = n(n− 1) . . . 3 · 2 · 1. ■

Problem 63. Solve the following problems using set theory:

(a) Find the union C1 ∪C2 and the intersection C1 ∩C2 of the two sets C1 and C2, where
C1 = {(x, y) : 0 < x < 1, 0 < y < 3}, C2 = {(x, y) : 0 < x < 2, 2 ≤ y < 3}.

(b) Find the complement Cc of the set C with respect to the space C if C = {(x, y) :
x2 + y2 ≤ 1}, C = {(x, y) : |x|+ |y| < 1}.
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(c) Prove, using Venn diagrams, that the following statements are true:

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

Illustrate with an example. Generalize these statements to countable unions and intersec-
tions.

(d) Consider the space C to be the set of points enclosed by a rectangle containing the
circles C1, C2 and C3. Use Venn diagrams to compare the following sets:

C1 ∪ (C2 ∩ C3) and (C1 ∪ C2) ∩ (C1 ∪ C3)

(e) Show that the following sequences of sets, {Ck}, are nondecreasing (nested upwards),
i.e. Ck ⊂ Ck+1 for k = 1, 2, 3, . . . . For such a sequence, define

lim
k→∞

Ck = ∪∞
k=1Ck.

Take the following sequence:

Ck = {(x, y) : 1/k ≤ x2 + y2 ≤ 4− 1/k}, k = 1, 2, 3, . . .



120 1. Probability

Find the limit limk→∞Ck.

(f) Show that the following sequence of sets, {Ck}, where
Ck = {x : 2 < x ≤ 2 + 1/k}, k = 1, 2, 3, . . . ,

is nonincreasing. A sequence of sets {An} is said to be nonincreasing if An ⊃ An+1 for
n = 1, 2, 3, . . . . In this case, we define

lim
n→∞

An = ∩∞
n=1An.

Find limk→∞Ck.

(g) For every two-dimensional set C ⊂ R2, let Q(C) =
∫ ∫

C(x
2+ y2)dxdy. If C1 = {(x, y) :

−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, C2 = {(x, y) : −1 ≤ x = y ≤ 1}, and C3 = {(x, y) : x2+y2 ≤ 1},
find Q(C1), Q(C2) and Q(C3).

(h) To join a club, a person must be either an idiot or a truck driver, or both. Of the 35
members in this club, 25 are idiots and 17 are truck drivers. How many persons in the club
are both an idiot and a truck driver? How will these people fare when they encounter the
“can opener” bridge? (Note: this problem is a joke; we are not implying that truck drivers
are idiots.)

Solution. Union is a L-shaped region in the 2D plane defined by the coordinates:

C1 ∪ C2 = {(x, y) : 0 < x < 1, 0 < y < 3 or 0 < x < 2, 2 ≤ y < 3}
Intersection is a small square

C1 ∩ C2 = {(x, y) : 0 < x < 1, 2 ≤ y ≤ 3}
(Notice the equality signs.)
The following MATLAB code can be used to plot the region

x=3*rand([1 10000]);

y=3*rand([1 10000]);

ll1=find(x>0 & x<1 & y>0 & y<3);

ll2=find(x>0 & x<2 & y>2 & y<3);

ll3=intersect(ll1,ll2);

ll3=union(ll1,ll2);

figure;

plot(x(ll3),y(ll3),’.’);

axis([0 2 0 3]);
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(b)
Cc = {(x, y) : |x|+ |y| ≥ 1 and x2 + y2 ≤ 1}

The following MATLAB code can be used to plot the region

x=rand([1 10000]);

y=rand([1 10000]);

ll1=find(x.^2 + y.^2 < 1);

ll2=find(abs(x) + abs(y) > 1);

ll3=intersect(ll1,ll2);

figure;

plot(x(ll3),y(ll3),’.’);
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(c) Generalization is:
∩i∈IAi ≡ ∪i∈IAi
∪i∈IAi ≡ ∩i∈IAi

where I is some, possibly uncountable, indexing set.

(d)

(e) The sequence is nondecreasing since

{(x, y) : 1/k ≤ x2 + y2 ≤ 4− 1/k} ⊂ {(x, y) : 1/(k + 1) ≤ x2 + y2 ≤ 4− 1/(k + 1)}
for all k. The limit is

{(x, y) : 0 < x2 + y2 < 4}
Note: the equality signs are gone because the end points are not part of the infinite union.

(f) The sequence is nonincreasing since

{x : 2 < x ≤ 2 + 1/k} ⊃ {x : 2 < x ≤ 2 + 1/(k + 1)}
for all k. The limit set is:

{x : 2 < x ≤ 2}
Note: the equality sign remains because the term 1/k > 0 for all k (even in the limit
k → ∞).

(g)

Q(C1) =

∫ 1

−1
dx

∫ 1

−1
(x2 + y2)dy =

8

3
≈ 2.66667

Q(C2) =

∫∫
C

(x2 + y2)dxdy = 0 since the set C is a thin line with zero area

Q(C3) =

∫∫
{(x,y)|x2+y2<R2}

(x2 + y2)dxdy =

∫ R

0
rdr

∫ 2π

0
dθr2 =

πR4

2
=
π

2

(h) 25+17=42. 42-35=7. In all likelihood, the bridge shall open 7 cans of sardines. ■

Problem 64. Let Ω be the set of elementary outcomes and E a subset of Ω, called “event”.
Denote F the collection of all possible events. Technically, F is called a “σ-field of subsets”.
Let P be a real-valued function defined on F . P is a probability set function of it satisfies
the following three conditions:

(1) P(A) ≥ 0, for all A ∈ F .
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(2) P(Ω) = 1.

(3) If {An} is a sequence of events in F and Am ∩An = ∅ for all m ̸= n, then

P (∪∞
n=1An) =

∞∑
n=1

P(An).

A collection of events whose members are pairwise disjoint is said to be a mutually ex-
clusive collection and its union is often referred to as a disjoint union. The collection is
further said to be exhaustive if the union of its events is the sample space, in which case∑∞

n=1 P(An) = 1. We say that a mutually exclusive and exhaustive collection of events
forms a partition of Ω.

Using the above definition of probability:

(a) Prove that for each event A ∈ F , P(A) = 1− P(Ac).

(b) Prove that the probability of a null set is zero, i.e. P(∅) = 0.

(c) Prove that if A and B are events such that A ⊂ B, then P(A) ≤ P(B).

(d) Prove that for each A ∈ F , 0 ≤ P(A) ≤ 1.

(e) Prove that if A and B are events in Ω, then

P(A ∪B) = P(A) + P(B)− P(A ∩B)

(f) For a finite sample space Ω = {x1, x2, . . . , xm} with m elements, let p1, p2, . . . , pm be
such that 0 ≤ pi ≤ 1 for i = 1, 2, . . . ,m and

∑m
i=1 pi = 1. Construct a probability set

function P(A) on F (for all subsets A ∈ F) such that all 3 above conditions are satisfied.

(g) Let Ω = {x1, x2, . . . , xm} be a finite sample space. Find the set of elementary probabil-
ities pi for all i = 1, 2, . . . ,m such that P(A) = #(A)/m, where #(A) denotes the number
of elements in A. Prove that P is a probability on Ω.

(h) Let Ω = {x : 0 < x <∞}. Let C ⊂ Ω be defined by C = {x : 0 < x < 10}. Define the

function P(A) =
∫
A

1
2e

−x/2dx for any event A ⊂ Ω. Show that P(Ω) = 1. Evaluate P(C),
P(Cc) and P(C ∩ Cc).

Solution. (a) We have Ω = A ∪ Ac and A ∩ Ac = ∅. Thus from conditions 2 and 3 it
follows that

1 = P(A) + P(Ac)
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(b) Take A = ∅ so that Ac = Ω. Using the result from (a),

P(∅) = 1− P(Ω) = 1− 1 = 0.

(c) Writing B = A ∪ (Ac ∩B) and A ∩ (Ac ∩B) = ∅, condition 3 gives

P(B) = P(A) + P(Ac ∩B)

From condition 1, P(Ac ∩B) ≥ 0. Hence, P(B) ≥ P(A).

(d) Since ∅ ⊂ A ⊂ Ω, we have by the results of part (c) that

P(∅) ≤ P(A) ≤ P(Ω)
or 0 ≤ P(A) ≤ 1, the desired result.

(e) Each of the sets A ∪B and B can be represented, respectively, as a union of noninter-
secting sets as follows:

A ∪B = A ∪ (Ac ∩B) and B = (A ∩B) ∪ (Ac ∩B).

These identities hold for all sets A and B, according to set theory. (You can also verify
them using Venn diagrams.) From condition 3 we have

P(A ∪B) = P(A) + P(Ac ∩B)

and
P(B) = P(A ∩B) + P(Ac ∩B).

If the second of these quantities is solved for P(Ac∩B) and this result is substituted in the
first equation, we obtain

P(A ∪B) = P(A) + P(B)− P(A ∩B).

(f) We can take pi = 1/m and P(A) = #(A)/m. See (g).

(g) Take the equilikely distribution pi = 1/m. Define:

P(A) =
∑
xi∈A

1

m
=

#(A)

m
.

Then, P is a probability on Ω. It is trivial to check that all 3 conditions are satisfied:
P(A) ≥ 0, P(Ω) = m/m = 1, and for disjoint sets P(A ∪B) = P(A) + P(B).

(h)

P(Ω) =
∫ ∞

0

1
2e

−x/2dx =
[
−e−x/2

]∞
0

= 0− (−1) = 1

■
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Problem 65. You write 3 letters and in a rush, put a random letter in each envelope.
(There are 3 envelopes, 3 letters, 1 letter per envelope.). What is the probability that at
least one letter is in the correct envelope?

Solution. Let Ci be the event that the i-th letter is in the correct envelope. Expand
P(C1 ∪ C2 ∪ C3) to determine the probability:

P(C1 ∪ C2 ∪ C3) = P(C1) + P(C2) + P(C3)− P(C1 ∩ C2)− P(C1 ∩ C3)

−P(C2 ∩ C3) + P(C1 ∩ C2 ∩ C3)

All pairwise terms P(C1∩C2), P(C1∩C3) and P(C2∩C3) are zero because it’s not possible
to have only 2 letters in correct envelopes without have all 3. Then,

P(C1 ∪ C2 ∪ C3) = P(C1) + P(C2) + P(C3) + P(C1 ∩ C2 ∩ C3).

Now the probabilities: There are 3!=6 ways to place 3 letters in 3 envelopes (order matters).
There is 1 way to place letter 1 in envelope 1 (and only 1 way to place envelopes 2 and
3 in the remaining incorrect envelopes). Therefore P(C1) = 1/6. Same for P(C2) and
P(C3). For the last term, P(C1 ∩ C2 ∩ C3), we need to know the number of ways we
can place all 3 letters in the correct envelopes. There’s only 1 way to do that. Hence,
P(C1 ∩ C2 ∩ C3) = 1/6. Thus,

P(C1 ∪ C2 ∪ C3) =
4

6
.

■

Problem 66. A random experiment consists of choosing a random number in the interval
(0, 1). (This number can be rational or irrational.) For any interval (a, b) ⊂ (0, 1) it seems
reasonable to define the probability P((a, b)) = b − a, i.e. as equal to the length of the
interval. Choose an appropriate sequence of subsets of (0, 1) and use the following result:

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∩∞
n=1Cn)

where {Cn} is a decreasing sequence of events (i.e. Cn+1 ⊂ Cn), to show that P({a}) = 0,
for all a ∈ (0, 1).

Solution. Construct the following decreasing sequence of events:

Ck = {x : a− 1/k < x < a+ 1/k}
You can check that these events are open intervals (a−1/k, a+1/k). Their intersection/limit
is the point {a}:

lim
k→∞

Ck ≡ ∩∞
k=1Ck = {a}.

Meanwhile,
P((a− 1/k, a+ 1/k)) = a+ 1/k − (a− 1/k) = 2/k.
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Taking the limit k → ∞, we see that (applying the above ‘result’)

P( lim
k→∞

Ck) = P({a}) = lim
k→∞

P((a− 1/k, a+ 1/k)) = lim
k→∞

2

k
= 0.

Therefore, P ({a}) = 0. ■

Problem 67. Calculate the following probabilities:

(a) Consider a probability space where the set of elementary outcomes is the interval
Ω = (0, 1), i.e. a number X (random variable) is chosen at random within that interval.
Define a probability measure over that interval as

P(X ∈ (a, b)) = b− a, for 0 < a < b < 1.

Find an expression for the CDF. Derive a PDF from P (or the CDF). Compute the prob-
ability that X is less than an eighth or greater than seven eights. Would it be possible to
use a discrete probability model for this experiment?

(b) In a random experiment we will an unbiased die. The set of outcomes is Ω =
{1, 2, 3, 4, 5, 6}. Let X be the random variable that indicates the result (top face of die)
of the experiment. X can take the value ∈ {1, 2, 3, 4, 5, 6}. Its PMF is pi = 1/6 for
i = 1, . . . , 6. Plot the CDF of X, i.e. F (x) vs x. Recall that the CDF is defined as
F (x) ≡ P(X ∈ (−∞, x]). For x < 1 define F (x) = 0. What is the limiting value of F (x)
(i.e. as x→ ∞)? Using the CDF, can you obtain the PMF? Explain.

(c) Let X be a random variable representing a real random number chosen between 0 and
1. Obtain the CDF of X. You may assume that P(X ∈ (a, b)) = b− a for 0 < a < b < 1.
Sketch the CDF. Obtain the PDF. State the connection between CDF and PDF.

(d) Let X be a random variable with the CDF F (x). Then for a < b, prove that the
probability P(a < X ≤ b) = F (b)− F (a).

(e) If X is a random variable and F (x) its CDF, then for all a and b, if a < b then
F (a) ≤ F (b) (F is nondecreasing). Also, it can be shown that limx→−∞ F (x) = 0 (the
lower limit of F is 0), limx→∞ F (x) = 1 (the upper limit of F is 1), limx↓x0 F (x) = F (x0)
(F is right-continuous).

Let X be the half-life of a radioactive isotope. Assume that X has the CDF

F (x) =

{
0 x < 0

1− e−x 0 ≤ x.

Obtain the PDF of X. Show that the derivative of the CDF does not exist at x = 0, but
that does not affect our ability to compute probabilities. Compute the probability that the
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half-life is between 1 and 3 years.

(f) The conditions expressed at the beginning of problem (e) show that CDFs are right-
continuous and monotone. Such functions can be shown to have at most a countable
number of discontinuities. For any random variable, prove that P(X = x) = F (x)−F (x−),
for all x ∈ R, where F (x−) = limz↑x F (z). This results is not a mere curiosity; it allows
us to deal with discontinuities in the distribution. Recall that for {Cn} a nondecreasing
sequence of events,

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∪∞
n=1Cn)

Similarly for a decreasing sequence of events,

lim
n→∞

P(Cn) = P( lim
n→∞

Cn) = P (∩∞
n=1Cn)

(g) Let X have a CDF:

F (x) =


0 x < 0

x/2 0 ≤ x < 1

1 1 ≤ x.

Compute the value P(−1 < X ≤ 1/2) and P(X = 1) (the value is not zero!).

(h) Let X have the PMF

p(x) =

{
cx x = 1, 2, . . . , 10

0 elsewhere

for an appropriate constant c. Find the value c.

(i) Let X have the PDF

f(x) =

{
cx3 0 < x < 2

0 elsewhere

for a constant c. Compute c. Compute the probability P(1/4 < X < 1).

(j) Let Ω = {x : 1 < x < 2} be the space of X. If D1 = {x : 1 < x ≤ 4/3} and
D2 = {x : 4/3 < x < 2}, find P(D2) if P(D1) = 1/3.

(k) Choose five cards at random and without replacement from a normal deck of playing
cards. Find the PMF of X, the number of hearts in the five cards. Determine P(X ≤ 1).

Solution. (a) PDF is obtained by differentiating the CDF. CDF is

F (x) ≡ P(X ∈ (0, x]) =

∫ x

0
dx = x.
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Then PDF is:

f(x) =

{
1 0 < x < 1

0 elsewhere

P({X < 1/8} ∪ {X > 7/8}) =
∫ 1/8

0
dx+

∫ 1

7/8
dx = 1/4.

Discrete: no, because the probability P({X = a}) = 0 for all a ∈ (0, 1).

(b) The CDF is defined as the right-continuous function:

F (x) =
∑

{i:xi≤x}

pi

where the notation {i : xi ≤ x} means “sum over all i such that xi ≤ x”. Plotting this
function gives a right-continuous function:

The PMF is given to us: {pi}. From the CDF we can obtain the PDF by differentiating:

f(x) =
dF (x)

dx
=
∑
i

piδ(x− xi),

where δ(x − xi) are Dirac delta functions. What about the PMF? The PMF is defined
as P(X = x), the probability that X takes a specific value x. Obviously this is zero
unless x = xi, the points where the CDF “jumps” (discontinuities of F ). The size of the
discontinuity gives pi. Formally, the probability of xi is obtained by integrating the PDF:

P(X = xi) =

∫
{xi}

f(x)dx = lim
ϵ→0

∫ xi+ϵ

xi−ϵ
f(x)dx = lim

ϵ→0

∫ xi+ϵ

xi−ϵ

∑
j

pjδ(x− xj)dx = pi.

The PMF can also be obtained form the CDF as follows:

P(X = xi) = lim
ϵ→0

P(xi − ϵ < X ≤ xi + ϵ) = lim
ϵ→0

{F (xi + ϵ)− F (xi − ϵ)} = pi.

(c) Recall that the CDF is defined as F (x) = P(X ∈ (−∞, x]). Since the domain of defi-
nition of X is (0,1), we take 0 instead of −∞ as the lower limit and we make sure that x
does not exceed 1. We can take P(X ∈ (a, b)) = b− a, replace a by 0 and b by x:



1.10. Problems 129

F (x) = P(X ∈ (0, x]) =


0 x < 0

x x ∈ (0, 1)

1 x > 1

The graph looks like:

The PDF is obtained from the CDF by differentiating:

f(x) =
dF (x)

dx
= 1

where x ∈ (0, 1). This is the uniform distribution on the interval (0, 1).

(d) Note that
{−∞ < X ≤ b} = {−∞ < X ≤ a} ∪ {a < X ≤ b}.

The proof follows immediately because the union on the right side of this equation is a
disjoint union.

(e) The PDF is obtained by differentiating

f(x) =
dF (x)

dx
=

{
e−x 0 < x <∞
0 elsewhere

The derivative of a function F (x) at the point a exists if the limit

lim
x→a

F (x)− F (a)

(x− a)

exists.

That limit is also the slope of the tangent line to the curve y = F (x) at x = a. That limit
does not exist when the curve y = F (x) does not have a tangent line at x = a or when
the curve does have a tangent line, but the tangent line has infinite slope. In the present
case, there is no tangent line at x = 0 because this point is a sharp corner (plot the graph
of F (x) to see).
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This is of no consequence when computing probabilities involving X because P(X = 0) = 0
(see problem f below). Therefore, we can assign f(0) = 0 without changing the probabilities
involving X.

Finally,

P(1 < X ≤ 3) = F (3)− F (1) =

∫ 3

1
e−xdx.

(f) For any x ∈ R, we have

{x} =

∞⋂
n=1

(
x− 1

n
, x

]
that is, {x} is the limit of a decreasing sequence of sets. Hence,

P(X = x) = P

( ∞⋂
n=1

{x− 1

n
< X ≤ x}

)
= lim

n→∞
P(x− 1/n < X ≤ x)

= lim
n→∞

[F (x)− F (x− 1/n)] = F (x)− F (x−)

which is the desired result. The difference, F (x)−F (x−) measures the discontinuity at x.

(g)

P(−1 < X ≤ 1/2) = F (1/2)− F (−1) =
1

4
− 0 =

1

4
.

P(X = 1) = F (1)− F (1−) = 1− 1

2
=

1

2
.

(h)

1 =

10∑
x=1

p(x) =

10∑
x=1

cx = c(1 + 2 + · · ·+ 10) = 55c.

Hence, c = 1/55.

(i)

1 =

∫ 2

0
cx3dx = x

[
x4

4

]2
0

= 4c.

Hence, c = 1/4. Also,

P(1/4 < X < 1) =

∫ 1

1/4

x3

4
dx =

255

4096
= 0.06226.

(j) The two sets are disjoint, D1 ∩ D2 = ∅. Since, D1 ∪ D2 = Ω, the collection of sets
{D1, D2} forms a partition of Ω. Then,

P(D1 ∪D2) = P(D1) + P(D2) = P(Ω) = 1.
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Hence,
P(D2) = 1− P(D1) = 1− 1/3 = 2/3.

(k) Let’s assume a standard 52-card deck. There are 4 suits, 13 cards per suit. The number
of ways to choose 5 cards without replacement, and without regard to order is:(

52

5

)
=

52!

(52− 5)!5!
= 2, 598, 960.

First we consider the case X = 1. The number of ways to choose a heart is
(
13
1

)
. Cards

2-5: number of ways to choose 4 non-hearts is
(
51
4

)
. Number of ways to choose 1 heart, 4

non-hearts: (
13

1

)(
39

4

)
.

The probability of X = 1 is

P(X = 1) =

(
13
1

)(
39
4

)(
52
5

) ≈ 0.4114

Similarly,

P(X = 2) =

(
13
2

)(
39
3

)(
52
5

) ≈ 0.2743

P(X = 3) =

(
13
3

)(
39
2

)(
52
5

) ≈ 0.0815

P(X = 4) =

(
13
4

)(
39
1

)(
52
5

) ≈ 0.0107

P(X = 5) =

(
13
5

)(
39
0

)(
52
5

) ≈ 0.0005

For P(X ≤ 1) we need to consider two disjoint events: {X = 0} and {X = 1}. Then,
P(X ≤ 1) = P({X = 0}) ∪ {X = 1}) = P(X = 0) + P(X = 1)

■

Problem 68. Let X have the PMF

pX(x) =

{
3!

x!(3−x)!
(
2
3

)x (1
3

)3−x
x = 0, 1, 2, 3

0 elsewhere

Find the PMF pY (y) of the random variable Y = X2.

Solution. The transformation y = g(x) = x2 maps the set {x : x = 0, 1, 2, 3} into {y :
y = 0, 1, 4, 9}. In general, y = x2 does not define a one-to-one transformation. Here,
however, it does, as there are no negative values of x in the set (for x). That is, we have
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the single-valued inverse function x = g−1(y) (not −√
y), and so

pY (y) = pX(
√
y) =

3!

(
√
y)!(3−√

y)!

(
2

3

)√
y (1

3

)3−√
y

, y = 0, 1, 4, 9

■

Problem 69. Consider a sequence of independent flips of a coin, each resulting in a head
(H) or a tail (T). On each flip, we assume that H and T are equally likely. The sample
space consists of sequences TTHTHTHTHT.... Let the random variable X equal to the
number of flips needed to obtain the first head. For example, X(TTHTHHT · · · ) = 3.
The space of X is Ω = {1, 2, 3, 4, . . . }. We see what X = 1 when the sequence begins with
an H and P(x = 1) = 1

2 . Likewise, X = 2 when the sequence begins with TH, which has

probability P(X = 2) = (12)(
1
2) =

1
4 (assuming statistical independence). More generally,

if X = x, where x = 1, 2, 3, 4, . . . , there must be a string of x− 1 tails followed by a head.
That is, TT· · ·TH, where there are x− 1 tails in TT· · ·T. Thus, from independence,

P(X = x) =

(
1

2

)x−1(1

2

)
=

(
1

2

)x
, x = 1, 2, 3, . . .

the space of which is countable. Calculate the probability of the event that the first head
appears on an odd number of flips, i.e. X ∈ {1, 3, 5, . . . }. Let Z = (X − 2)2. Compute the
PMF of Z.

Solution. For the first part of the question,

P (X ∈ {1, 3, 5, . . . }) =
∞∑
x=1

(
1

2

)2x−1

=
1

2

∞∑
x=1

(
1

4

)x−1

=
1/2

1− (1/4)
=

2

3
.

For Z = (X − 2)2, the space of Z is {0, 1, 4, 9, 16, . . . }. Note that Z = 0 if and only if
X = 2. Z = 1 if and only if X = 1 or X = 3. For the other values of the space there is a
one-to-one correspondence given by x =

√
z + 2, for z ∈ {4, 9, 16, . . . }. Hence, the PMF of

Z is

pZ(z) =


pX(2) =

1
4 for z = 0

pX(1) + pX(3) =
5
8 for z = 1

pX(
√
2 + 2) = 1

4

(
1
2

)√z
for z = 4, 9, 16, . . .

You can show that the PMF of Z sums to 1 over its space. ■

Problem 70. Suppose that we have a unit circle and select a point at random within the
interior of the circle. Let X be the distance of the point to the origin (Euclidean distance).
The sample space for the random point is Ω = {(w, y) : w2+y2 < 1}. If the points (chosen
at random) have equal probability, write down a formula for the probability of the point
landing within an area A contained within the interior of the circle. The event {X ≤ x}
means the point lies in a circle of radius x. Compute the probability P(X ≤ x). Write down
the CDF of X. Obtain the PDF of X. Calculate the numerical value of P(1/4 < X ≤ 1/2).
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Solution.

P(A) =
area of A

π
For 0 < x < 1, the event {X ≤ x} is equivalent to the point lying in a circle of radius x.
By this probability rule, P(X ≤ x) = πx2/π = x2. Hence, the CDF of X is

F (x) =


0 x < 0

x2 0 ≤ x < 1

1 1 ≤ x

■

Problem 71. Suppose that a phone company operates a computerized switchboard de-
signed to route phone calls across the busy telephone network. Let X be the random
variable that is the time in seconds between (consecutive) incoming telephone calls. Sup-
pose that the PDF of X is

f(x) =

{
1
4e

−x/4 0 < x <∞
0 elsewhere

Show that f(x) is normalized (to 1) and that f(x) ≥ 0. Calculate the probability that the
time between successive phone calls exceeds 4 seconds, i.e. P(X > 4). Plot this PDF and
illustrate the area under the graph that corresponds to this probability. Is this distribution
skewed? Compute the skewness of the distribution and explain the value obtained.

Solution.

f(x) =

{
1
4e

−x/4 0 < x <∞
0 elsewhere

P(X > 4) =

∫ ∞

4

1

4
e−x/4dx = e−1 = 0.3679.

■

Problem 72. Obtain the distribution of Y = X2, where the CDF of X is

FX(x) =


0 x < 0

x2 0 ≤ x < 1

1 1 ≤ x

Both X and Y have the same support, i.e., the interval (0, 1).

Solution. Let y be the support of Y , i.e., 0 < y < 1. The CDF of Y is

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √
y) = FX(

√
y) =

√
y2 = y.
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It follows that the PDF of Y is

fY (y) =

{
1 0 < y < 1

0 elsewhere

■

Problem 73. Let X be a continuous random variable with PDF

f(x) =
ex

(1 + 5ex)1.2
, −∞ < x <∞.

Obtain the CDF of X. Plot the PDF. Compute the 3 quantiles: 0.25, 0.50 and 0.75 for
X. Indicate on the graph of the PDF the position of the 3 quantiles. Definition (quantile):
Let 0 < p < 1. The quantile of order p of X is a value ξp such that P(X < ξp) ≤ p and
P(X ≤ ξp) ≥ p. It is known as the (100p)th percentile of X.

Solution. The CDF of X is

F (x) = 1 + (1 + 5ex)−.2 −∞x <∞,

which is confirmed by differentiation, F ′(x) = f(x). The quantiles are

q1 = −0.4419242

for 25%,
q2 = 1.824549

for 50% and
q3 = 5.321057

for 75%.

■

Problem 74. Let fX(x) = 1/2, −1 < x < 1, zero elsewhere, be the PDF of X. X has
uniform distribution within the interval of support (−1, 1). Define Y = X2. Find the PDF
and CDF of Y .

Solution. If y ≥ 0, the probability P(Y ≤ y) is equivalent to

P(X2 ≤ y) = P(−√
y ≤ X ≤ √

y).
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Accordingly, the CDF of Y is given by

FY (y) =


0 y < 0∫ √

y

−√
y

1
2dx =

√
y 0 ≤ y < 1

1 1 ≤ y

■

Problem 75. Let X have a distribution

F (x) =


0 x < 0
x+1
2 0 ≤ x < 1

1 1 ≤ x

.

Calculate the value P(−3 < X ≤ 1/2) and P(X = 0) (not zero!). Plot the graph of
F (x). Comment on any discontinuities and on the discrete (or non-discrete) nature of the
distribution.

Solution.

P(−3 < x ≤ 1/2) = F (1/2)− F (−3) =
3

4
− 0 =

3

4

P(X = 0) = F (0)− F (0−) =
1

2
− 0 =

1

2
.

■

Problem 76. Compute the following expectation values of X:

(a) Let X have the PDF

f(x) =

{
4x3 0 < x < 1

0 elsewhere

(b) For x = 1, 2, 3, 4 the corresponding PMF is p(x)=4/10, 1/10, 3/10 and 2/10, respec-
tively. Here, p(x) = 0 if x is not equal to one of the first four positive integers.

(c) Let X be continuous rv with PDF f(x) = 2x, which has support on the interval (0, 1).
Suppose Y = 1/(1 +X). Find ⟨X⟩ and ⟨Y ⟩.

(d) Let X have the PDF

f(x) =

{
2(1− x) 0 < x < 1

0 elsewhere

Calculate ⟨X⟩, ⟨X2⟩ and ⟨6X − 3X2⟩.
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(e) Let X have the PMF

p(x) =

{
x
6 x = 1, 2, 3

0 elsewhere

Compute ⟨6X3 +X⟩.

(f) Divide randomly a line segment of length 5 into two parts. If X is the length of the
left-hand part, it is reasonable to assume that X has the PDF

f(x) =

{
1
5 0 < x < 5

0 elsewhere

Compute the expected value of the length ⟨X⟩. Calculate ⟨5−X⟩. Calculate also ⟨X(5−X)⟩
(expectation value of their product). Explain why ⟨X(5 − X)⟩ ≠ ⟨X⟩ · ⟨5 − X⟩. In the
physical sciences, we often encounter situations like this where the product of expectation
values is not the same as the expectation value of the product. A famous example is
the spatial dependence of the dipole-dipole interaction, which scales as 1/r3. In general,
⟨1/r3⟩ ≠ ⟨1/r⟩3.

Solution. (a)

⟨X⟩ =
∫ 1

0
x(4x3)dx =

∫ 1

0
4x4dx =

4x5

5

∣∣∣∣1
0

=
4

5
.

(b)

⟨X⟩ = (1)
4

10
+ (2)

1

10
+ (3)

3

10
+ (4)

2

10
=

23

10
= 2.3

(c)

⟨Y ⟩ =
∫ 1

0

2x

1 + x
dx =

∫ 2

1

2u− 2

u
du = 2(1− log 2).

(d)

⟨X⟩ =
∫ ∞

−∞
xf(x)dx =

∫ 1

0
(x)2(1− x)dx =

1

3

⟨X2⟩ =
∫ ∞

−∞
x2f(x)dx =

∫ 1

0
(x2)2(1− x)dx =

1

6

⟨6X + 3X2⟩ = 6(
1

3
) + 3(

1

6
) =

5

2
.

(e)

⟨6X3 +X⟩ = 6⟨X3⟩+ ⟨X⟩ = 6
3∑

x=1

x3p(x) +
3∑

x=1

xp(x) =
301

3
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(f)

⟨X(5− x)⟩ =
∫ 5

0
x(5− x)(

1

5
)dx =

25

6
̸= (

5

2
)2.

■

Problem 77. Suppose that we have an amplifier that takes a voltage and amplifies it by
a factor of 10×, i.e. f(x) = 10x. Suppose that we feed this amplifier the following input
voltages:

X = {2.53, 2.55, 2.45, 2.49, 2.50, 2.52, 2.47, 2.48, 2.56, 2.49}

(a) What is the sample variance at the output of the amplifier?

(b) Suppose that we have two rv’s, X and Y and they are statistically independent. Fur-
thermore, suppose that var(X)=2.7 and var(Y )=2.5. Compute the value of var(X + Y )
and var(X − Y ).

(c) Given that var(X)=2.7, var(Y )=2.5 and ρ(X,Y )=0.9 (correlation coefficient), what is
var(X + Y ) and var(X − Y )?

(d) IfX, Y and Z are statistically independent and var(X)=1.7, var(Y )=2.3 and var(Z)=1.4.
What is var(0.3X + 0.7Y + 0.5Z)?

Solution. (a) First, calculate the sample variance of X and then multiply by 100. Then
multiply each Xi by 10 and then calculate the sample variance of the multiplied values.
The sample variance of the X’s is 0.001249. Multiply this by 100 to get 0.1249. Multiplying
each X by 10 and taking the sample variance we get 0.1249, which is the same as the first
method. From this we confirmed the validity of the formula var(aX) = a2var(X).

(b) By statistical independence we have

var(X + Y ) = var(X) + var(Y ) = 2.7 + 2.5 = 5.2.

Then from
var(aX + bY ) = a2var(X) + b2var(Y ),

with a = 1 and b = −1 we have

var(X − Y ) = (1)2var(X) + (−1)2var(Y ) = var(X) + var(Y ) = 2.7 + 2.5 = 5.2.

From this, we conclude that when X and Y are statistically independent, var(X + Y ) =
var(X − Y ) = var(X) + var(Y ). ■





Chapter 2

Statistical Foundations
of Thermodynamics

2.1. Probability Distributions in Statistical Mechanics

2.1.1. Boltzmann distribution. In classical mechanics the momentum p of a particle
with mass m in a gas may be considered as a (three-dimensional) random variable. For
the density distribution one obtains

ρ(p) =
1

A
exp

(
−β p2

2m

)
, where β =

1

kBT
.

Here T represents the temperature, kB is the Boltzmann’s constant and A is a normalization
constant. The density ρ(p) is thus given by a three-dimensional Gaussian distribution. The
general n-dimensional Gaussian distribution is

ρ(µ,A;x) =
(2π)−n/2

(detA)1/2
exp

(
−1

2
(x− µ)i(A

−1)ij(x− µ)j

)
.

Here we have used the summation convention, i.e. one has to sum over all indices appearing
twice. The vector µ and the matrix A are parameters of this distribution.

As our second example of a multivariate distribution we consider a gas of N particles
characterized by the momenta and positions of all particles:

(p,q) = (p1, . . . ,pN ,q1, . . . ,qN ).

We will describe this state at each instant by a 6N -dimensional random vector. When
the volume and the temperature of the gas are specified, one obtains for the probability

139
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density in statistical mechanics

ρ(p,q) =
1

A
e−βH(p,q), β =

1

kBT
,

where again T denotes the temperature, kB Boltzmann’s constant and A is a normalization
constant. Furthermore, H(p,q) is the Hamiltonian function for the particles in the volume
V . This density is also called the Boltzmann distribution.

2.1.2. Marginal Densities. When one integrates over some of the variables of a multidi-
mensional probability density, one obtains a probability density describing the probability
for the remaining variables, irrespective of the values for those variables which have been
integrated over. Let, for instance,

ρ′(x1) =

∫
dx2 . . . dxnρ(x1, x2, . . . , xn),

then ρ′(x1)dx1 is the probability of finding X1 in the interval [x1, x1 + dx1], irrespective
of the outcome for the variables X2, . . . , Xn. This may be illustrated for the case of the
Boltzmann distribution. With the Hamiltonian function

H =
N∑
i=1

p2
i

2m
+ V (q1, . . . ,qN ),

one obtains, after taking the integral over p2, . . . ,pN ,q1, . . . ,qN , the probability density
for a single particle, in this case in the form

ρ′(p1) =
1

A′ exp

(
−β p2

1

2m

)
.

2.1.3. Conditional Probabilities and Bayes’ Theorem. With the Boltzmann dis-
tribution we have already met a distribution where certain given parameters need to be
included explicitly, for instance, the temperature T and the volume V . The number of
particles N may also be counted among these given parameters. In probability theory one
writes A|B for an event A under the condition that B is given. So the probability P(A) is
then more precisely denoted by P(A|B), i.e., the probability of A when B is given. P(A|B)
is called the conditional probability.

This notion extends to the probability densities. The Boltzmann distribution can therefore
be written as

ρ(p,q|T, V,N),

or in words, the probability density for the positions and momenta at given temperature,
volume, and number of particles. In the same way,

ρ(px|py, pz)
is the probability density for the x-component of the momentum of a particle under the
condition that the y- and z-components are given.
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One may form

(2.1) P(A,B) = P(A|B)P(B),

which is the joint probability for the occurrence of A and B. If B is an event in the same
Borel space as A, then the joint probability P(A,B) is equivalent to P(A ∩B).

One may also define the conditional probability by

P(A|B) =
P(A,B)

P(B)
.

If the denominator P(B) vanishes, it is not meaningful to consider the conditional proba-
bility P(A|B).

Similarly, conditional densities might also be introduced by using the multivari- ate prob-
ability densities, e.g.,

ρ(px|py, pz) =
ρ(px, py, pz)

ρ(py, pz)
.

Example: consider a fair die and B = {2, 4, 6}, A = {2}. (Here A and B belong to the
same Borel space.). Then

P(A|B) =
P(A ∩B)

P(B)
=

P(A)
P(B)

=
1/6

1/2
=

1

3
.

The probability for the event {2}, given the number of points is even, is 1/3. Obviously
also P(B|A) = 1.

We note that if
∪Ni=1Bi = Ω

is a disjoint, complete partition of Ω (such that Bi∩Bj = ∅ and the union of all Bi is equal
to the total set Ω), then obviously

P(A) = P(A,Ω) =
N∑
i=1

P(A,Bi) =
N∑
i=1

P(A|Bi)P(Bi),

where in the last step we have invoked Eq. (2.1). This should be compared with the formula

ρX1(x1) =

∫
dx2 ρX1,X2(x1, x2) =

∫
dx2 ρ(x1|x2)ρX2(x2).

2.1.4. Statistical Independence. We can define the concept of statistical independence
starting from a slightly different point. Let A1 and A2 be two events (in the same, or
possibly different Borel spaces). A1 is said to be independent of A2 if the probability for
the occurrence of A1 is independent of A2, i.e.

P(A1|A2) = P(A1).

In light of the definition of conditional probability, P(A1|A2) =
P(A1,A2)
P(A2)

, we have:

P(A1, A2) = P(A1)P(A2).
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If A1 is independent of A2, then A2 is also independent of A1: statistical independence is
always mutual. Similarly, the joint density of two independent random variables may be
written as

ρX1,X2(x1, x2) = ρX1(x1)ρX2(x2).

2.1.5. Bayes’ Theorem. From

P(A,B) = P(A|B)P(B) = B|AP(A)
it follows that

P(B|A) = P(A|B)P(B)

P(A)
.

Hence P(B|A) can be determined from P(A|B), if the a priori probabilities P(A) and P(B)
are known.

Bayes’ theorem is a very useful relation for determining the a posteriori probabilities P.B
j A/. It has enormous numbers of applications.

Example: A company which produces chips owns two factories : Factory A produces 60%
of the chips, factory B 40%. So, if we choose at random one chip from the company, this
chip originates from factory A with a probability of 60%. We further suppose that 35% of
the chips coming from factory A are defective, but only 25% of those coming from factory
B.

Using Bayes’ theorem one can determine the probability that a given defective chip comes
from factory A. Let d be the event ‘the chip is defective’, A the event ‘the chip comes
from factory A’, and B = (= Ac) the event ‘the chip comes from factory B’. From Bayes’
theorem we then have

P(A|d) = P(d|A)P(A)
P(d)

=
P(d|A)P(A)

P(d|A)P(A) + P(d|B)P(B)
.

Inserting the numbers P(A) = 0.60, P(d|A) = 0.35, P(d|B) = 0.25 yields a value of P(A|d) =
0.68.

2.1.6. Entropy.

2.1.6.1. Entropy for a discrete set of events. Let {A1, . . . , AN} be a complete, disjoint set
of events, i.e.

A1 ∪A2 ∪ · · · ∪AN = Ω.

Furthermore, let P be a probability defined on those events. We define the entropy as

S = −k
N∑
i=1

P(Ai) logP(Ai).

Here k represents a factor which we set equal to 1 for the moment. In statistical mechanics
k will be Boltzmann’s constant kB.

We observe:
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• The entropy is defined for a complete, disjoint set of events of a random variable, irre-
spective of whether this partition of Ω into events can be refined or not. If Ω is the real
axis, we might have, e.g., N = 2, A1 = (−∞, 0), A2 = [0,∞).

• Since 0 ≤ P(Ai) ≤ 1 we always have S ≥ 0.

• If P(Aj) = 1 for a certain j and P(Ai) = 0 otherwise, then S = 0. This means that if
the event Aj occurs with certainty the entropy is zero.

• If an event has occurred, then, − log2 P(Aj) is a good measure of the number of questions
to be asked in order to find out that it is just Aj which is realized. In this context,
‘question’ refers to questions which can be answered by ‘yes’ or ‘no’, i.e., the answer
leads to a gain of information of 1 bit. Hence, on average the required number of yes-or-
no questions is

S′ = −
N∑
j=1

P(Aj) log2 P(Aj) = S + const.

The entropy is thus a measure of the missing information needed to find out which result
is realized.

To show that − log2 P(Aj) is just equal to the number of required yes-or-no questions,
we first divide Ω into two disjoint domains Ω1 and Ω2 such that∑

Ai∈Ω1|

P(Ai) =
∑
Ai∈Ω2

P(Ai) =
1

2
.

The first question is now: Is Aj in Ω1? Having the answer to this question we next
consider the set containing Aj and multiply the probabilities for the events in this set
by a factor of 2. The sum of the probabilities for this set is now again equal to 1, and
we are in the same position as before with the set Ω: We divide it again and ask the
corresponding yes-or-no question. This procedure ends after k steps, where k is the
smallest integer such that 2kP(Aj) becomes equal to or larger than 1. Consequently,
− log2 P(Aj) is a good measure of the number of yes-or-no questions needed.

• If the probabilities of the events are equal, i.e.,

P(Ai) =
1

N
,

we have
S = logN.

Any other distribution of probabilities leads to a smaller S. This will be shown later.

The above observations suggest that the entropy may be considered as a lack of information
when a probability density is given. On average it would require the answers to S yes-or-
no questions to figure out which event has occurred. This lack is zero for a density which
describes the situation where one event occurs with certainty. If all events are equally
probable, this lack of information about which event will occur in a realization is maximal.



144 2. Statistical Foundations of Thermodynamics

A less subjective interpretation of entropy arises when we think of it as a measure for
uncertainty. If the probability is the same for all events, the uncertainty is maximal.

2.1.6.2. Entropy for a continuous space of events. In a similar manner we define the entropy
for a random variable X , where the space of events is a continuum, by

S[ρX ] = −k
∫
dxρX(x) log

(
ρX(x)

ρ0

)
.

When ρX(x) has a physical dimension, the denominator ρ0 in the argument of the logarithm
cannot simply be set to 1. Since the physical dimension of ρX(x) is equal to the dimension
of 1/dx, the physical dimension of ρ0 has to be the same, in order that the argument of
the logarithm will be dimensionless.

It is easy to see that a change of ρ0 by a factor α leads to a change of the entropy by an
additive term k logα. Such a change of ρ0 only shifts the scale of S. Notice that we no
longer have S ≥ 0.

We now calculate1 the entropy for a Gaussian random variable N(µ, σ2). We obtain (for
k = 1, ρ0 = 1)

S =

∫
dx

(
(x− µ)2

2σ2
+

1

2
log(2πσ2)

)
ρX(x) =

1

2
(1 + log(2πσ2)).

The entropy increases with the width σ2 of the probability density, i.e., with the spreading
around the expectation value. In this case we again find that the broader the distribution,
the larger our ignorance about which event will occur in a realization, and the larger the
entropy. Again, entropy means a lack of information or uncertainty.

2.1.7. Relative Entropy. The relative entropy of a density function p(x) with respect
to a second density function q(x) is defined by

S[p|q] = −k
∫
dxp(x) log

(
p(x)

q(x)

)
.

Obviously, p(x) = q(x) iff S[p|q] = 0. However, while the entropy for a complete and
disjoint set of events is positive semi-definite, the relative entropy of a density function
p(x) with respect to a given density function q(x) is negative semi-definite, i.e.,

S[p|q] ≤ 0.

This is easy to see: We use the inequality

log z ≤ z − 1

for z = q(x)
p(x) , multiply by p(x), integrate over x, and obtain

−
∫
dxp(x) log

(
p(x)

q(x)

)
≤
∫
dx(q(x)− p(x)) = 0.

1The first term is trivial (requires no computation), because it is just the variance of the Gaussian, i.e.
∫
dx (x −

µ)2ρX(x) ≡ var(X).
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The inequality follows from log z ≤ z − 1 with z = q/p. The last step follows since both
densities are normalized, causing the integrals on the right-hand side to be equal, from
which S[p|q] ≤ 0 follows.

Remarks: The notion of entropy was first introduced into thermodynamics as an extensive
quantity, conjugate to temperature. The revealing discovery of the connection between
this quantity and the probability of microstates was one of the great achievements of L.
Boltzmann, and his equation S = k logW . The introduction of entropy as a measure
of the uncertainty of a density originated from Shannon (1948). Kullback and Leibler
(1951) were the first to define the relative entropy, for which reason it is sometimes called
Kullback–Leibler entropy. The relation between thermodynamics and information theory
has been discussed extensively by Jaynes (1982).

2.1.8. Proof of the inequality log z ≤ z−1. A proof of the inequality log(z) ≤ z−1 can
be obtained by considering the function f(z) = z − 1− log(z) for z > 0 and its derivative,
f ′(z) = 1 − 1

z . We find the critical points by setting f ′(z) = 0, which gives 1 − 1
z = 0 or

z = 1. We then apply the second derivative test using f ′′(z) = 1
z2
. Since f ′′(z) > 0 for

z > 0, f(z) is concave up, indicating that z = 1 is a local minimum. We then evaluate
f(z) at z = 1 and obtain f(1) = 1 − 1 − log(1) = 0. Since z = 1 is a local minimum and
f(z) is concave up for z > 0, f(z) is non-negative for z > 0 and f(z) = z − 1− log(z) ≥ 0,
which leads to the desired result, log(z) ≤ z − 1.

2.1.9. Applications of Entropy. Using the inequality S[p|q] ≤ 0 satisfied by the relative
entropy it will now be easy to see that a constant density distribution always has maximum
entropy. Notice, however, that such a constant density distribution is only possible if Ω,
the set of possible outcomes, is a compact set, e.g., a finite interval.

Let q(x) ≡ q0 be the constant density on Ω and ρ(x) be an arbitrary density. The entropy
of this density can also be written as2

S[ρ] = S[ρ|q0]− k log

(
q0
ρ0

)
.

From S[ρ|q0] ≤ 0 and S[ρ|q0] = 0 for ρ ≡ q0 follows: S[ρ] is maximal for ρ ≡ q0

2Using the definition

S[ρ|q0] = −k
∫
dxρ(x) log

(
ρ(x)

q0

)
= −k

∫
dxρ(x) log ρ(x) + k

∫
dxρ(x) log q0

we find

S[ρ] = −k
∫
dxρ(x) log

(
ρ(x)

ρ0

)
= −k

∫
dxρ(x) log ρ(x) + k

∫
dxρ(x) log ρ0

which simplifies to

= S[ρ|q0]− k

∫
dxρ(x) log q0 + k

∫
dxρ(x) log ρ0

and
= S[ρ|q0]− k log(q0/ρ0).
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As a second application we now consider two random variables X1, X2, their densities
ρX1(x), ρX2(x), and the joint density ρX1,X2(x1, x2). For the relative entropy

S[ρX1,X2 |ρX1 ρ̇X2 ] = −
∫
dx1dx2ρX1,X2(x1, x2) log

(
ρX1,X2(x1, x2)

ρX1(x1)ρX2(x2)

)
≡ S12

a short calculation yields3

S[ρX1,X2 |ρX1ρX2 ] = S12 − S1 − S2,

where Si is the entropy for the density ρXi(x), i = 1, 2 and S12 the entropy of the joint
density ρX1,X2(x1, x2). As the relative entropy is always smaller than or equal to zero, one
always has

S12 ≤ S1 + S2.

Hence, the entropy of the joint density is always smaller than or equal to the sum of the
entropies of the single densities. Equality holds iff

ρX1,X2(x1, x2) = ρX1(x1)ρX2(x2),

i.e., if the two random variables are independent: the entropies of independent random
variables add up4. For independent random variables the total entropy is maximal. Any
dependence between the random variables reduces the total entropy and lowers the uncer-
tainty for the pair of random variables, i.e. any dependency corresponds to an information
about the pair of random variables. The relative entropy S[ρX1,X2 |ρX1ρX2 ] is also known
as mutual information.

In the remainder of this section we address the maximum entropy principle. We are looking
for the density function ρ(x) which has maximum entropy and satisfies the supplementary
conditions

(2.2) ⟨gi(X)⟩ ≡
∫
dxgi(x)ρ(x) = ηi, i = 1, . . . , n.

Here gi(x) are given functions and ηi are given real numbers. From the proposition about
the relative entropy proven above, one finds that the density function with maximum

3Simply expand the expression for S[ρX1,X2
|ρX1

ρ̇X2
] given in the previous line. The logarithm be-

comes log(ρX1,X2
) − log ρX1

− log ρX2
. This leads to 3 terms. The first term is S12 =

−
∫
dx1dx2ρX1,X2 (x1, x2) log ρX1,X2 (x1, x2). The second term, S1 =

∫
dx1dx2ρX1,X2 (x1, x2) log ρX1 (x1). Inte-

gration over dx2 gives a marginal density, so that the term becomes S1 =
∫
dx1ρX1

(x1) log ρX1
(x1). Same story

for the third term, S2 =
∫
dx1dx2ρX1,X2

(x1, x2) log ρX2
(x2). Integration over dx1 gives a marginal density, so that

S2 =
∫
dx2ρX2 (x2) log ρX2 (x2).

4The proof is trivial:

−
∫
dx1dx2ρX1 (x1)ρX2 (x2) log

ρX1
(x1)ρX2

(x2)

ρ20
= −

∫
dx1dx2ρX1 (x1)ρX2 (x2) log

ρX1
(x1)

ρ0

−
∫
dx1dx2ρX1

(x1)ρX2
(x2) log

ρX2 (x2)

ρ0
= S[ρX1

] + S[ρX2
].
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entropy satisfying the supplementary conditions (2.2) has the form

(2.3) ρ(x) =
1

A
e−λ1g1(x)−λ2g2(x)−···−λngn(x).

Here A is a normalization factor and {λi} may be calculated from {ηi}. With the help of
this maximum entropy principle we can determine density functions.

Proof. For the density function (2.3) one obtains (with k = 1)

S[ρ] = log(Aρ0) +
n∑
i=1

λiηi,

where ρ0 represents the factor which might be necessary for dimensional reasons. Let φ(x)
be a second density satisfying the supplementary conditions (2.2). Then, according to
S[p|q] ≤ 0,

S[φ|ρ] ≤ 0,

i.e.

S[φ|ρ] = −k
∫
dxφ(x) log

φ(x)

ρ(x)
= −

∫
φ logφ+

∫
φ log ρ+ log ρ0 − log ρ0 ≤ 0,

which leads to ∫
φ log(φ/ρ0) ≤

∫
φ log(ρ/ρ0)

and therefore

S[φ] =−
∫
dxφ(x) log

(
φ(x)

ρ0

)
≤
∫
dxφ(x) log

(
ρ(x)

ρ0

)
=

∫
dxφ(x)

[
log(Aρ0) +

n∑
i=1

λigi(x)

]

= log(Aρ0) +
n∑
i=1

λiηi ≡ S[ρ],

where the third line follows from Eq. (2.3). Hence, ρ(x) given by (2.3) is the density with
maximum entropy.

Let us look at the two examples. First we seek the density defined on [0,∞) which has
maximum entropy and satisfies the supplementary condition

⟨X⟩ = η.

We immediately find this density as

ρ(x) =
1

A
e−λx for x ≥ 0.
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The normalization factor A is given by

A =

∫ ∞

0
dxe−λx =

1

λ
,

and λ is determined by η according to

η = ⟨X⟩ =
∫ ∞

0
dxxλe−λx = −λ ∂

∂λ

∫ ∞

0
dxe−λx =

1

λ
.

Therefore,

ρ(x) =
1

η
e−x/η.

As a second example we seek the density ρ(p,q), defined on the 6N -dimensional phase
space for N classical particles, which has maximum entropy and satisfies the supplementary
condition

⟨H(p,q)⟩ = E,

where H(p,q) is the Hamiltonian function for the N particles. One obtains

(2.4) ρ(p,q) =
1

A
e−λH(p,q),

i.e., the Boltzmann distribution. We still have to determine A and λ. The former follows
from the normalization condition

(2.5) A =

∫
Γ
d3Np d3Nq e−λH(p,q),

where Γ is the phase space domain

Γ = {(p1, . . . ,pN ,q1, . . . ,qN ) : qi ∈ V,pi ∈ R3, ∀i = 1, . . . , N}.
In particular, we find

(2.6) − 1

A

∂A

∂λ
= ⟨H(p,q)⟩.

λ follows from the supplementary condition:

(2.7) E = ⟨H(p,q)⟩ = 1

A

∫
Γ
d3Np d3NqH(p,q) e−λH(p,q).

The right-hand side yields a function f(λ,N, V ) which has to be equal to E. The resulting
equation has to be solved for λ to obtain λ = λ(E,N, V ).

The meaning of λ becomes more obvious when we consider the entropy. We have5

S[ρ] = log(Aρ0) + λE

5This is easily seen as follows:

S[ρ] = −
∫
dx

1

A
e−λH(x) log

A−1e−λH(x)

ρ0
= log(Aρ0) + λ⟨H⟩,

where ⟨H⟩ = E.
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and therefore, using (2.6), we find6

∂S[ρ]

∂E
=
∂λ

∂E

∂

∂λ
log(Aρ0) +

∂λ

∂E
E + λ = λ.

The quantity λ indicates the sensitivity of the entropy to a change in energy. In statis-
tical mechanics we introduce the temperature as being proportional to the inverse of this
quantity λ and we will consider a system of N particles in a volume V , for which the tem-
perature, i.e. the parameter λ, is held fixed by contact with a heat bath. In this system,
which will be called the canonical system, we will obtain the Boltzmann distribution as the
probability density for the positions and momenta of the particles. In the present context
it results from the requirement of maximum entropy under the supplementary condition
⟨H(x)⟩ = E.

This has a twofold significance: First, that the energy is not fixed, but the system may
exchange energy with the environment (i.e. the heat bath), and second, that ⟨H(x)⟩ is
independently given, which is equivalent to fixing the temperature in the canonical system.
Both approaches to the Boltzmann distribution proceed from the same physical situation.

If we were looking for a system with maximum entropy which satisfies the supplementary
conditions

⟨H(x)⟩ = E and ⟨H2(x)⟩ = C,

we would construct a system where both ⟨H(x)⟩ and ⟨H2(x)⟩ are independently given.
In the canonical system, however, one can determine ⟨H2(x)⟩ as a function of E,N, V or
T,N, V .

2.1.10. Ideal Gas: Average Kinetic Energy. The ideal gas is defined as a non-
interacting ensemble of particles. The Hamiltonian contains a kinetic energy term, but
no potential energy:

H(p,q) =

N∑
i=1

p2
i

2m

The density associated with the canonical ensemble (fixed T, V,N) is given by Eq. (2.4),

the Boltzmann distribution, ρ(p,q) = 1
Ae

−λH(p,q). Using this density, we may compute
various quantities of interest. For example, consider the kinetic energy of a single particle:

p2
1

2m
=
p2x1 + p2y1 + p2z1

2m
The average is computed using the density:

⟨p2
1⟩ = ⟨p2x1 + p2y1 + p2z1⟩ = ⟨p2x1⟩+ ⟨p2y1⟩+ ⟨p2z1⟩ = 3⟨p2x1⟩,

6Note that
∂

∂λ
logA =

1

A

∂A

∂λ
= −⟨H⟩ = −E.
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where in the last step we have used the fact that all directions are equivalent, so that
⟨p2x1⟩ = ⟨p2y1⟩ = ⟨p2z1⟩. Let us therefore compute the average ⟨p2x1⟩:

⟨p2x1⟩ =
1

A

∫
Γ
d3Np d3Nq p2x1 e

−β
∑N

i=1

p2
i

2m =
1

A

∫
Γ
d3Np d3Nq p2x1

N∏
i=1

e−β
p2xi+p2yi+p2zi

2m .

Integration over q is trivial because the integrand does not depend on q. We get a factor
V N from it. We are left with

⟨p2x1⟩ =
V N

A

∫
R3N

d3Np p2x1

N∏
i=1

e−β
p2xi+p2yi+p2zi

2m .

Next, notice that all remaining integrals except dpx1 are identical, let’s call them ξ =∫
R dpjie

−βp2ji/2m =
√

2πm
β . There are 3N − 1 such factors, leaving us with

⟨p2x1⟩ =
V Nξ3N−1

A

∫
R
dpx1 p

2
x1 e

−β p2x1
2m =

V Nξ3N−1

A

√
2π(

2

β
)3/2,

where we used the fact that the remaining integral is proportional to the variance of the
Gaussian, i.e.∫

R
dpx1 p

2
x1 e

−β p2x1
2m ×

√
2πσ2√
2πσ2

=
√
2πσ2 var(px1) =

√
2πm/β

m

β
=

√
2π(

m

β
)3/2

with σ2 = m/β. Now for A, we have

A =

∫
Γ
d3Np d3Nq e−β

∑N
i=1

p2
i

2m = V Nξ3N .

Putting it all together:

⟨p2x1⟩ =
V Nξ3N−1

V Nξ3N

√
2π(

2

β
)3/2 =

1

ξ

√
2π(

m

β
)3/2 =

√
β

2πm

√
2π(

m

β
)3/2 = kBTm.

Therefore,

⟨ p
2
1

2m
⟩ = 1

2m
· 3⟨p2x1⟩ =

3

2m
kBTm =

3

2
kBT,

independent of mass. This result is for 1 particle. For N particles, we have:

⟨KE⟩ = 3

2
NkBT.

2.1.11. Maxwell-Boltzmann Velocity Distribution. Suppose that we have 3 inde-
pendent random variables X1, X2, X3 with standard normal distributions and set

Z =
√
X2

1 +X2
2 +X2

3 .

The density of Z is given by

ρZ(z) =

∫
dx1dx2dx3 δ(z −

√
x21 + x22 + x23) ρ(x1, x2, x3),
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where
ρ(x1, x2, x3) = (2πσ2)−3/2e−

1
2σ2 (x

2
1+x

2
2+x

2
3),

where σ2 = kBT/m. Using a property of the Dirac delta function:∫
Rn

f(x) δ(g(x)) dx =

∫
g−1(0)

f(x)

|∇g|
dσ(x)

where the integral is over the (n−1)-dimensional surface defined by g(x) = 0. Here, we are
interested in the speed of a molecule, which depends on the components of the 3D velocity
vector:

x = (vx, vy, vz)

g(x) = v −
√
v2x + v2x + v2z

∇g(x) = − (vx, vy, vz)√
v2x + v2x + v2z

= − x

|x|
|∇g(x)| = 1.

Since the integrand only depends on the distance to the origin (isotropic) we can use
spherical coordinates. The volume element is dV = r2drdΩ and the surface element is
dS = r2dΩ, where dΩ = sin θdθdϕ. The surface integral has fixed r = v:∫
g−1(0)

f(x)

|∇g|
dS(x) = (

m

2πkBT
)3/2

∫ 2π

0
dϕ

∫ π

0
sin θdθe

− mv2

2kBT v2 =

√
2

π
(
m

kBT
)3/2e

− 1
2

mv2

kBT v2.

The integral here was completely trivial, since the integrand does not depend on θ, ϕ. The
PDF for the Maxwell speed distribution is therefore,

ρV (v) =

√
2

π
(
m

kBT
)3/2e

− 1
2

mv2

kBT v2.

Using this distribution you should be able to compute the r.m.s. speed of a gas molecule
and recover the result you learned in freshman chemistry.

2.1.12. The Microcanonical Ensemble. One of the original motivations for the devel-
opment of statistical mechanics was to provide a rigorous justification for thermodynamics
by taking into account the microscopic origins of the constituents of matter. Statistical
mechanics and thermodynamics are essentially macroscopic theories describing the average
behavior of all N -body systems with the same macroscopic constraints. Thermodynamics
presents an economic but reduced description of a N -body system with a typical size of N
∼ 1023 particles in terms of a few (M ∼ 3-8) “macroscopic” degrees of freedom as control
parameters.

In microcanonical statistics, there is no restriction to the number of particles. We may
treat, for example, some 100 particles such as a sequence of amino acids in a peptide. We
always assume, however, that 6N ≫ M (the factor ‘6’ indicates six degrees of freedom
per particle in 3D space: three position coordinates and three momenta). To determine
the M parameters leaves 6N −M undetermined variables. The statistical theory should
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simultaneously describe all N -body systems with the same macroscopic constraints (e.g.
thermodynamical parameters).

These systems define an ensemble Ω of points in the N -body phase space. Thermodynamics
describes only the average behavior of this whole group of systems, i.e. it is a probabilis-
tic theory. From this point of view, we call thermodynamics “statistical mechanics” or
“thermostatistics”.

The dynamics of the N -body system are governed by a Hamiltonian H. Let’s assume that
the system is trapped in a volume V and only the total energy (E) and number of particles
(N) are conserved. The macroscopic variables of this ensemble which are held constant in
its thermodynamic description are therefore: E, N and V . The triple (E,N, V ) describes
a macrostate.

2.1.12.1. Phase space. In the classical mechanics the motion in time of all points of the
ensemble follows trajectories in N -body phase space {qi(t), pi(t)}, i = 1, . . . , N . The set of
trajectories solve the Hamilton-Jacobi equations

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, i = 1, . . . , N

with some initial conditions {qi(0) = qi0; pi(0) = pi0}.
2.1.12.2. Microcanonical ensemble. The total energy (E) is conserved in classical mechan-
ics. Therefore, the trajectories never leave this (6N − 1)-dimensional shell of constant
energy. This manifold – the subset of phase space where total energy remains constant –
is called the microcanonical ensemble.

The area W (N,V,E) of this manifold in the N -body phase space is also denoted by Boltz-
mann (k ≡ kB):

W (N,V,E) = eS/k,

or, as written on his grave:

(2.8) S = k logW.

Boltzmann has shown that S(N,V,E) is the entropy of the system. Thus, entropy has a
geometric interpretation. The formula S = k logW enabled Boltzmann to deduce thermo-
dynamics. It is called Boltzmann’s principle.

2.1.12.3. Microstates. The Boltzmann principle is often taken to be an axiom in the theory
of statistical mechanics. Precisely, W is the number of microstates of the N -body system
at a given energy E in the spatial volume V (setting k = 1 for now):

W (N,V,E) = Tr[δ(E −H(p,q))] =

∫
Γ

d3Nq d3Np

N !h3N
δ(E −H(p,q)) =

∫
Γ
δ(E −H(x))dx.

Due to the presence of the δ function in the second equality, W (E) is akin to a measure of
the surface area of a manifold defined by the constraint H(p,q) = E in the 6N -dimensional
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phase space7. Here, Γ is the phase space domain

Γ = {(p1, . . . ,pN ,q1, . . . ,qN ) : qi ∈ V,pi ∈ R3,∀i = 1, . . . , N}.

In the second equality we have introduced a multiplicative constant (N !h3N )−1 to make
W dimensionless. The constant N ! is called the Gibbs factor. It accounts for indistin-
guishability of classical particles8. The factor h3N has to do with getting the correct
units when working with the partition function. It comes from the quantum mechani-
cal uncertainty principle ∆x∆p ≥ h, which leads to the “minimum” phase-space volume
(∆x)3N (∆p)3N = h3N . This is needed in order for the phase space volumes to match those
obtained in quantum mechanics. It was not used in Eqs. (2.5) and (2.7) because these
factors cancel out when computing averages.

The variable x was implicitly defined in order to absorb the factor 1
N !h3N

. Some authors
call W the characteristic state function of the microcanonical ensemble. The reader should
verify that the units of h are angular momentum. The units of pq or d3Nq d3Np are also
angular momentum, since the latter is defined as L = r× p.

The 3N positions {qi} are restricted to the volume V , whereas the 3N momenta {pi} are
unrestricted. The set of outcomes in the probability space is

Ω = V N ⊗ R3N .

A microstate is a point (p,q) (a 6N -fimensional vector) in the phase space, or equivalently,
a particular outcome ω ∈ Ω in the probability space.

2.1.12.4. Temperature. The absolute temperature T in the microcanonical ensemble is de-
fined by

1

T
=
∂S(E)

∂E
.

2.1.12.5. Example: spins in a magnetic field. To illustrate these ideas, let us consider
the simplest possible example: classical spins in a magnetic field (B). The two possible
orientations si for each spin are: ↑ and ↓. Taking ẑ as the axis of quantization, the energy
of two noninteracting spins is:

E = −γℏB(mS1 +mS2).

A microstate is the pair (s1, s2) consistent with the energy E. The allowed values of mSi

i = 1, 2 are ±1/2. A spin i points along B if mS = +1/2, which corresponds to a state of
low energy.

7This analogous to the space R3, where a constraint is imposed, such as x2 + y2 + z2 = 1, defining a surface, except
that here the embedding space is R6N .
8It is related to the Gibbs paradox. The Gibbs paradox refers to a conceptual issue in classical statistical mechanics
concerning the entropy change associated with the mixing of identical particles. According to classical thermody-
namics, mixing two different ideal gases leads to an increase in entropy. However, if the gases are identical, classical

calculations yield a non-zero entropy change, which contradicts the intuition that identical particles should not con-
tribute to an entropy increase upon mixing. The paradox is resolved by postulating that the gas particles are in fact

indistinguishable. This means that all states that differ only by a permutation of particles should be considered as

the same state.
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The phase space volume is,

W (E) =
∑

{x:E=H(x)}

1 ≈
∑

{x:E<H(x)<E+δE}

1 ≈ number of microstates with energy E

The possible states are: (↑↑), (↑↓), (↓↑), (↓↓). These correspond to 3 possible energies:

Energy (E) Allowed microstates Multiplicity W (E) Entropy (S = logW )

−γℏB ↑↑ 1 0
0 ↑↓, ↓↑ 2 log(2) ≈ 0.7
γℏB ↓↓ 1 0

Table 2.1. Two spins in a magnetic field.

2.1.12.6. Entropy is a measure of uncertainty. Recall that the macrostate is specified by a
triple (N,V,E) but it is possible that more than one microstates (e.g. pairs (s1, s2) in the
previous example) are consistent with a given macrostate. In fact, W gives the number of
microstates consistent with a fixed energy E. We say that the entropy (S = k logW ) is a
measure of the uncertainty about the system.

In the previous example, if we measure the total energy of the system to be −2, then we
know for sure that the state of the system must be (↑↑), according to the above table.
Likewise, if we measure the energy to be 2, then we know the system is in the state (↓↓).
On the other hand, if we know that the energy is 0, then we can’t tell for sure whether the
”state” is (↑↓) or (↓↑). There is uncertainty about the system and the entropy is therefore
higher. Uncertainty is measured by the entropy via Boltzmann’s principle S = k logW .

In other words, we know the macroscopic state E, but we do not know with complete
certainty which microstate gives rise to the measured value E. We can only guess, or at
best, state which microstate the system is in, and assign a probability for it.

In the previous example of spins in a magnetic field, which energy level is characterized by
the largest uncertainty and therefore, maximum entropy?

2.1.12.7. Non-additivity of entropy. Since entropy is an extensive quantity we know that,
in the thermodynamic limit (large volume, large number of particles), for two systems that
are brought together and interact minimally, entropy is additive:

S1+2 = S1 + S2.

For a small number of particles, as may be the case in the microcanonical ensemble, entropy
is not additive:

S1+2 = S1 + S2 + S1,2.

where S1,2 is a measure of non-additivity. We shall illustrate this by way of a simple
example. Consider a system of three spins in a magnetic field. The possible configurations
and energies are as follows:
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Energy (E) Allowed microstates Multiplicity W (E) Entropy (S = logW )

−3 ↑↑↑ 1 0
−1 ↑↑↓, ↓↑↑, ↑↓↑ 3 log(3) ≈ 1.1
1 ↑↓↓, ↓↑↓, ↓↓↑ 3 log(3) ≈ 1.1
3 ↓↓↓ 1 0

Table 2.2. Three spins in a magnetic field

Non-additivity: Consider the two systems: two spins (s1, s2) combined with a third spin,
s3, to give three spins in total: (s1, s2, s3). The corresponding table for the third spin is:

Energy (E) Allowed microstates Multiplicity W (E) Entropy (S = logW )

−1 ↑ 1 0
1 ↓ 1 0

Table 2.3. Single spin in a magnetic field

For the energy level E = −1, we would have for the total entropy

System 1 microstate W1 System 2 microstate W2 Combined system W1W2

↑↑ 1 ↓ 1 1
↑↓ 2 ↑ 1 2
↓↑ 2 ↑ 1 2

Table 2.4. Combining a two spin system with a third spin to give a total energy E = −1
(two spins up, one spin down). From Table 2.2 we know this combined system should
have W = 3.

In fact, the correct way to combine the entropies is by calculating the number of accessible
states via combinatorics:

W (E) =
∑

E0≤E1≤E
W1(E1)W2(E − E1) =

∑
E0≤E2≤E

W1(E − E2)W2(E2),

where E = E1 + E2 and E0 is the lowest energy value in the spectrum of E1 or E2 in the
above formulae (sums 1 and 2, respectively). In the case where the energy spectrum is
continous, we have:

W (E) =

∫ E

E0

dE1W1(E1)W2(E − E1).

For the combined three-spins system, E = −1, and let the summation run over E2 =
+1,−1. There are two terms in the sum:

W = 2 · 1 + 1 · 1 = 3.
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The entropy of the combined system according to this summation is log(3), in agreement
with the entropy of the combined system found in Table 2.2.

2.1.12.8. Principle of equal a priori probability. Because the only thing we know is the
total energy E, and that each microstate gives rise to the same energy E, the best we can
do is assign equal probability of occurrence to all microstates consistent with E.

Since a measurement of the total energy in the laboratory must occur in a finite time,
we can even think of the system evolving over time and hopping between the different
microstates. It may do so as long as the total energy remains constant.

For the microstates consistent with a given value of E, hopping would be plausible because
it costs zero energy to hop from state to state, i.e. from ↑↓ to ↓↑. This is really just an
intuitive argument and does not imply that hopping takes place. One would need a certain
type of coupling between the two spins to permit this sort of transition. But it helps make
the argument for equal probabilities plausible.

In the case of a continuous phase space, the argument is much more complicated and
invokes more elaborate theorems which will not be covered here. See Kubo and Toda for
more details. We will content ourselves by taking this principle of equal probabilities as an
axiom of the theory.

Mathematically, this principle is expressed in terms of a probability distribution that is
constant over the region where the energy equals E. If the state space is discrete, we have:

PE(xi) =
1

W (E)
,

and if the state space is continuous we have the density:

p(x) =
δ(E −H(x))

W (E)
.

2.1.13. Microcanonical density matrix. Density matrices are used to describe the
statistical properties of ensembles in quantum mechanics. For example, average values of
observables are calculated as follows:

⟨A⟩ = Tr [Aρ] ,

where A is the quantum mechanical observable and ρ is the density matrix.

Suppose that |E′⟩ is an eigenvector of the Hamiltonian operator Ĥ corresponding to the
energy E′:

Ĥ |E′⟩ = E′ |E′⟩ .
The density matrix which represents a microcanonical distribution with energy E is

ρ̂E,V,N =
∑

E<E′<E+δE

|E′⟩ ⟨E′|
WδE(E)

.
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where
WδE(E) =

∑
{x:E<H(x)<E+δE}

1

is the microcanonical partition function. As always, it is tacitly understood that one
eventually takes the limit δE → 0.

In the example of a spin in a magnetic field, we have, for |↑⟩ = (1 0) and |↓⟩ = (0 1),

ρE=−1 =

[
1 0
0 0

]
, ρE=+1 =

[
0 0
0 1

]
.

2.1.13.1. Microcanonical average: discrete state space. Given the probability distribution
we may calculate the average value of an observable. For the example of a spin in a magnetic
field, let us calculate the average magnetization when E = −γℏβB/2. This implies only
one possibility mS1 = 1/2. The principle of equal probability states that the probability
of the microstate mS1 = 1/2 equals 1. Then

⟨mS1⟩ = (1/2) · 1 = 1/2.

In the case of two spins, let us calculate the average of the total magnetization mS1 +mS2

for the case E = 0. There are two possible microstates: ↑↓ and ↓↑, each with probability
1/2. Then,

⟨mS1 +mS2⟩ = 0 · 1
2
+ 0 · 1

2
= 0.

For the energy E = −γℏβB, we have the sole microstate ↑↑ and the average total magne-
tization ⟨mS1 +mS2⟩ evaluates to 1

2 + 1
2 = 1.

2.1.13.2. Microcanonical average: continuous state space. We calculate the properties of
our ensemble by averaging over states with energies in a shell [E,E + δE] in the limit
δE → 0. Another way of writing W is

W (E) =
1

δE

∫
{x:E<H(x)<E+δE}

dx =
1

δE

∫
R6N

I{x:E<H(x)<E+δE}(x)dx.

This can be rewritten in terms of the derivative with respect to energy of the phase-space
volume (rather than the shell). We first note that the indicator function

I{x:E<H(x)<E+δE}(x)

equals 1 inside the energy shell and zero everywhere else. It can be written as the difference
of two indicator functions:

I{x:H(x)<E+δE}(x)− I{x:H(x)<E}(x).

We also note that the following ratio converges to the limit:

lim
δE→0

I{x:H(x)<E+δE}(x)− I{x:H(x)<E}(x)

δE
=

∂

∂E
I{x:H(x)<E}(x).
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Therefore, we have:

W (E) =
∂

∂E

∫
R6N

I{x:H(x)<E}(x) dx =
∂

∂E

∫
{x:H(x)<E}

dx

︸ ︷︷ ︸
V(E)

.

Using this formalism, the expectation value of an observable φ:

⟨φ⟩E =
1

W (E) · δE

∫
{x:E<H(x)<E+δE}

φ(x) dx

can be expressed as:

⟨φ⟩E =
1

W (E)

∂

∂E

∫
R6N

φ(x)I{x:H(x)<E}(x) dx =
1

W (E)

∂

∂E

∫
{x:H(x)<E}

φ(x) dx.

And because the derivative of the step function I{x:H(x)<E}(x) with respect to E is a Dirac
delta function:

∂

∂E
I{x:H(x)<E}(x) = δ(E −H(x)),

we may rewrite this average as:

⟨φ⟩E =
1

W (E)

∫
R6N

φ(x)δ(E −H(x)) dx,

where

p(x) =
δ(E −H(x))

W (E)

is the probability density of the microcanonical ensemble.

2.1.13.3. Transition to the canonical ensemble: the thermodynamic limit. We may now
proceed toward the thermodynamic limit. Instead of fixed (N,V,E) let us look at the case
of fixed temperature (N,V, T ). This is the canonical ensemble. Let us separate the phase
space into the components of two systems, 1 and 2, and compute the following average

⟨φ⟩ = 1

W (E) · δE

∫
{(x1,x2):E<H1(x1)+H2(x2)<E+δE}

φ(x1)dx1dx2

The heat bath has temperature T2 and is not affected by small changes in the energy
of system 1 (if the heat bath is large, the small variations E1 − ⟨E1⟩ will not change its
temperature). Therefore the temperature is fixed:

1

T2
=
∂S2(E2)

∂E2
.

Using the definition S2(E2) = kB logW2(E2), we get:

1

T2
=

∂

∂E2
kB logW2(E2) = kB

1

W2(E2)

∂W2(E2)

∂E2
,
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or equivalently,

−W2(E − E1)

kBT2
=
∂W2(E − E1)

∂E1
.

This is a first-order differential equation. Integrating with respect to dE1 from ⟨E1⟩ to E1

gives the solution:

W2(E − E1) =W2(E − ⟨E1⟩)e−(E1−⟨E1⟩)/kBT2 .

This gives:

W (E) =

Emax∫
E0

dE1 W1(E1)W2(E − E1)︸ ︷︷ ︸ =
Emax∫
E0

dE1 W1(E1)W2(E − ⟨E1⟩)e−(E1−⟨E1⟩)/kBT2︸ ︷︷ ︸
=W2(E − ⟨E1⟩)e⟨E1⟩/kBT2

Emax∫
E0

dE1 W1(E1)e
−E1/kBT2

︸ ︷︷ ︸
Z

.

=W2(E − ⟨E1⟩)e⟨E1⟩/kBT2Z.

Substitution of W (E) and W2(E−E1) with E1 = H1(x1) into the expression for ⟨φ⟩ gives:

⟨φ⟩ = 1

W (E)︸ ︷︷ ︸
∫
Γ1

φ(x1)dx1W2(E −H1(x1))︸ ︷︷ ︸
=

1

W2(E − ⟨E1⟩)e⟨E1⟩/kBTZ

∫
Γ1

φ(x1)dx1 ·W2(E − ⟨E1⟩)e−(H1(x1)−⟨E1⟩)/kBT

=
1

Z

∫
Γ1

φ(x1) · e−H1(x1)/kBTdx1

where Γ1 is the volume of phase space for subsystem 1, i.e.

Γ1 = {(p1, . . . ,pN1 ,q1, . . . ,qN1) : qi ∈ V,pi ∈ R3,∀i = 1, . . . , N1}.
Thus, integrating over the bath coordinates dx2 has turned the microcanonical distribution
into a canonical ensemble. This process is called ”integrating out” or ”tracing out” over
the bath degrees of freedom.

2.1.13.4. Microcanonical ensemble: classical ideal gas. Consider a gas of N particles con-
fined to a volume V . The Hamiltonian is:

H =

3N∑
i=1

p2i
2m

=

N∑
i=1

p2
i

2m
,
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where pi = (pxi, pyi, pzi) is the momentum vector of particle i. Then

V(E, V,N) =

∫
{(p,q):H(p,q)<E}

∏3N
i=1 dpidqi
N !h3N

=
V N

N !h3N

∫
{p:

∑N
i=1 p

2
i<2mE}

d3Np,

where the factor V N is the result of integrating over space (d3Nq). The momentum integral

is precisely the volume of a 3N -dimensional sphere with radius R =
√
2mE. We therefore

have:

V(E, V,N) =
V N (2πmE)3N/2

N !h3N (3N/2)Γ(3N/2)
.

From this, we may compute the entropy:

S = kB log
∂

∂E
V(E, V,N) = kB

{
N log

[
V (2πmE)3/2

]
− log [Γ(3N/2)]− logE − log(N !h3N )

}
.

The equation of state for the ideal gas is obtained with the help of the first law9 of ther-
modynamics [dU = TdS − pdV or dS = (1/T )(dU + PdV )],

P = T

(
∂S

∂V

)
E

= T
NkB
V

.

which gives the familiar result PV = NkBT .

We can also solve for the temperature as a function of E, V and N :

1

T
=

(
∂S

∂E

)
V

=
3NkB
2E

.

This gives the usual relation E = (3/2)NkBT for the energy of a monoatomic classical
ideal gas.

2.1.14. Supplemental Readings. For a more in-depth coverage of stochastic processes
in physics and chemistry, you are referred to:

• A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover (1960)

• M. Toda, R. Kubo, N. Saito, Statistical physics I, 2nd edition, Springer (1998)

2.1.15. Canonical ensemble. The canonical ensemble is one in which the macrostate is
specified by the parameters (N,V, T ). The probability density for such a system is given

9Recall from multivariable calculus the definition of total differential of a function of two variables:

df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy

where dx and dy are arbitrary “infinitesimals”. In the present case,

dS(U, V ) =
∂S

∂U
dU +

∂S

∂V
dV.

Since dU and dV are arbitrary, we can match their coefficients. Thus, together with the first law, dS = (1/T )(dT +

PdV ), we obtain (1/T ) = ∂S
∂U

from matching the coefficients of dU , and P/T = ∂S
∂V

by matching the coefficients of
dV .
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by the Gibbs measure:

p(x1) =
1

Z
e−H1(x1)/kBT ,

where H1(x1) is the Hamiltonian of the subsystem held at fixed temperature, i.e. in contact
with a bath of temperature T , and

Z(N,V, T ) =

∫ Emax

E0

dE1W1(E1)e
−E1/kBT ,

is the canonical partition function written as a “sum” over energies. We now drop the
subscript “1” from the notation. For discrete energy levels, the partition function is:

Z =
∑
Ei

W (Ei)e
−Ei/kBT ,

where the summation runs over all discrete energy levels Ei, each counted only once. And
because W (Ei) is the number of states with energy Ei, we may write this as a sum over
states

Z =
∑
i

e−Ei/kBT ,

where the summation now runs over all states, meaning that if several microstates corre-
spond to energy Ei, there is one term for each of these microstates.

As an example, consider a spin in a magnetic field. The Hamitonian is H = −γℏB⃗ · S⃗,
where B⃗ = Bẑ, Sz |SmS⟩ = mS |SmS⟩, mS = ±1/2. The partition function is:

Z = e−γℏB/2kBT + eγℏB/2kBT = 2 cosh(γℏB/2kBT ).

For the case of two spins in a magnetic field, H = −γℏB⃗ · (S⃗1 + S⃗2) = −γℏB(mS1 +mS2),
the sum over energies is:

Z =
∑
Ei

W (Ei)e
−Ei/kBT = e−γℏB/kBT + 2 e0︸︷︷︸

1

+eγℏB/kBT = 2[1 + cosh(γℏB/kBT )],

and the sum over states gives the same result

Z =
∑
i

e−Ei/kBT = e−γℏB/kBT + 1 + 1 + eγℏB/kBT = 2[1 + cosh(γℏB/kBT )].

2.1.15.1. Canonical density matrix. The density matrix which represents a canonical en-
semble at temperature β = 1/kBT is

ρ̂T,V,N =
e−βĤ

Tr
[
e−βĤ

] =
1

Z

∑
E′

e−βE
′ |E′⟩ ⟨E′| ,

where Z = Tr
[
e−βĤ

]
≡
∑

E′ e−βE
′
(summation is over all microstates of a given energy –

not a sum over energies) is the canonical partition function.

Consider a two-level spin in a magnetic field B. The Hamiltonian, expressed in units of

the magnetic field, Ĥ = −γB⃗ · S⃗, so that the energy eigenvalues are E = −γBmS . The
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spin operator Sz is proportional to the Pauli matrix:

Sz =
1

2
σ̂z =

(
1/2 0
0 −1/2

)
The density matrix is therefore:

ρ̂ =
e−γℏβĤ

Tr[e−βĤ]
=

1

eγℏβB/2 + e−γℏβB/2

(
eγℏβB/2 0

0 e−γℏβB/2

)
.

The statistical average of Sz is

⟨Sz⟩ = Tr[ρ̂Sz] =
1

2

eγℏβB/2 − e−γℏβB/2

eγℏβB/2 + e−γℏβB/2
=

1

2
tanh[γℏβB/2].

With the identification
M = N⟨µz⟩,

whereM is the magnetization, N is the number density of magnetic moments and ⟨µz⟩ = Iz
is the average moment. We have just derived the Langevin paramagnetic equation. In the
approximation tanhx ≈ x (high temperatures), this gives the Curie law.

This is the canonical ensemble average of the magnetic polarization due to an applied field.
We note that the canonical statistical average here means the average in a state of thermal

equilibrium. Even though we have used the Zeeman interaction of a single spin S⃗ to derive
this result, the statistical average is over an entire ensemble.

Entropy in quantum mechanics is often defined in terms of density matrices ρ̂:

S = −kBTr[ρ̂ log ρ̂].
This formula is identical to the Gibbs-Shannon entropy (below). In the present example,
the entropy evaluates to:

S = 2eβϵ cosh(βϵ)
[
log(1 + e−2βϵ) + e2βϵ log(1 + e2βϵ)

]
,

where ϵ = γℏB/2. With these formulas, many more thermodynamic relations can be
derived.

2.1.15.2. Gibbs-Shannon Entropy. The Gibbs-Shannon entropy in statistical mechanics is
defined, for a probability distribution {pi} as:

S = −kB
∑
i

pi log pi.

If we maximize S over all possible pi subject to the constraint
∑

i pi = 1 (see homework
problem), we find that pi = const. In the microcanonical ensemble, this probability must
be related to the phase-space volume according to

pi =
1

N
=

1

W (E)
.
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This leads to the result that

S = −kB
∑
i

pi log pi = −kBN · 1

N
log 1/N = kB logW (E).

We see that the Boltzmann entropy is the special case where the Gibbs entropy is maximized
with respect to the probability distribution {pi}.

2.1.16. Thermodynamic Limit. Before we delve too deeply in our discussions of ther-
modynamic ensembles, it is important to define what is meant by the “thermodynamic
limit”. So far, we have worked with the microcanonical ensemble, which does not require a
thermodynamic limit. However, other ensembles do. The thermodynamic limit is defined
as:

N → ∞, V → ∞ with
N

V
= constant.

In other words, we increase the size of our system so that it becomes macroscopic while
enforcing the constraint that the density N

V remains constant.

2.1.17. Entropy becomes additive in the thermodynamic limit. The second law
of thermodynamics states that the entropy of an isolated system never decreases. We
can derive this principle using the definition of entropy in the microcanonical ensemble.
Consider a composite of two systems in contact with each other. The total energy

E = E1 + E2

is fixed, but E1 and E2 can fluctuate. The energy spectrum is divided into steps of level
spacing ∆. This situation is illustrated in Figure 2.1.

E

E0

D

Figure 2.1. Energy levels start at E0 and end at E with energy gap ∆.

The total number of accessible states is given by

W (E) =
∑

E0<E1<E

W1(E1)W2(E − E1)
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where the sum extends over the possible values of E1 in steps of ∆. The total entropy is
given by

(2.9) S(E) = kB log
∑

E0<E1<E

W1(E1)W2(E − E1)

For a macroscopic system, we will show that E1 hovers near one value only, the value that
maximizes the entropy.

Among the E/∆ terms in the sum, let the maximal term be denoted E1 = Ẽ1. Since all
terms are positive, the value of the sum lies between the largest term and E/∆ times the
largest term:

kB log
[
W1(Ẽ1)W2(E − Ẽ1)

]
< S(E) < kB log

[
W1(Ẽ1)W2(E − Ẽ1)

]
+ kB log(E/∆)

In a macroscopic system of N particles, we expect S and E both to be of order N . There-
fore, the last term on the right hand side is O(logN) and may be neglected as N → ∞.
Thus

S(E) = kB logW1(Ẽ1) + kB logW2(E − Ẽ1) +O(logN)

Neglecting the last term, we have

(2.10) S(E) = S1(Ẽ1) + S2(Ẽ2)

The principle of maximum entropy emerges when we compare (2.9) and (2.10). The former
shows that the division of energy among subsystems have a range of possibilities. The
latter indicates that, neglecting fluctuations, the energy is divided such as to maximize the
entropy of the system.

A corollary to the principle of maximum entropy is that the temperatures of the two
subsystems are equal T1 = T2. This is left as an exercise. Hint: differentiate Eq. 2.10 with

respect to Ẽ1 and apply the definition of temperature T−1 = ∂S(E)
∂E together with the chain

rule ∂
∂Ẽ1

= ∂Ẽ2

∂Ẽ1

∂
∂Ẽ2

= − ∂
∂Ẽ2

(applied to the second term) since E = Ẽ1 + Ẽ2.

2.1.17.1. Connection with thermodynamics. In the microcanonical ensemble, the connec-
tion with thermodynamics is made by defining the entropy of the closed system by:

S(E, V,N) = kB logW (E, V,N).

In the canonical ensemble, the connection with thermodynamics is established through the
Helmholtz free energy

F (T, V,N) = −kBT logZ(T, V,N).

2.1.17.2. Products of partition functions. When two systems with free energies A1 and A2

are brought together, their total energy is the sum of energies plus an interaction term

F = F1 + F2 + F12.

In the “dilute” limit, the interaction term is negligible F12 → 0. According to the thermo-
dynamic connection, the partition function of the combined system a product of partition
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functions for each individual system:

Z(β) = e−βF = e−β(F1+F2) = e−βF1e−βF2 = Z1(β) · Z2(β).

This idea is general and applies to any degree of freedom which are statistically independent.
For example, molecules in a gas have energies that depend on rotational, vibrational,
electronic and nuclear wave functions. The total energy is the sum of all these contributions:

F = Frot + Fvib + Fel + Fnuc.

The partition function is a product of all these contributions:

Z = Zrot · Zvib · Zel · Znuc.
This implies that the entropies are additive, in the thermodynamic limit:

S = Srot + Svib + Sel + Snuc.

2.1.18. Thermodynamic Ensembles (macroscopic) vs Partition Functions (mi-
croscopic). The transformation between ensembles can be opaque at first. The partition
functions are obtained from one another via Laplace transformation, whereas the thermo-
dynamics potentials are obtained from one another via Legendre transformation. In this
section, we will explore how the Laplace transform gives rise to the Legendre transform in
the thermodynamic limit. In a sense, we will learn that the Legendre transformation is a
special case of the Laplace transform (in the thermodynamic limit).

2.1.18.1. Saddle Point Approximation. Suppose we have an integral of the form

I(λ) =

∫ ∞

0
dx ρ(x)e−A(x)/λ.

Such integrals can be approximated using the saddle point method, which is based on the
observation that at the saddle point x0 the largest contribution comes from the integrand
evaluated at x0. All other points contribute far less to the integral.

Consider the Taylor expansions:

A(x) = A(x0) + (x− x0)A
′(x0) +

1

2
(x− x0)

2A′′(x0) +O(|x− x0|3)

ρ(x) = ρ(x0) + (x− x0)ρ(x0) + . . .

It can be shown that since (x− x0) is small, ρ(x) ≈ ρ(x0) is a good approximation. At an
extremum, A′(x0) and we are left with A(x) = A(x0)+

1
2(x−x0)

2A′′(x0). The extremum is
of course, obtained by finding x = x0 such that A′(x) = 0. Inserting this into the integral
I(λ) gives:

I(λ) = ρ(x0)e
−A(x0)/λ

∫
dxe−

1
2
(x−x0)2A′′(x0)/λ = ρ(x0)e

−A(x0)/λ

√
2πλ

A′′(x0)
,

where in the last step we have extended the lower limit to −∞ and made use of
∫
e−ay

2
dy =√

π/a. Extension of the integration limits is permitted because the added contribution is
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negligible (i.e., e−
1
2
(x−x0)2A′′(x)/λ is small when |x − x0| is large). The usefulness of this

approximation lies in our ability to avoid integrating and instead replace the integral by the
largest value of its integrand (value at the saddle point). When taking logs of such expres-

sions involving the saddle-point approximation the term
√

2πλ
A′′(x0)

becomes unimportant in

the thermodynamic limit because it does not scale as N .

2.1.18.2. Laplace Transform Relationship Among Partition Functions. In thermodynamics
we have the familiar expression “defining” Helmholtz free energy F from the internal energy
E

F (S, V, T ) = E(S, V,N)− TS(N,V,E),

which has the structure of a Legendre transform with conjugate variables T and S. Some
authors10 also express it as a Legendre transform from S to F with conjugate variables T
and S. In terms of the dimensionless quantities S ≡ S/kB and F ≡ βF ,

F(β) = βE − S(E)

where the conjugate variables are now β and E. The Laplace transform of

W (N,V,E) =

∫
Γ
δ(E −H(x)) dx

is ∫ Emax

E0

W (E)e−βEdE =

∫ Emax

E0

dE

∫
Γ
dx δ(E −H(x))e−βE =

∫
Γ
dx e−βH(x),

which we recognize to be the canonical partition function Z(β). Here, Γ is the phase space
domain

Γ = {(p1, . . . ,pN ,q1, . . . ,qN ) : qi ∈ V,pi ∈ R3, ∀i = 1, . . . , N}.
The latter is therefore seen to be the Laplace transform of the microcanonical partition
function W (E).

2.1.18.3. Statistical Mechanics lead to Thermodynamics. The result from the previous sec-
tion can be expressed as

Z(β) =

∫ Emax

E0

W (E)e−βEdE.

Using the Laplace inversion formula, this can be inverted to give:

W (E) =

∫
C
Z(β)eβEdβ.

where C is the Bromwich contour in the complex plane (vertical line with real part ℜ[C] >
0). Invoking the Boltzmann definition of entropy, S(E) = logW (E), as well as the statisti-
cal thermodynamical definition of Helmholtz free energy, F(β) = − logZ(β), this becomes:

eS(E) =

∫
C
e−F(β)+βEdβ.

10Zia, Redish, McKay, Making sense of the Legendre transform, arXiv:0806.1147v2 [physics.ed-ph]
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Let us now solve this integral by the saddle point method. We find the saddle point β̃ by
taking the derivative of the argument of the exponential and setting it to zero:

∂

∂β
(−F(β) + βE) = E − ∂F(β)

∂β
= 0 ⇒ E =

∂F(β)

∂β
,

which we begin to recognize as the definition of conjugate variables in a Legendre transform.
The integral is then approximated by its integrand at the saddle point∫

C
e−F(β)+βEdβ ≈ e−F(β̃)+β̃E

√
2π/A′′(β̃),

where A′′(β̃) = ∂2

∂β2 (F(β)− βE)
∣∣∣
β=β̃

= ∂2F(β)
∂β2

∣∣∣
β=β̃

. Taking the logs of both sides leads to

S(E) = −F(β̃) + β̃E +
1

2
log(2π)− 1

2
logA′′(β̃)

Taking the thermodynamic limit (N → ∞), the last two terms become negligible, since
they are O(1) and O(logN), respectively, whereas S, F and E are all O(N). This leaves
us with

F(β̃) = β̃E − S(E) (in the thermodynamic limit)

where β̃ is the (inverse) temperature that minimizes the free energy. The free energy

is minimized when choosing β = β̃ because the saddle-point method requires A′′ > 0,

whereas A′′(β̃) = ∂2F(β)
∂β2

∣∣∣
β=β̃

> 0 (i.e., F(β) is concave up, reaching a minimum at β = β̃).

Inspection of the result F(β̃) + S(E) = β̃E suggests that, in the thermodynamic limit, a

minimum in the free energy (β = β̃) corresponds to a maximum in the entropy. According
to Section 9.12.6, Appendix), the Legendre transform (see Section 9.15) preserves the
convexity of functions (see Eq. 9.12). We can express this Legendre transform pair as

S(E) = max
β

{βE −F(β)} = β̃E −F(β̃),

where β̃ is the particular value of β that maximizes βE −F(β).

Thus, according to Eq. 9.12), if the mapping F(β) : X → R on a convex set11 X ∈ Rn is
convex, then S(E) is the convex conjugate of F(β). Conversely,

F(β) = max
E

{βE − S(E)} = β̃Ẽ − S(Ẽ),

where Ẽ is the particular value of E that maximizes βE − S(E). It is obtained by solv-
ing β = ∂ES(E) for E in terms of β. We have therefore proven that the relationship
between thermodynamic potentials (as related by Legendre transform) is a consequence of
the Laplace transform relationship between partition functions. We may (loosely) say that
the Legendre transform is a special case12 of the Laplace transform.

11Here, X ∈ R+, since β is the inverse temperature.
12The special case is that of the thermodynamic limit.
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2.1.19. The Grand Canonical Ensemble. The grand canonical ensemble describes an
open system, whose volume is fixed, in equilibrium with a reservoir with which it can
exchange both energy and particles. A macroscopic state is characterized by its volume
V , temperature T and chemical potential µ. A microstate is specified by (N,p,q) and its
density (PDF) is

ρ(p,q, N) =
1

Z
eβµN−βH(p,q).

where Z ≡ Z(T, V, µ) is called the grand canonical partition function

Z(T, V, µ) =
∑
N

∫
Γ

d3Np d3Nq

N !h3N
eβµN−βH(p,q) =

∑
N

eβµNZ(T, V,N),

where Z(T, V,N) is the canonical partition function discussed previously. The quantity
eβµ is called the fugacity.

The statistical mechanical connection with thermodynamics is established by defining the
Landau (grand) potential:

(2.11) Ω(T, V, µ) ≡ kBT logZ(T, V, µ).

The Landau (grand) potential in classical thermodynamics is defined by the Legendre
transform of the Helmholtz free energy:

(2.12) Ω = −F + µN.

A proof of Eq. (2.12) can be found in Section 2.1.22 (see Eq. 2.14).

2.1.19.1. Grand Canonical Density Matrix. The density matrix which corresponds to a
grand canonical ensemble has the form:

ρ̂µ,T,V =
e−β(Ĥ−µN̂)

Tr
[
e−β(Ĥ−µN̂)

] ,
where N̂ is the quantum operator corresponding to the particle number. This density
matrix acts on a generalized Hilbert space called the Fock space, which is the direct sum
of Hilbert spaces with fixed particle numbers:

F (H) = H(1)⊕H(2)⊕ · · · ⊕H(∞),

whereH(n) is the symmetrized tensor product of single-particle Hilbert spaces, i.e. H(n) =
S·
⊗n

i=1H1 (S is a symmetrization operator describing particles obeying bosonic or fermionic
statistics).

2.1.20. Isobaric Ensemble. Another ensemble which is useful for a system of exactly
N particles whose pressure is held fixed while its volume is allowed to fluctuate, is the
isobaric ensemble. Its partition function corresponding to the density

ρ(p,q, V ) =
1

Θ
e−βH(p,q)−βPV ,
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with Θ ≡ Θ(T, P,N) is the Laplace transform of Z:

Θ(T, P,N) =

∫
dV

∫
Γ

d3Np d3Nq

N !h3N
e−βH(p,q)−βPV =

∫
dV e−βPV Z(T, V,N),

and the connection with thermodynamics is through the Gibbs free energy

G(T, P,N) ≡ −kBT logΘ(T, P,N).

2.1.21. Relations Between Partition Functions. If we rewrite the above partition
functions as integrals (integrals can always be reduced to summations as a special case of
a discrete measure), an interesting relationship is found. Starting from the entropy in the
microcanonical ensemble, the partition function is:

W (E, V,N) =e(1/kB)S(E,V,N) microcanonical

while the remaining partition functions are:

Z(T, V,N) =

∫
dEW (E, V,N)e−βE canonical

Z(T, V, µ) =
∑
N

Z(T, V,N)eβµN grand canonical

Θ(T, P,N) =

∫
dV Z(T, V,N)e−βPV isobaric

We see that they can all be obtained from each other by Laplace transformation. This is
not unrelated to the Legendre transformations that define the thermodynamic potentials:

U(S, V,N) Internal energy

S(E, V,N) Entropy

F (T, V,N) =U − TS Helmholtz free energy canonical

G(T, P,N) =F + PV Gibbs potential isobaric, isothermal

H(P, S,N) =U + PV Enthalpy isobaric, isentropic

Ω(T, V, µ) =− F + µN Landau (grand) potential grand canonical

2.1.22. Laplace Inversion of the Grand Canonical Partition Function. Starting
from

Z(T, V, µ) =
∑
N

eβµNZ(T, V,N),

let us rewrite it as
Z(z) =

∑
N

zNZ(T, V,N),

where z = eβµ. This can be inverted by taking the N -th derivative of Z(z) at the point
z = 0 and dividing by 1/N !:

Z(T, V,N) =
1

N !

dNZ(z)

dzN
.
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However, the N -th derivative of a holomorphic (infinitely differentiable) function is given
by the Cauchy differential formula:

f (n)(a) =
n!

2πi

∮
γ

f(z)

(z − a)n+1 dz.

where f (n)(a) is the n-derivative of f evaluated at the point a. Therefore,

Z(T, V,N) =
1

2πi

∮
γ

dz

zN+1
Z(z),

where the contour of integration γ is around z = 0. Since z−N = e−N log z, we can rewrite
it as

Z(T, V,N) =
1

2πi

∮
γ

dz

z
elogZ(z)−N log z,

and this integral can be solved using the method of steepest descent. The point of steepest
descent is obtained from the condition:

(2.13)
∂

∂z
{logZ(z)−N log z} = 0,

∂

∂z
logZ(z) =

N

z
,

which, under the assumption that logZ(z) is proportional to V , becomes, in the thermo-
dynamic limit (dividing by V/z):

1

V
z
∂

∂z
logZ(z) = ρ,

where ρ = N/V in the limit N → ∞, V → ∞. The value of z which solves this equation
is written z = eµβ, where µ is called the chemical potential. We thus find

Z(T, V,N) ∼ elogZ(z)−(N+1) log z

√
2π

∂2 logZ(z)/∂z2
.

From Z(T, V,N) = e−βF (V,T ) we have in the thermodynamic limit

−βF (V, T ) = logZ(z)− (N + 1) log z

Substituting z = eµβ as well as the statistical-thermodynamic connection formula for grand
potential, Ω(T, V, µ) = kBT logZ(z) (Eq. 2.11), we have

−βF (V, T ) = βΩ(T, V, µ)− (N + 1)µβ

and since N + 1 ≈ N as N → ∞:

(2.14) −βF (V, T ) = βΩ(T, V, µ)−Nµβ,

which proves the Legendre transform relation Ω(T, V, µ) = µÑ − F (T, V, Ñ) (Eq. 2.12),

where Ñ denotes the particular value of N that minimizes µN −F . Note: the saddle point
equation (Eq. 2.13) differentiates with respect to z = eµβ, which we view as (a function of)

the chemical potential. The variable that is solved for is Ñ .
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Also from P = −∂F
∂V ,

P = − ∂

∂V
{−β−1 logZ(T, V,N)} ∼ β−1 ∂

∂V
{logZ(z)− (N + 1) log z} .

Recalling that logZ(z) is O(V ) we may use13

∂

∂V
logZ(z) =

1

V
logZ(z)

and the fact that z is independent of V to obtain the result

P

kBT
= lim

V→∞

1

V
logZ(z).

Moreover, we find

U = ⟨H⟩ = 1

Z(β)

∫
H(x)e−βH(x) dx = −∂ logZ(β)

∂β
,

U =
∂

∂β
βF (V, T,N) = F (V, T,N)− T

∂

∂T
F (V, T,N),

where we used the chain rule

∂

∂β
F (T, V,N) =

∂F

∂T

∂T

∂β
=
∂F

∂T

∂(βkB)
−1

∂β
=
∂F

∂T
(−1)

1

(kBβ)2
kB = −∂F

∂T
kBT

2.

From U = ∂
∂ββF (V, T,N) and F (V, T, V ) = −kBT logZ(T, V,N), we have

U

V
= − 1

V

∂

∂β
logZ(T, V,N) = − ∂

∂β
lim
V→∞

1

V
logZ(z).

2.1.23. Restatement of the Thermodynamic Potentials in the Language of Le-
gendre Transformations. In thermodynamics when we write F = U − TS it is un-
derstood that in the context of the Legendre transformation, such statements have the
meaning:

U(S, V,N) = min
T

{F (T, V,N) + TS} = F (T̃ , V,N) + T̃ S,

where T̃ is a particular choice of T that minimizes the free energy F −TS. S → U(S, V,N)
is concave if T → F (T, V,N) is concave14. If there are no abrupt phase transitions, the
thermodynamic potentials are differentiable. Differentiation with respect the T gives the
condition for an extremum:

∂F

∂T
+ S = 0,

13For example, if logZ(z) = const× V , the derivative ∂
∂V

const× V = const×V
V

= const.
14Recall our definition of Legendre transformation:

H(p) = max
q

{p · q − L(q)}

where maximization of p · q − L(q) involves the negative of L(q). If instead L appeared with a positive sign, the

convexity would be reversed (convex→ concave) and we would be searching for the minimum instead of the maximum.
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as well as the new variable, which is conjugate to temperature:

S = −∂F
∂T

.

With U now being a function of S, V,N , we can write:

dU(S, V,N) = TdS − pdV + µdN.

The independent variables are S, V and N . The corresponding derivatives are

T =
∂U

∂S
, p = −∂U

∂V
, µ =

∂U

∂N
.

If the internal energy is known as a function of entropy, volume and number of particles,
then temperature, pressure and chemical potential can be computed.

Conversely, we may also write, in the case where the mapping S → U(S, V,N) is concave:

F (T, V,N) = min
S

{U(S, V,N)− TS} = U(S̃, V,N)− T S̃,

where S̃ is a particular choice of S that minimizes U − TS. It then follows that T →
F (T, V,N) is concave. In the absence of abrupt phase transitions, the mapping is differen-
tiable (smooth) and the derivative of {·} with respect to S vanishes:

∂

∂S
{U(S, V,N)− TS} = 0,

which implies that

T =
∂U

∂S
.

Likewise, we have the following Legendre transform pair:

G(T, P,N) = min
V

{F (T, V,N) + PV } = F (T, Ṽ ,N) + PṼ

where Ṽ is a particular choice of V that minimizes F + PV , and

F (T, V,N) = min
P

{G(T, P,N)− PV } = G(T, P̃ ,N)− P̃ V,

where P̃ is a particular choice of P such that G−PV is minimized. We also have the pair:

H(P, S,N) = min
V

{U(S, V,N) + PV } = U(S, Ṽ ,N) + PṼ

and
U(S, V,N) = min

P
{H(P, S,N)− PV } = H(P̃ , S,N)− P̃ V.

Finally, the grand potential:

Ω(T, V, µ) = max
N

{−F (T, V,N) + µN} = µÑ − F (T, V, Ñ)

and
F (T, V,N) = max

µ
{−Ω(T, V, µ)− µN} = −µ̃N − Ω(T, V, µ̃).
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2.1.23.1. From microcanonical to canonical. To see this, we begin with the microcanonical
partition function W (E, V,N), which is a function of the entropy S/kB. Rewriting the
Helmholtz free energy as

βF = βU − S/kB,

which says that we may pass from the thermodynamic quantity S/kB to βF by performing
the Legendre transform to eliminate the energy U and replace it by its conjugate variable
β (inverse temperature). It is a transformation of a function of (E, V,N) to a new function
of the variables (β, V,N) or (T, V,N). This passage from the microcanonical ensemble to
the canonical ensemble is obtained by taking the Laplace transform of W (E,N, V ) with
respect to the energy E. The conjugate variable is β, the inverse temperature:

Z(T, V,N) =

∫ Emax

E0

dEW (E, V,N)e−βE

For historic reasons, in thermodynamics, the variables chosen for the Legendre transforms
are not always conjugate pairs. This obscures the symmetry between the quantities. By
contrast, if we define the dimensionless quantities

S = S/kB and F = βF,

the Legendre transform takes the symmetric form:

F(β) + S(E) = β · E,
which expresses the duality between β (inverse temperature) and energy E. This shows
that the dimensionless entropy S is the conjugate potential to the dimensionless Helmholtz
free energy F . The former is a function of inverse temperature F(β) while the latter is a
function of the energy S(E).

2.1.23.2. From canonical to grand canonical. In a similar way, we may transform from the
canonical ensemble with variables (T, V,N) to the grand canonical ensemble with variables
(T, V, µ). The thermodynamic potential is called the grand canonical potential

Ω = −F + µN,

and the corresponding grand canonical partition function is obtained by the Laplace trans-
form of Z with respect to N , and introducing its conjugate variable µ,

Z(T, V, µ) =

∫
dN Z(T, V,N)eβµN .

To be strictly correct, the above transform is from N to the conjugate variable βµ, resulting
in a function of (T, V, βµ). However, the β in βµ is redundant if T is known. The unique
set of variables is (T, V, µ).

To make this more transparent, it helps to define the following dimensionless quantities:

Ω̃ = βΩ and F = βF and µ̃ = βµ.
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The Legendre transform Ω = −F + µN can be written in a form that highlights the role
of the dimensionless conjugate variables:

Ω̃(µ)−F(N) = µ̃ ·N.

2.1.23.3. From canonical to isobaric. The Legendre transform relation

G = F + PV

becomes, in dimensionless form (let G = βG, F = βF and P = βP )

G(P)−F(V ) = P · V.

2.1.23.4. Link between Legendre transform and Laplace transform. Starting from the Le-
gendre transform relationship between free energy F and entropy S:

−F(β) = S(U)− β · U,
and exponentiating,

e−F (β) = eS(U)−β·U ,

we recognize the left hand side as the canonical partition function:

Z(β, V,N) = e−F(β).

In the thermodynamic limit, the right hand side is approximately equal to:

eS(U)−β·U ≈
∫ ∞

0
dE eS(E)−β·E =

∫ ∞

0
dEW (E)e−β·E ,

where the last step follows from the substitution W (E) = eS(E). Therefore, we get that
the canonical partition function Z(β) is the Laplace transform of W (E):

Z(β) =

∫ ∞

0
dEW (E)e−β·E .

2.1.24. Supplemental Readings. The following textbooks are recommended reading:

• A.I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover (1960)

• M. Toda, R. Kubo, N. Saito, Statistical physics I, 2nd edition, Springer (1998)

• D.A. McQuarrie, Statistical Mechanics, 2nd edition, University Science Books (2000)

• K. Huang, Statistical Mechanics, 2nd edition, Wiley (1987)

2.1.25. Solving problems of thermostatistics using statistical ensembles. Most
problems in thermostatistics begin with the partition function. For example, let’s take the
canonical partition function. Written down as a sum over states:

Z =
∑
i

e−βEi
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where β = 1
kBT

and Ei is the energy of the i-th state. The Helmholtz free energy F is

related to Z by:
F (T, V,N) = −kBT logZ

This relationship establishes the link between thermodynamics (LHS) and statistical me-
chanics (RHS). A thermodynamic potential is a scalar quantity from which all thermo-
dynamic variables can be derived. In the context of a system in equilibrium at constant
temperature and volume, the Helmholtz free energy serves as the relevant thermodynamic
potential

F = U − TS − µN

where µ is the chemical potential, N , the number of particles, U is the internal energy
and T is the temperature. S is the entropy of the system. The Helmholtz free energy is
commonly employed to calculate work done on or by the system, excluding work done by
expansion or contraction (i.e., PdV work). The minimization of F (T, V,N) at constant
T,N and V indicates a state of equilibrium.

Considering F as a function of T and V , F (T, V,N), partial derivatives yield other ther-
modynamic properties:

dF = −SdT − PdV − µdN.

From this, we identify the coefficients of dT , dV and dN as −S, −P and −µ, respectively.
The relations are:(

∂F

∂V

)
T,N

= −P,
(
∂F

∂T

)
V,N

= −S,
(
∂F

∂N

)
T,V

= −µ.

Other quantities can also be obtained. For example, the average energy can be obtained
by differentiating the partition function with respect to β:

∂

∂β
Z(T, V,N) =

∫
Γ

[
∂

∂β
e−βH(p,q)

]
d3Np d3Nq

N !h3N
=

∫
Γ

[
−H(p,q)e−βH(p,q)

] d3Np d3Nq

N !h3N

and so dividing this by −Z is the statistical definition of the average ⟨H(p,q)⟩. Therefore,

U ≡ ⟨H(p,q)⟩ = − ∂

∂β
logZ(T, V,N) = − 1

Z

∂Z

∂β
.

2.1.25.1. Canonical ensemble: the classical ideal gas. The Hamiltonian is

H(p,q) =

3N∑
i=1

p2i
2m

.

The partition function is:

Z(T, V,N) =

∫
Γ
e−β

∑3N
i=1 p

2
i /2m

d3Np d3Nq

N !h3N
,

where the sum has 3N terms to account for N particles and 3 components per particle, i.e.
p1x, p1y, p1z, p2x, . . . , pNx, pNy, pNz. The integral over the position variables gives a factor
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V N , are we are left with the task of evaluating Gaussian integrals:

Z(T, V,N) =
V N

N !h3N

[∫ ∞

−∞
d3pe−βp

2/2m

]N
,

where p2 = p2x + p2y + p2z. Integrating using the formula
∫
R exp(−αx2)dx =

√
π/α, the

result is:

Z(T, V,N) =
V N

N !h3N

(
2πm

β

)3N/2

.

We immediately find, for the energy:

U = − ∂

∂β
logZ(T, V,N) = − 1

Z

∂Z

∂β
=

3

2
NkBT.

We note that the factor (N !h3N )−1 was not needed because computing U involved taking
a partial derivative with respect to β. For the pressure, we get:

P = kBT
∂

∂V
logZ(T, V,N) =

NkBT

V
.

Same comment here, (N !h3N )−1 was not needed.

2.1.25.2. Grand canonical ensemble: the classical ideal gas. The grand canonical partition
function is the Laplace transform of the canonical partition function:

Z(T, V, µ) =

∞∑
N=0

eβµNZ(T, V,N),

But we have already calculated the canonical partition function in the previous exercise:

Z(T, V,N) =
V N

N !h3N

(
2πm

β

)3N/2

.

Thus,

Z(T, V, µ) =

∞∑
N=0

eβµN
V N

N !h3N

(
2πm

β

)3N/2

.

We recognize the Taylor expansion of the exponential function. Therefore,

Z(T, V, µ) = exp

[
eβµ

1

h3
V

(
2πm

β

)3/2
]
= exp

[
eµ/kBTV

(
2πmkBT

h2

)3/2
]
.

The grand canonical potential is:

Ω(T, V, µ) = kBT logZ(T, V, µ) = kBTe
µ/kBTV

(
2πmkBT

h2

)3/2

.

The equations of state can be found by differentiation,

S(T, V, µ) =

(
∂Ω

∂T

)
V,µ

, P (T, V, µ) =

(
∂Ω

∂V

)
T,µ

, N(T, V, µ) =

(
∂Ω

∂µ

)
V,T

.
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These latter relations are easily calculated. They are also easily derived from the definition
of the Landau (grand) potential

Ω = −F + µN = −U + TS + µN = −PV with U = TS − PV + µN.

2.1.25.3. Microcanonical ensemble: classical harmonic oscillators. The Hamiltonian of a
set of N classical harmonic oscillators is

H(p,q) =
3N∑
i=1

(
p2i
2m

+
mω2

2
q2i

)
.

The volume of phase space is

V(N,V,E) =

∫
{x:H(x)<E}

dx,

and can be computed using the substitutions

pi =
√
2m yi i = 1, . . . , 3N

qi =

√
2

mω2
y3N+i i = 1, . . . , 3N

where we omitted the Gibbs factor (N !h3N )−1 since it plays no role when computing
classical thermodynamical quantities. In terms of these variables, the energy constraint is

E =

6N∑
i=1

y2i .

The volume is:

V(N,V,E) =

(
2

ω

)3N ∫
{x:H(x)<E}

6N∏
i=1

dyi =

(
2

ω

)3N π3N

3NΓ(3N)
E3N .

where Γ(z) =
∫∞
0 rz−1e−rdr is the Gamma function and we have used the volume of a

6N -dimensional sphere with radius R =
√
E. To compute the entropy,

S = kB log
∂V(N,V,E)

∂E
= kB log

(
2

ω

)3N π3N

Γ(3N)
E3N−1.

Using Stirling’s formula, we obtain:

S ≈ 3NkB

[
log

(
2πE

3ωN

)
+ 1

]
.

The temperature is given by

1

T
=

(
∂S

∂E

)
N

=
3NkB
E

.
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Thus, the average energy per oscillator is 3kBT , in agreement with the equipartition the-
orem.

2.1.25.4. Microcanonical ensemble: defects in a solid. This example can be found in Huang:

• K. Huang, Lectures on statistical physics and protein folding, World Scientific (2005)

Consider a lattice with N sites, each occupied by one atom. There are M possible inter-
stitial locations where atoms can be misplaced, and it costs an energy ∆ to misplace an
atom, as shown in Figure (2.2). Assume N,M → ∞, and the number of displaced atoms
n is a small fraction of N . Let’s calculate the thermodynamic properties of this system.

Figure 2.2. Model of defects in a solid.

The given macroscopic parameters are N,M,n. The energy is

E = n∆.

The number of states in the microcanonical ensemble is:

W (E) =

[
N !

n!(N − n)!

]
·
[

M !

n!(M − n)!

]
.

The first factor is the number of ways to choose the n atoms to be removed from N sites,
and the second factor is the number of ways to place the n atoms on the M interstitial
positions. We can use Stirling’s formula

log logN ! ≈ N logN −N.

The entropy is

S(E)

kB
= logW (E) ≈ n log

N

n
− (N − n) log

(
1− n

N

)
+ n log

M

n
− (M − n) log

(
1− n

M

)
.
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The temperature is given by

1

T
=
∂S(E)

∂E
= kB

∂ logW (E)

∂E
=

1

∆

∂ logW (E)

∂n
.

This leads to
∆

kBT
=

∂

∂n
logW (E) = log

(
N

n
− 1

)
+ log

(
M

n
− 1

)
.

Exponentiating both sides, we have

n2

(N − n)(M − n)
= exp

(
− ∆

kBT

)
.

The low and high temperature limits are:

n ≈
√
NM exp(−∆/2kBT ) (kBT ≪ ∆)

1

n
≈ 1

N
+

1

M
(kBT ≫ ∆).

As a model for defects in solids, we set N =M and n≪ N,M , and ∆ = 1 eV. Then,
n

N
≈ exp(−∆/2kBT ).

For T=300 K, n/N ≈ 2× 10−9. (Note: kBT is approx. equal to 0.03 eV.)
For T=1000 K, n/N ≈ 2× 10−3. In the high temperature limit T → ∞, n/N ≈ 0.5.

2.1.25.5. Canonical ensemble: unwinding of DNA. This example can be found in Huang:

• K. Huang, Lectures on statistical physics and protein folding, World Scientific (2005)

The unwinding of a double-stranded DNA molecule is like unraveling a zipper. The DNA
has N links, each of which can be in one of two states: a closed state with energy 0, and an
open state with energy ∆. A link can be opened only if all the links to its left are already
open, as illustrated in Figure (2.3). Due to thermal fluctuations, links will spontaneously
open and close. We want to calculate the average number of open links.

Figure 2.3. Zipper model for DNA.

The possible states are labeled by the number of open links n = 0, 1, 2, . . . , N . The energy
with n open links is

En = n∆.
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The partition funciton is

ZN =
N∑
n=0

e−βn∆ =
1− e−β(N+1)∆

1− e−β∆
.

The average number of open links is:

⟨n⟩ =
∑N

n=0 ne
−βn∆∑N

n=0 e
−βn∆

= − 1

∆

∂ logZN
∂β

=
e−β∆

1− e−β∆
− (N + 1)e−β(N+1)∆

1− e−β(N+1)∆
.

At low temperatures β∆ ≫ 1, and there are few open links:

⟨n⟩ ≈ e−β∆.

At high temperatures β∆ ≪ 1, almost all the links are open:

⟨n⟩ ≈ N.

2.1.25.6. Grand canonical ensemble: chemical equilibria. This example can be found in
Sethna’s book:

• J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford
University Press (2006)

In studying chemical reactions, we are often interested in the number of molecules of various
types as a function of time, and not interested in observing properties depending on the
positions and momenta of the molecules.

Ammonia can be produced from hydrogen and nitrogen through the reaction

3H2 +N2 ⇋ 2NH3.

In chemical equilibrium, we know the concentrations satify the law of mass-action

Keq(T ) =
[NH3]

2

[N2][H2]3
.

This law of mass-action implies that all reactions proceed by simultaneous three-body
collisions, as shown in Figure (2.4), i.e. the probability of one nitrogen and three hydrogen
molecules colliding in a small region is proportional to the nitrogen concentration and to the
cube of the hydrogen concentration. This gives the forward rate as KF [N2][H2]

3. Similarly
the backward reaction occurs at a rateKB[NH3]

2. Balancing (equating) these two rates and
letting Keq = KF /KB gives the law of mass-action. This argument is flawed for general
chemical reactions because it neglects the possibility of reaction intermediates involving
multiple collisions. Let us derive the law of mass-action from statistical mechanics.

Since we are not interested in the position and momentum, consider instead the Helmholtz
free energy:

F (T, V,NH2 , NN2 , NNH3).
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Figure 2.4. Ammonia collision: the simple motivating argument for the law of mass-
action views the reaction as a simultaneous collision of all three reactants.

When the chemical reaction takes place, this changes the number of molecules, and the
free energy of the system changes according to:

∆F =
∂F

∂NH2

∆NH2 +
∂F

∂NN2

∆NN2 +
∂F

∂NNH3

∆NNH3 .

=− 3µH2 − µN2 + 2µNH3 ,

where µX = ∂F/∂NX is the chemical potential of molecule X. The reaction will proceed
until the free energy is at a minimum, i.e.

(2.15) −3µH2 − µN2 + 2µNH3 = 0

in equilibrium.

To derive the law of mass-action, we must now make an assumption: that the molecules
are uncorrelated in space. This makes each molecular species into a separate ideal gas.
The Helmholtz free energies of the gases are of the form15

F (N,V, T ) = NkBT
[
log((N/V )λ3)− 1

]
+NF0,

where λ = h/
√
2πmkBT is the thermal deBroglie wavelength. The first two terms give

the contribution to the partition function from the positions and momenta of the mlecules.
The last term NF0 comes from the internal free energy of the molecules. So the chemical
potential is

µ(N,V, T ) ≡ ∂F

∂N
= kBT

[
log((N/V )λ3)− 1

]
+NkBT (1/N) + F0

=kBT log((N/V )λ3) + F0

=kBT log(N/V ) + c+ F0,(2.16)

15We previously derived the canonical partition function Z = (L/λ)3N/N ! with V = L3, λ = h/
√
2πmkBT for the

ideal gas. The free energy is F = −kBT log((L/λ)3N/N !), which reduces to −NkBT log(V/λ3)+kBT log(N !). Using
Stirling, this becomes −NkBT log(V/λ3) + kBT (N logN −N), or −NkBT

[
log(V/Nλ3) + 1

]
.
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where the constant c = kBT log(λ3) is independent of density. Using Eq. (2.16) into
Eq. (2.15), dividing by kBT , writing concentrations [X] = NX/V and pulling terms inde-
pendent of concentrations to the right, we find the law of mass-action

−3 log[H2]− log[N2] + 2 log[NH3] = logKeq,

Keq =
[NH3]

2

[H2]3[N2]
.

We also find that the equilibrium constant depends exponentially on the net internal free
energy difference

∆Fnet = −3FH2
0 − FN2

0 + 2FNH3
0

between reactants and products:

Keq = K0 exp(−∆Fnet/kBT )

with a prefactor

K0 =
λ9H2

λ3N2

λ6NH3

=
h6m3

NH3

8π3k3BT
3m

9/2
H2
m

3/2
N2

∝ T−3.

that depends weakly on temperature. The factor e−∆Fnet/kBT represents the Boltzmann
factor favoring a final state with molecular free energy ∆Fnet lower than the initial state.
Thus,

Keq ∝ e−∆Enet/kBT .

with ∆Enet = 92.4 kJ/mol for the ammonia synthesis reaction (exothermic).

An M -atom chemical reaction is a trajectory in 3M -dimensional configuration space. In
chemistry we usually plot the energy as a function of the ”reaction coordinate” X (see
Figure 2.5. The energy barrier B separates the reactants from the products. The atomic
configuration at the top of the barrier is called the transition state. This barrier, in 3M -
dimensional configuration space, is actually a saddlepoint; dividing the reactants from the
products demands the identification of a (3M − 1)-dimensional transition-state dividing
surface.

The density of particles at the top of the barrier is smaller than the density at the bottom of
the well by a Boltzmann factor e−B/kBT . The rate of the reaction ℵ is thermally-activated,
or of Arrhenius form:

ℵ = ℵ0 exp(−B/kBT ).
with some prefactor ℵ0 which is proportional to the mass-action formula, i.e. ℵ0 ∝
[H2]

2[N2]
2 for the ammonia reaction.

2.1.26. Supplemental Readings. The following textbooks are recommended reading:

• K. Huang, Statistical Mechanics, 2nd edition, Wiley (1987)

• K. Huang, Lectures on statistical physics and protein folding, World Scientific (2005)
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Figure 2.5. Barrier-crossing potential. Energy E as function of some coordinate X of the
reaction. The dots schematically represent how many atoms are at each position. The
reactants (left) are separated from the products (right) by an energy barrier of height B.
One can estimate the rate of the reaction by calculating the number of reactants crossing
the top of the barrier per unit time.

• J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford
University Press (2006)

• D.A. McQuarrie, Statistical Mechanics, 2nd edition, University Science Books (2000)

2.1.27. A short review of thermodynamic principles.

2.1.27.1. Principle of energy minimum. We know from the second law of thermodynamics
that a system displaced from equilibrium moves towards a new state such that the change
in entropy never decreases:

dS ≥ 0.

Eventually it reaches equilibrium and dS = 0. Thus, the entropy attains a maximum.
According to the first law of thermodynamics, maximizing the entropy is equivalent to
minimizing the free energy, F :

F (N,V, T ) = U − TS(N,V, U),

This is an instance of a Legendre transform if we divide both sides by T : the transform
takes us from S into F by replacing energy (U) by temperature (T = 1/kBβ):

F(N,V, T ) = βU − S(N,V, U),

where F = βF and S = S/kB. The equivalence of energy minimization with entropy maxi-
mization is made possible by the Legendre transformation which preserves the convexity of
the functions involved. Thus, going from one set of thermodynamic variables (e.g., N,V,E)
to another more convenient one (e.g. N,V, T ) preserves the structure.
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For a more extensive discussion on the principle of energy minimum in thermostatistics,
see the textbook by Callen:

• H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition,
Wiley (1985)

2.1.27.2. Thermal equilibrium. We learn from undergraduate chemistry that the conditions
for thermodynamic equilibrium are as follows:

• For a completely isolated system, ∆S = 0 at equilibrium. [An isolated system, by
definition, is a member of the microcanonical ensemble (fixed N,V,E).]

• For a system at constant temperature and volume, ∆F = 0 at equilibrium. [This corre-
sponds to the canonical statistics (fixed N,V, T ).]

• For a system at constant temperature and pressure, ∆G = 0 at equilibrium. [Case of
the isobaric-isothermal ensemble (fixed N,P, T ).]

If we wish to study a chemical reaction for a system under atmospheric conditions, the
Gibbs potential (fixed T, P ) is appropriate. For a reaction taking place in a vessel at fixed
volume, the Helmholtz free energy, A, is more useful.

2.1.27.3. Summary of Legendre transform relationships between thermodynamic state func-
tions. All the thermodynamic functions of a system can be derived from a single function,
U(S, V ). Comparing its differential

dU(S, V ) =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV,

to the first law of thermodynamics

dU = TdS − PdV,

we obtain definitions of temperature and pressure

T =
∂U

∂S
P = −∂U

∂V
These two formulas are called Maxwell relations. For other types of processes, we use
different functions:

• Constant S, V: The internal energy U(S, V )

dU =TdS − PdV,

T =
∂U

∂S
P = −∂U

∂V
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• Constant T, V: Use the (Helmholtz) free energy

F (T, V ) =U − TS

dF =− SdT − PdV

S = −∂F
∂T

P = −∂F
∂V

• Constant T, P: Use the Gibbs potential

G(P, T ) =F + PV

dG =− SdT + V dP

S = −∂G
∂T

V =
∂G

∂P
• Constant P, S: Use the enthalpy

H(P, S) =U + PV

dH =TdS + V dP

T =
∂H

∂S
V =

∂H

∂P

We may conveniently summarize all these Maxwell relations as shown in Fig. 2.6.

V  A  T

U       G

S   H  P

Figure 2.6. Each quantity at the center of a row or column is adjacent to its natural
variables. The partial derivative with respect to one of the variables, with the other held
fixed, is arrived at by following the diagonal line originating from that variable. Attach
a minus sign if you go against the arrow.

Some authors define the “Maxwell relations” as equations that involve second partial deriva-
tives. For example: (

∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

,

which are obtained by differentiating

T =

(
∂U

∂S

)
V,N
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with respect to V and differentiating

P = −
(
∂U

∂V

)
S,N

with respect to S, and equating the mixed partial derivatives, i.e.

∂2U

∂V ∂S
=

∂2U

∂S∂V
→

(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

.

See handout by Alberty for details:

• R.A. Alberty, Use of Legendre transforms in chemical thermodynamics (IUPAC Technical
Report), Pure Appl. Chem., Vol. 73, No. 8, pp. 1349–1380 (2001)

2.1.27.4. Brief remark on the usual thermodynamic notation for Legendre transforms. We
note that the Legendre transform in thermodynamics is usually presented as follows. We
start from the 1st law of thermodynamics

dU(S, V ) = TdS − PdV

and define the Helmholtz free energy as the “Legendre transform”

(2.17) F = U − TS

Taking d of this expression and substituting the 1st law gives:

dF (V, T ) = dU − TdS − SdT = (���TdS − PdV )−���TdS − SdT = −PdV − SdT.

Thus, the Legendre transform is made to appear as a relationship between the differentials.
By inspection of Eq. (2.17) it appears that it is the energy function, U , that is Legendre-
transformed to eliminate the entropy S in favor of the temperature T .

The Legendre transform can be presented in terms of normalized variables. The argument
runs as follows.

Solving the 1st law dU = TdS − PdV for dS:

dS =
1

T
(dU + PdV )

and divide by kB, then introducing the normalized variable S = S/kB,

dS = β(dU + PdV ).

The normalized Helmholtz free energy is the Legendre transform of S(E)

F︸︷︷︸
βF

= sup
E

[β · E − S(E)] ≡ β · U − S(U),

where U is the energy E that maximizes β · E − S(E). This formulation makes the
structure of the Legendre transformation apparent. Taking the differential of both sides
and substituting dS = β(dU + PdV ) gives

dF = Udβ + βdU − dS = Udβ +�
��βdU − β(��dU + PdV )
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which is (P = βP )
dF = Udβ − βPdV = Udβ − PdV.

Note that here it is the entropy function S that is Legendre-transformed rather than the
energy function. This Legendre transform eliminates U in favor of β. This is possible since
U is a monotonic function of S and we can always solve for S in terms of U . This slightly
different point of view simply depends on whether one chooses to start with entropy or
internal energy. The end result, the Helmholtz free energy, is equivalent.

2.1.28. Chemical reactions.

2.1.28.1. Euler relation. Since we are dealing with extensive quantities in thermodynamics,
the state functions are homogeneous of degree 1:

U(λS, λV, λN) = λU(S, V,N).

Differentiating with respect to λ we get:

U(S, V,N) =

(
∂U

∂(λS)

)
V,N

∂(λS)

∂λ
+

(
∂U

∂(λV )

)
S,N

∂(λV )

∂λ
+

(
∂U

∂(λN)

)
V,S

∂(λN)

∂λ

which simplifies to

U(S, V,N) =

(
∂U

∂(λS)

)
V,N

S +

(
∂U

∂(λV )

)
S,N

V +

(
∂U

∂(λN)

)
V,S

N

Since λ is arbitrary we set λ = 1,

U(S, V,N) =

(
∂U

∂S

)
V,N

S +

(
∂U

∂V

)
S,N

V +

(
∂U

∂N

)
V,S

N

Substituting the definitions of T , P and N in terms of partial derivatives, we arrive at

U(S, V,N) = TS − PV − µN.

2.1.28.2. Gibbs potential is for systems exposed to the atmosphere. The Gibbs potential is
a natural function of the variables T, P,N1, N2, . . . , and is particularly convenient to use in
the study of chemical reactions which are performed in systems exposed to the atmosphere,
and thereby maintained at constant temperature and pressure.

The Gibbs potential of a multicomponent system is related to the chemical potentials of
the individual components, for

G(N,P, T ) = (U − TS)︸ ︷︷ ︸
F (N,V,T )

+PV,

(recall that the Gibbs potential is the Legendre transform of the Helmholtz free energy)
and inserting the Euler relation

U = TS − PV + µ1N1 + µ2N2 + . . .
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we find
G = µ1N1 + µ2N2 + . . .

2.1.28.3. Chemical potentials are related to the stoichiometry of the reaction. Consider the
chemical reaction

0 ⇋
∑

νjAj

where νj are the stoichiometric coefficients of the reaction and Aj are the various chemical
species. (Any chemical reaction can be put into this form.) The change in mole numbers
must be proportional to the stoichiometric coefficients,

dNi ∝ νi.

If the chemical reaction is carried out at constant temperature and pressure (as in an open
vessel) the condition of equilibrium then implies∑

j

νjµj = 0.

This relationship between the chemical potentials is very important. It is an additional con-
straint on the number of unknowns that is provided “free of charge” by the stoichiometric
coefficients.

For example, in the metabolism of ATP

ATP +H2O ⇋ ADP+ Pi, ∆G◦ = −30 kJ/mol,

we can immediately write down the following constraint:

µATP + µH2O = µADP + µPi .

This type of constraint can be used in the study of chemical equilibria.

The Gibbs potential is more useful when chemical reactions are done in a system exposed to
the atmosphere (constant T, P ), as is the case for most tabletop chemistry. the reaction was
done in a vessel (constant T, V ). This setting is more appropriate for gas-phase reactions
and Helmholtz free energy (A) is the function to use.

2.1.28.4. Interpretation of the chemical potential. In Section 6.1.6 (Equation 2) we have
expressed the chemical potential for an ideal gas as the log of the density plus other terms:

µi(Ni, V, T ) = kBT log(ρi) + C.

A simple interpretation of this is to think of µ as reporting on the local concentration of
a particular chemical, since the density, ρi, is proportional to the concentration of the ith
chemical species, [Ai]. If we have a reaction vessel containing an inhomogeneous mixture of
chemicals, the chemical potential of the ith species will be a function of position µi ≡ µi(r),
and any gradient in the chemical potentials will give rise to a flux of particles, i.e. some
diffusion equation will act to re-establish homogeneity of the substances.
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2.2. The Laws of Thermodynamics and Relationship with Statistical
Mechanics

2.2.1. Zeroth law. The “zeroth law of thermodynamics” is the statement that two ob-
jects or bodies in thermal contact have equal temperatures at equilibrium. Consider an
isolated system comprising a number of subsystems, each with energies E′, E′′, . . . and
the energies can vary, however, the total energy should remain fixed:

E = E′ + E′′ + · · · = const.

Eventually the system achieves equilibrium by redistributing energy over the subsystems.
We assume this equilibrium to be uniquely determined by its total initial energy. We can
find the state of the system by maximizing the entropy S with respect to E′, E′′, . . .
subject to a fixed E. The additivity condition implies that

S = S′(E′) + S′′(E′′) + . . . ,

where S′, S′′, . . . are the entropies of the subsystems, which we assume for simplicity to
depend on their energies only. A necessary condition for S to be a maximum at fixed E
can be obtained by the method of Lagrange multipliers16. It is

dS′

dE′ =
dS′′

dE′′ = . . . .

Accordingly, since we have defined the temperature as T = (dS/dE)−1, this condition
implies that the temperatures are equal

T ′ = T ′′ = . . . .

2.2.2. First Law. Consider a slow variation of a thermodynamic system. The slow vari-
ation is required so that at every instant, we have a microcanonical ensemble. Consider the
entropy function S(E, V ) which is associated with this ensemble. The change in entropy is

dS(E, V ) =

(
∂S

∂E

)
V

dE +

(
∂S

∂V

)
E

dV.

The coefficient of dE is related to temperature:

1

T
=
∂S(E)

∂E
.

If we define the pressure by:

P ≡ T

(
∂S

∂V

)
E

,

16For references on the method of Lagrange multipliers, see the textbook by McQuarrie. See also the book by

Apostol which provides a very nice geometric picture of the vector calculus:

• T.M. Apostol, Calculus, Vol II: Multi-Variable Calculus and Linear Algebra with Applications, 2nd edition, Wiley

(1969)
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the infinitesimal change in entropy is:

dS =
1

T
(dE + PdV ),

or

(2.18) dE = TdS − PdV.

This is the first law of thermodynamics. If we solve for E in terms of the variables S and V ,
this law states that dE is an exact differential. The resulting function U(S, V ) = E(S, V )
is called the thermodynamic internal energy of the system.

It is important to realize the following important fact. We started with a state function
S(E, V ), the entropy of the system. Because S is a state function, it can be differentiated.
Its differential dS is an exact differential. By solving for dE, when E is a function of S
and V , we also get an exact differential.

The first law is often expressed as:

(2.19) dU = δQ− δW

is an exact differential. The quantity δQ represents a change in heat while the quantity
δW represents work done on the system. By comparing Eqs. (2.18) and (2.19) we find a
common expression for the entropy in terms of heat:

dS =
δQ

T
.

We notice that while δQ is not an exact differential, the ratio δQ/T is.

2.2.3. Second Law. The second law states that if an isolated system17 undergoes a change
in thermodynamic state such that the initial and final states are equilibrium states, the
entropy of the final state is not smaller than that of the initial state, i.e.

dS ≥ 0.

For this system, the independent variables are (N,V,E). If the entropy were a function of
these variables S(N,V,E), its differential would be:

dS(N,V,E) =
∂S

∂N
dN +

∂S

∂V
dV +

∂S

∂E
dE.

By definition of an isolated system, N and E cannot change. Only V can change. Now, V
cannot decrease without disturbing its isolation, i.e. decreasing V increases the pressure
P , which in turn changes the temperature (and energy).

Therefore, increasing V is the only option. An example is the free expansion of a gas when
one of the containing walls is suddenly removed. Thus, the second law states that S is a
nondecreasing function of V .

17An isolated system is one which cannot interact with its surroundings. Its energy and mass should remain constant.
The walls are treated as mirror boundary conditions.
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This can also be seen from the definition of entropy:

S(E) = kB logW (E).

As V increases, the number of microstates increases, i.e. W is a nondecreasing function of
V . This can be seen from the fact that W (E) is the volume of phase-space corresponding
to a total energy H(p,q) = E:

W (E) =
1

δE

∫
E<H(x)<E+δE

dx.

If V , the physical dimension of our system, increases this integral which has a positive
integrand can only increase.

The simplest way to see this is to consider the example of an ideal gas in a box of volume
V . The Hamiltonian H(p,q) =

∑N
i=1 p⃗

2
i /2m is independent of q⃗. Therefore, the integral

over q⃗ is proportional to VN andW (E) scales with VN . The condition E < H(x) < E+δE
does not pose any restrictions on the integration over q because H does not depend on q⃗.

A formulation of the second law of thermodynamics asserts that

dS =
δQ

T
is an exact differential. In the statistical mechanics, this statement follows by construction:
S is a state function and differentiating it gives an exact differential. In mathematical terms,
while δQ may be inexact, its multiplication by 1/T makes the resulting product exact. 1/T
is called an integrating factor.

2.2.3.1. Summary of the first two laws. The first two laws of thermodynamics can be sum-
marized as follows: δW and δQ themselves are not exact differentials, but the combinations
δQ−δW and δQ/T are exact. In the statistical approach, dU and dS are exact differentials
by construction. The content of the thermodynamic laws, in this view, is the introduction
of the idea of heat.

2.2.4. Heat Capacity. THe most important response functions are the heat capacities.
They describe the quantity of heat TdS that must be added to a system in order to achieve
an increase of the temperature by dT . If these quantities of heat transfer refer to a gram,
a mole, or a single particle of the substance in question, they are called specific heats. One
still has to distinguish which system variables are kept constant.

The mean energy of a system in thermal equilibrium

U ≡ ⟨E⟩ = 1

Z

∑
i

Eie
−βEi ,

can be expressed in terms of the partition function as,

(2.20) U = −
(
∂ logZ

∂β

)
V

.
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So knowing the partition function as a function of β allows us to find the mean energy.
Furthermore, differentiating U with respect to temperature gives the heat capacity at
constant volume

(2.21) CV ≡
(
∂U

∂T

)
V

=
∂U

∂β

∂β

∂T
= kBβ

2

(
∂2 logZ

∂β2

)
V

.

where
∂β

∂T
=

∂

∂T

1

kBT
= − 1

kBT 2
= −kBβ2.

In a change in which the volume constraint V does not vary, no mechanical work is done
on the system. So any change in the energy must be due entirely to a flow of heat,

CV dT = TdS,

where S is the entropy as defined in classical statistical thermodynamics. Hence,

CV = −β
(
∂S

∂β

)
V

= T
∂S(T, V,N)

∂T
= −T ∂

2F (T, V,N)

∂T 2
.

The relation dU = TdS tells us that the heat absorbed (TdS) is equal to the change of
energy (dU), which also leads us to CV = ∂U/∂T . Being the second derivative of the free
energy with respect to temperature, CV has to be related to a variance or covariance. To
find this relation we consider

U(T, V,N) = − ∂

∂β
logZ,

and using ∂
∂T = − 1

kBT 2
∂
∂β , we obtain

(2.22)

∂U(T, V,N)

∂T
=

1

kBT 2

∂2

∂β2
logZ =

1

kBT 2

(
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
)

=
1

kBT 2

(
⟨H2⟩ − ⟨H⟩2

)
.

Therefore,

CV =
1

kBT 2
var(H(x)).

where x stands for the random vector of positions and momenta. Hence, CV is proportional
to the variance of the energy. Both U(T, V,N) and var(H(x)) are O(N). We also find that
CV ≥ 0. For an ideal gas U = 3

2kBNT we obtain

CV =
3

2
kBT.

When the number of particles and the pressure are kept constant (rather than volume),
the heat capacity is

CP = T
∂G(T, P,N)

∂T
= −T ∂

2G(T, P,N)

∂T 2
.
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Since
dH = TdS + V dP + µdN,

the absorption of heat at constant pressure (and constant number of particles) results in a
change of enthalpt, and CP can also be expressed in the form

CP =
∂H(T, P,N)

∂T
.

Note that we consider there the enthalpy as a function of T , P , N , not of S, P , N . The
enthalpy H(T, P,N) can be written as

H(T, P,N) = − ∂

∂β
log Y ′,

and with ∂
∂T = − 1

kBT 2
∂
∂β one thus obtains

∂H(T, P,N)

∂T
=

1

kBT 2

∂2

∂β2
log Y ′.

In analogy with (2.22) one finally gets

CP =
1

kBT 2
var (H(x) + PV ) ,

where the variance is now determined from the density ρ(x, V |T, P,N). From this expres-
sion for CP it follows that CP ≥ 0. For an ideal gas the enthalpy is

H(T, P,N) = U(T, P,N) + PV (T, P,N) =
3

2
NkBT +NkBT =

5

2
NKBT

and therefore

CP =
5

2
kBN.

Intuitively, one would also expect that CP > CV . To obtain an increase of temperature
at constant pressure additional energy is needed, because some of that energy transferred
goes towards increasing the volume (P − V work).

2.2.5. Third law. Substituting from Eq.(2.21) for CV , dividing both sides by β and
integrating with respect to β,∫

dβ

(
∂S

∂β

)
V

=− kB

∫
dβ β

(
∂2 logZ

∂β2

)
V

S − Φ(V ) =− kBβ
∂ logZ

∂β
+ kB

∫
dβ

∂ logZ

∂β

=− kBβ
∂ logZ

∂β
+ kB logZ +Φ′(V )

we get the following expression for the system’s entropy:

S = −kBβ
(
∂ logZ

∂β

)
V

+ kB logZ +Φ′′(V ),
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where Φ′′(V ) is a function of the constraints alone. The third law of thermodynamics
requires the entropy of the system to tend to a constant value as T → 0, independently of
the constraints. Hence it follows that Φ′′(V ) = 0 and the entropy is

(2.23) S = −kBβ
(
∂ logZ

∂β

)
V

+ kB logZ.

2.2.5.1. Interpretation of the third law. This equation has the following interpretation. As
we have shown previously, the fluctuations in energy δU of a macroscopic system are usually
small. Starting from the definition of partition function as the Laplace transform of the
density of states:

Z(β) =

∫ ∞

0
dE e−βEW (E),

we can approximate the partition function by neglecting the microstates whose energy lies
outside the range [U,U + δU ]:

(2.24) Z ≈ δU ·W (U)e−βU ,

where δU ·W (U) is the number of microstates of the system in the range [U,U+δU ]. Using
(2.24) into (2.23) for the entropy, and bearing in mind Eq.(2.20) for U ,

(2.25) S = kBβU + kB logZ = kBβU + kB (log δUW (U)− βU) ,

we find the Boltzmann definition of entropy:

S = kB logW + kB log δU ≈ kB logW (since δU is small).

So the classical entropy is a measure of the number of microstates accessible to the system.

2.2.6. Supplemental Readings. The following textbooks are recommended reading:

• M. Toda, R. Kubo, N. Saito, Statistical physics I, 2nd edition, Springer (1998)

• D.A. McQuarrie, Statistical Mechanics, 2nd edition, University Science Books (2000)

• K. Huang, Statistical Mechanics, 2nd edition, Wiley (1987)

• G. Lebon, D. Jou, J. Casas-Vázquez, Understanding non-equilibrium thermodynamics:
foundations, applications, frontiers, Springer (2008)

2.3. Problems

Problem 78. Show that there is a relation (R is the gas constant)

Cp = Cv +R

between the isobaric and the isovolumic specific heats per mole of an ideal gas.
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Solution. The first law of thermodynamics for an infinitesimal quasi-static process of a
mole of gas is

δQ = dU + pdV.

Since the internal energy U of an ideal gas does not depend on the volume, V , we have
dU = Cv(T )dT and

δQ = Cv(T )dT + pdV.

The isovolume specific heat (d′Q/dT )V is in fact Cv. We rewrite this equation as

δQ = CvdT + d(pV )− V dp

and substitute pV = RT to obtain

δQ = (Cv +R)dT − V dp,

or
Cp = (δQ/dT )dp=0 = Cv +R.

■

Problem 79. Given the density of air at NTP (normal temperature and pressure, that is,
0◦C, 1 atm), ρ=0.00129 g/cm3, the specific heat at constant pressure cp=0.238 cal/g deg,
and its ratio to the isovolumic specific heat, γ=cp/cv=1.41, calculate the work equivalent
of heat J . Assume air to be an ideal gas with a volume of 22.4 liters at NTP.

Solution. The gas constant, R, may be obtained in units of joule/mol deg from the ideal
gas equation of state pV = RT . It can also be obtained in units of cal/mol deg from
Mayer’s equation Cp − Cv = R (by the previous problem) and if we express that by R′,
then J = R/R′. The normal state (NTP) is an equilibrium state where the temperature,
T = 0◦ C=273 K, and the pressure, p = 1 atm=1.013 × 106 dyne/cm2. The volume of a
mole at NTP is V = 22.4 × 103 cm3. Hence:

R =pV/T = 1.013× 106 × 22.4× 103/273

=8.32× 107erg/mol deg = 8.32 joule/mol deg

Since the isobaric specific heat per unit mass is the isobaric heat capacity per mole divided
by the mass of a mole of air (average molecular weight), m, which is

m = ρV = 0.00129× 22.4× 103 = 28.9 g/mol,

we have
Cp = mcp = 28.9× 0.238 = 6.88 cal/mol deg.

The isovolumic specific heat per mole Cv = mcv = mcp/γ = Cp/γ = 6.88/1.41 = 4.88
cal/mol deg. Therefore we have

R′ = Cp − Cv = 2.00 cal/mol deg
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and
J = R/R′ = 8.32/2.00 = 4.16 joule/cal.

■

Problem 80. Let δq be the heat necessary to change the temperature of a gram of a ma-
terial by dT keeping the state quantity x constant. For the sake of simplicity, assume that
there are only two independent variables, e.g. the specific volume, v, and the temperature,
T . Show that the specific heat cx is given by the equation

cx =

(
δq

dT

)
x

=

(
∂u

∂T

)
v

+

{(
∂u

∂v

)
T

+ p

}(
∂v

∂T

)
x

where u is the internal energy per unit mass and p is the pressure.

Solution. Since the mass of the system is constant, we need only consider the work done
by the pressure. The first law of thermodynamics applied to unit mass is

δq = du+ pdv.

The change du in u due to changes dT and dv in T and v is

du = (∂u/∂T )vdT + (∂u/∂v)Tdv.

Substituting this into the equation for δq, we have

δq =

(
∂u

∂T

)
v

dT +

{(
∂u

∂v

)
T

+ p

}
dv.

Although the parameter x is given as a function of T and v for equilibrium states, it is
possible to consider v as a function of T and x taking T and x as the independent variables.
Thus if x is kept constant and T is changed, dv = (∂v/∂T )xdT . Substituting this into the
above equation we obtain the answer. ■

Problem 81. (i) Calculate the heat necessary to heat air which has a volume of 27 m3 at
one atmosphere from 0◦C to 20◦C at constant volume.
(ii) How much heat is necessary if the initial volume at 0◦C is 27 m3 and the air is heated
to 20◦C at constant pressure?
(iii) If the air is in an insulated room of 27 m3 with a small leaking hole connected to
the outside at 1 atm, how much heat must be put into the room to raise the temperature
slowly from 0◦C to 20◦C? Refer to problem 2 for the characteristics of air. Consider the
specific heat to be constant.

Solution. (i) This is a case of isovolumic heating. The mass M of air which has a volume
of 27 m3 at 0◦ C and 1 atm is calculated from its density, ρ=0.00129 g/cm3, as

M = 0.00129× 27× 106 = 3.48× 104 g.

The isovolumic heat capacity Cv is calculated from the isovolumic specific heat

cv = cp/γ = 0.238/1.41 = 0.169 cal/g deg,
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Cv =Mcv = 10.169× 3.48× 104 = 5.88× 103 cal/deg.

Considering the heat capacity as constant, the heat Qv, necessary to raise the temperature
T1 to T2 is

Qv =

∫ T2

T1

CvdT = (T2 − T1)Cv = 20× 5.88× 103 = 1.176× 105 cal.

(ii) In the case of isobaric heating we use the isobaric heat capacity Cp instead of Cv:

Cp =Mcp = γCv = 1.41× 5.88× 103 = 8.29× 103 cal/deg.

Then the desired heat Qp is

Qp = (T2 − T1)Cp = 20× 8.29× 103 = 1.658× 105 cal.

(iii) We may assume that the pressure in the room is maintained at 1 atm since the heating
is slow. When the air is heated at constant pressure, p, and constant volume, V , the mass
of the air, M(T ), in the room at temperature T can be determined from the equation of
state pV = RTM/m (m is the average molecular weight of air), or M(T )T = const. If the
mass of the air in the room isM1 when the temperature is T1, thenM(T ) =M1T1/T . Since
the air of mass M(T ) is being heated at constant pressure, its heat capacity is M(T )cp, so
that the heat required to raise the temperature to T2 is

Q =

∫ T2

T1

M(T )cpdT = cpM1T1

∫ T2

T1

dT

T
= cpM1T1 log

T2
T1
.

Since T1=0◦ C=273 K, T2 = 20◦ C=293 K and Cp = 8.29 × 103 cal/deg as calculated
above, so

Q = 8.29× 103 × 273× log
293

273
= 2.26× 106 × 0.0706 = 1.596× 105 cal.

■

Problem 82. A magnetic body is inserted in a coil and is magnetized by the magnetic
field created by a current through the coil. For the sake of simplicity, assume that the field,
H, and the magnetization, M, are uniform throughout the magnetic body. Show that the
work done by the electric source in the process of magnetization is

A =

∫ M

0
H · dM

per unit volume of the magnetic body. Assume that the magnetic body has no deformation
by magnetization.

Solution. Let us consider the case where a coil is wound around a sufficiently long cylindri-
cal magnetic body. The magnetic field in a coil with n turns per unit length HJ = 4πnJ/c
when a current J is passed through the coil. The field H inside the magnetic material is
the sum of HJ and the demagnetizing field HM , which, however, is small if the specimen is
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a long needle. Therefore, we may assume here H = HJ . If the coil is wound over the entire
length of the cylinder, whose length is l and cross-sectional area is σ, the flux through the
coil is

Φ = σnlB = V nB,

where, V = σl is the volume of the magnetic body and B = H + 4πM is the flux density
in the magnetic body. When the current J is increased, then H and M and accordingly
B, also change so that a counter-electromotive force

−(1/c)dΦ/dt = −V (n/c)dB/dt

is induced, according to Faraday’s induction law. The work which the electric source must
do against this counter-electromotive force in a time interval dt as a charge

Jdt = 1
4cHJdt/πn

passes through each section of the wire, is

(1/c)(dΦ/dt)Jdt =1
4V HdB/π = 1

4V (HdH + 4πHdM)/π

=d[18V H
2/π] + V HdM.

Of this work, d[18V H
2/π] is the work which is needed to create a field H irrespective of the

presence of the magnetic body. Thus, the work HdM can be identified with the work per

unit volume required to increase the magnetization, M , by dM . Hence, A =
∫M
0 HdM is

the work per unit volume required to increase the magnetization from 0 to M . (If it were
possible to fix the final value of magnetization at M , then the work 1

8V H
2/π would be fed

back to the electric source in the process of decreasing H to zero, because then we would
have dB = dH.) ■

Problem 83. The Hamiltonian of a classical gas of N interacting particles, each of mass
m, is

H(p,q) =
N∑
i=1

p2i
2m

+ U(q1, . . . , qN ).

Show that the partition function is the product of two terms, one depending only on the
kinetic term and one only on the potential term. Find an expression for the mean kinetic
energy of each particle as function of temperature. Some marbles of mass 10 g are being
shaken about in a box, with a mean speed of 1 m/s. Find the temperature associated with
the motion of the marbles. Why doesn’t the box catch fire?

Solution. The partition function is

Z =

∫
dp1 . . . dpNdq1 . . . dqNe

−H(p,q)/kBT

=

∫
dp1 . . . dpNe

−
∑
p2i /2mkBT

∫
dq1 . . . dqNe

−U(q1,...,qN )/kBT
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which is in the factorized form. The mean kinetic energy of particle 1 is

E =
1

Z

∫
dp dq (p21/2m)e−H(p,q)/kBT

The integrals over the qi and over p2 to pN cancel, leaving a Gaussian integral: the result
is E = kBTd/s where d is the number of dimensions.

Treating the marbles as being in thermal equilibrium gives T ∼ 1020 K. However, only the
degrees of freedom associated with the motions of the centers of mass of the marbles are
at this temperature. The remaining ∼ NA degrees of freedom per marble are only at room
temperature, so what the shaking stops and the energy of motion gets shared out evenly
between the modes, the actual temperature rise is only a small fraction of a degree.

The factorization of Z for a classical system means that the kinetic energy term holds no
interesting information. Quantum-mechanically Z does not factorize, because the qi and
pi do not commute. However, we are often concerned with long-distance phenomena, for
which classical physics is presumably a good approximation. ■

Problem 84. Let us look at a very simplified model for a collision of molecules undergoing
a catalytic reaction. Consider a very small region of space (nm in size) – the collision volume
– containing an organic molecule with n carbon-carbon triple bonds. The small volume
also contains a dihydrogen and a difluorine molecule and a catalyst which is able to attach
an H (or F) atom across any of the unsaturated bonds. When both an H and F atoms
are attached across the same carbon-carbon bond, the energy of the system is lowered by
κ (this favorable energetic situation is only possible with a catalyst!). The Hamiltonian
for this system is H(r1, r2) = −κδr1,r2 , where r1 and r2 are integers running from 1 to
n labelling the positions of the two atoms. Show that the probability of finding the two
particles attached across the same carbon-carbon bond is p = 1/(1 + (n − 1)e−βκ). The
system is thermally isolated, and then n is increased from 2 to 6 without any work being
done. What is the new temperature of the system?

Solution. This problem can be reduced to the problem of placing two different balls in
n boxes, if we assume that the chemical bonding is done in such a way as to ensure that
each carbon bond is sufficiently saturated. δr1,r2 is 1 when the balls are in the same box,
and 0 otherwise, so its thermal average is the required probability p. This average can be
obtained by differentiating Z since δr1,r2 appears in H:

Z =

n∑
r1,r2=1

eβκδr1,r2 = n(n− 1 + eβκ); p =
1

β

∂ logZ

∂κ
,

which gives the required answer. −κp is the mean energy; since the change in n takes place
at constant energy, equating the mean energies for n = 2 and n = 6 gives

T ′ =
1

(kB/κ) log 5 + T−1
,

this shows a decrease in temperature. ■
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Problem 85. At sufficiently low temperatures, the partition function of a system with
discrete microstates can be written

Z ≈ n0e
−βE0 + n1e

−βE1 ,

where E0 and E1 are the two lowest energies of the system, and n0 and n1 are the number
of microstates with each energy. Use this expression for Z to calculate the entropy S using
(β = 1/kBT )

S = −kBβ
(
∂ logZ

∂β

)
{V }

+ kB logZ +Φ({V }),

where Φ({V }) is a function of the physical constraints {V } of the system (e.g. system’s
volume), in the limit T → 0, and show that the third law of thermodynamics requires
Φ({V }) = 0.

Solution. We have

S = k(log n0 +
n1
n0
e−β∆E(1− β∆E) +O(e−2β∆E)) + Φ({V }),

where ∆E ≡ E2 − E1. When β → ∞ this becomes

S = k log n0 +Φ({V }).
Unless Φ is a constant, the entropy at absolute zero depends on the constraints, which
contradicts the third law. ■

Problem 86. Consider a system of N interacting two-state spins, with interactions so
strong that the only significant terms in the partition function are those with all the spins
pointing in the same direction. Write down the partition function for this system. Calculate
the average magnetization per spin – what form does it have in the limit N → ∞?

Solution. The partition function of this system in a magnetic field B is

ZN = e−βNµB + eβNµB = 2 cosh(NβµB)

we’ve taken the zero of the spin interaction energy to be when all spins are aligned. The
magnetization per spin is

m = tanh(NµB).
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In the limit N → ∞ this has the form (B) rather than (A) in the figure below:

(A) (B)

■

Problem 87. Derive the rotational partition function r(T ) for a heteronuclear diatomic
molecule (explain all steps of the derivation):

r(T ) =

∞∑
l=0

(2l + 1) exp

[
−ℏ2l(l + 1)

2IkBT

]
=

∞∑
l=0

(2l + 1) exp

[
−Θr

T
l(l + 1)

]
Give the high temperature expansion of r(T ) using Euler-Maclaurin’s summation formula.
Calculate the value of r(T ) at T = 300.4 K for HCl (Θr/T = ℏ/2IkB = 15.02 K, where I
is the moment of inertia of the molecule) and find the deviation from the classical value of
T/Θr.

Solution. For a derivation see, e.g., McQuarrie or Bloch. At high temperatures T ≫ Θr,
one can utilize the Euler-Maclaurin’s summation formula

∞∑
n=0

f(n) =

∫ ∞

0
f(x)dx+ 1

2f(0)−
1
12f

′(0) + 1
720f

′′′(0)− 1
30240f

V (0) + . . .

f(x) being analytic for 0 < x <∞
Putting f(x) = (2x+ 1) exp(−x(x+ 1)σ), with σ = Θr/T , one has

(2.26)

∫ ∞

0
f(x)dx =

∫ ∞

0
(2x+ 1)e−x(x+1)σdx =

1

σ

∫ ∞

0
e−ξdξ =

T

Θr
,

and

f(0) = 1, f ′(0) = 2−σ, f ′′′(0) = −12σ+12σ2−σ3, fV = 120σ2−180σ3+30σ4−σ5, . . . ,
so that

r(T ) =
1

σ
+

1

3
+

σ

15
+

4σ2

315
+O(σ3)

=
T

Θr

{
1 +

1

3

Θr

T
+

1

15

(
Θr

T

)2

+
4

315

(
Θr

T

)3

+O(

(
Θr

T

)4
}

(2.27)
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Equation 2.26 gives the classical partition function.

For HCl one has σ = 1/20 at 300.4 K. Hence

r(T )classical = 20

r(T ) = 20.333 . . . (up to 2nd term in Eq. 2.27)

r(T ) = 20.33666 . . . (up to 3rd term in Eq. 2.27)

r(T ) = 20.336698 . . . (up to 4th term in Eq. 2.27)

■

Problem 88. Consider an ideal gas molecule AB which undergoes the dissociation reaction
AB ⇋ A + B. If nA, nB and nAB are the concentrations (the numbers of molecules per
unit volume) of each molecule respectively, show that:

nAB
nAnB

= K(T ) =
V fAB
fAfB

ew0/kT =

[
(mA +mB)h

2

2πmAmBkT

]3/2
j0AB
j0Aj

0
B

ew0/kT

where fA etc. are the partition functions per molecule, V is the volume of the container
and j0A, . . . are the partition functions for the internal degrees of freedom of each molecule.
The zero of the energy for each molecule is chosen at the ground state (not including the
zero point energy of the vibration) of the respective molecules so that w0 = ϵ0A + ϵ0B − ϵ0AB
is the difference in the energy zeros. What does this result tell us about the dissociation
reaction?

Note: Your starting point should be to treat gas mixtures as ideal gases. The partition
function of a mixture of NA molecules of type A, NB of type B, . . . confined in a box of
volume V is given by a product

ZNA,NV ,...(V, T ) =
∏
A,B,...

(
2πmAkT

h2

)3
2NA V NA

NA!
(jA)

NA ≡
∏
A,B,...

fNA
A

NA!

where fA, fB, . . . are the partition functions of molecules A,B, . . . and jA, jB, . . . are the
internal partition functions of each species of molecules, i.e. in the present case,

fA =

(
2πmAkT

h2

)3/2

V j0Ae
ϵ0A/kT , etc.

Solution. The partition function of the ideal gas occupying a volume V , which contains
NA, NB and NAB molecules is given by

Z(NA, NB, NAB, V, T ) =
fNA
A fNB

B fNAB
AB

NA!NB!NAB!
.
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This can also be considered to be proportional to the probability of finding NA, NB and
NAB molecules in V at temperature T . The equilibrium distribution is the most probable
distribution and is determined by maximizing this Z:

logZ(NA, NB, NAB) =
∑

σ=A,B,AB

[Nα log fα −Nα logNα +Nα] = max.

This is subject to the constraints:

• the total number of A = NA +NAB = const

• the total number of B = NB +NAB = const.

Therefore one obtains

δ logZ = δNA · log(fA/NA) + δNB · log(fB/NB) + log(fAB/NAB) = 0,

δNA + δNAB = 0, δNB + δNAB = 0,

so that

δ logA = [− log(fA/NA) + log(fB/NB) + log(fAB/NAB)] δNAB = 0,

and hence
NAB

NANB
=

fAB
fAfB

or
nAB
nAnB

=
V fAB
fAfB

= K.

Substituting

fA =

(
2πmAkT

h2

)3/2

V j0Ae
−ϵ0A/kT

etc. and mAB = mA +mB, one has the final result for K.

Note: if one uses the internal partition function
∏
(1−e−Θv/T ), which does not include the

zero point energy of the vibration, instead we must put w0 = ϵ0A + ϵ0B − ϵ0AB + 1
2

∑
(hνA +

hνB − hνAB). This is equal to the energy change in this reaction at 0 K. ■

Problem 89. Apply the principle of maximum entropy to show that the Gibbs-Shannon
entropy S = −kB

∑
i pi log pi reduces to the Boltzmann entropy S = kB logW (E).

Solution. The Gibbs or Gibbs-Shannon entropy for a probability distribution {pi} is de-
fined by:

S = −kB
∑
i

pi log pi.
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We maximize the expression for S subjected to the constraint
∑

i pi = 1. This is done by
using the method of Lagrange multipliers:

δ

(
−kB

∑
i

pi log pi − λ
∑
i

pi

)
= 0.

Applying the variation operator δ, we get:∑
i

−kB
[
δpi · log pi + pi ·

1

pi
δpi

]
− λδpi = 0.

factoring δpi we have ∑
i

[−kB(log pi + 1)− λ] δpi = 0.

But in the microcanonical ensemble you will recall that the probability distribution consis-
tent with a given energy is given by the principle of equal probabilities. This is consistent
with the result pi = 1/N . We know from the microcanonical ensemble that this probability
must be related to the phase-space volume according to

pi =
1

N
=

1

W (E)
.

Therefore, we have

S = −kB
∑
i

pi log pi = −kBN · pi log pi = −kBN · 1

N
log 1/N = kB logW (E).

Thus, in the thermodynamic equilibrium, the Gibbs-Shannon entropy coincides with the
Boltzmann entropy. ■

Problem 90. Velocity autocorrelation function. a) Plot the velocity autocorrelation func-
tion for the three cases γs=0, 1 and 5. Show a graph of ⟨v(t)v(s)⟩M/kBT vs. γt over the
range of values γt ∈ [0, 10].

b) In the notes, we derived analytically the velocity autocorrelation function for a particle
moving in 1D. We also learned earlier that mean values, such as ⟨v(t)v(s)⟩, can also be
calculated probabilistically. In abstract language, it is the sum (integral) of vt(ω)vs(ω)
weighted by the probability of a particular path ω, dP (ω):

⟨v(t)v(s)⟩ =
∫
Ω
vt(ω)vs(ω)dP (ω)

where the integral is over Ω (i.e. the set of all possible paths ω’s). Let us solve this integral
numerically by simulating the Ornstein-Uhlenbeck process.

The paths can be generated using the following SDE, which defines the increments of the
random process vt(ω):
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dvt(ω) = −γvt(ω)dt+
Γ

M
dWt(ω).

Take s = 0 and v(0) = 1. Generate a large number of trajectories ω for vt(ω) using this
SDE. Remember that dWt stands for the increment of the Wiener process. By definition,
it is Gaussian-distributed, with mean zero and variance dt. You will need to choose a step
size dt and discretize the time axis. We shall fix γ =M = kB = T = 1 and Γ =

√
2.

The discretized equation becomes,

vt+∆t = vt − γvt∆t+
Γ

M
∆Wt,

where ∆Wt ∼ N(0,∆t) and v0 = 1.

Write a computer program that iterates this equation from t = 0 up to t = 10. Plot two
of these trajectories. Compute the arithmetic average over all (n > 1, 000) paths, to get a
numerical approximation to the velocity autocorrelation function:

⟨v(t)v(s)⟩ ≈ 1

N

N∑
i=1

vt(ωi)v0

Plot the autocorrelation function ⟨v(t)v(s)⟩ as function of time, from t = 0 to t = 10. A
suggested time step is ∆t = 0.01. Check that this numerical solution is in agreement with
the analytical result we have derived in class:

⟨vtvs⟩ = (kBT/M) exp [−γ|t− s|] .

Solution. Substituting the starting velocity ⟨v20⟩ = 2v2T = 2kBT/M into the expression

⟨v(t)v(s)⟩ =
(
⟨v20⟩ −

kBT

M

)
e−γ(t+s) +

kBT

M
e−γ|t−s|.

and rearranging the terms gives:

⟨v(t)v(s)⟩ M
kBT

= e−γ(t+s) + e−γ|t−s|.

The following command in Mathematica

Plot[Exp[-γt] +

Exp[-Abs[γt]], Exp[-γt - 1] +

Exp[-Abs[γt - 1]], Exp[-γt - 5] +

Exp[-Abs[γt - 5]], {γt, 0, 10 }]

can be used to produce the following plot: The following Matlab program will work.

dt=0.01;

Gamma=sqrt(2); M=1; gamma=1; v0=1;

np=10000; % number of random paths to simulate
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gt

gs=5gs=1

gs=0

nt=1000; % number of time steps

dWt=sqrt(dt)*randn([np nt]); % generate steps

IVt=v0*ones([np nt]);

for j=2:nt, % integrate SDE

IVt(:,j)=IVt(:,j-1)*(1-gamma*dt)+(Gamma/M)*dWt(:,j);

end;

EVOVt=sum(IVt,1)/np; % calc vv autocorrel fn

Path1=IVt(1,:); % extract two paths, 1st

Path2=IVt(2,:); % 2nd

figure;plot(dt*(1:nt),[Path1 ; Path2]); % Plot 2 sample paths

xlabel(’time’);ylabel(’v_t(\omega)’);legend(’\omega_1’,’\omega_2’);

figure;plot(dt*(1:nt),EVOVt); % Plot E[v0vt] vs. time

xlabel(’time’);ylabel(’<v_0 v_t>’);

The results of this simulation are shown in Figure 2.7.

The easiest way to check that the numerical solution is in agreement with the analytical
formula is to check that the decay constant of ⟨v0vt⟩ = e−γ|t| is γ = 1. The time γ−1

corresponds to the point where ⟨v0vt⟩ decays to 1/e ≈ 0.37 of its initial value (this can
be seen directly from the plot). Also we see that the fall-off is an exponential decay, as it
should be. ■

Problem 91. Consider a Brownian particle whose position as function of time is described
by the differential equation dx(t) = v(t)dt, with v(t) obeying the Ornstein-Uhlenbeck
process. Show that the mean particle position is ⟨x(t)⟩ = v0

γ (1− e−γt) (assuming an initial
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Figure 2.7. The first plots shows two different realizations ω1, ω2 of the Itô process. The
second plot is the velocity autocorrelation function E[v0vt]. The calculation of expectation
value uses 10,000 sample paths.

condition x(0) = 0). Show that the mean square displacement is:

⟨x2(t)⟩ = 2kBT

Mγ
t+

v20
γ2

(1− e−γt)2 − kBT

Mγ2
(3− 4e−γt + e−2γt).

Show that for short times, the Brownian motion captures the ballistic motion of the particle:
⟨x(t)⟩ = v0t and ⟨x2(t)⟩ = v20t

2. How can a single model for Brownian motion capture both
the ballistic motion as well as the diffusion behavior?

Solution. Substituting the expression we found for v(t), the particle position is

x(t) =
v0
γ
(1− e−γt) +

√
2γkBTM

∫ t

0
dt′e−γt

′
∫ t′

0
dW (t′′)eγt

′′
.
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Taking the expectation value, the second term vanishes because ⟨dW (t′′)⟩ = 0 and we get
⟨x(t)⟩ = v0

γ (1− e−γt).

The calculation goes as follows:

⟨x2(t)⟩ =v
2
0

γ2
(1− e−γt)2 +

2γkBT

M

∫ t

0
dt′e−γt

′
∫ t

0
dt′′e−γt

′′
∫ t′

0
eγt̃

′
∫ t′′

0
eγt̃

′′⟨dW (t̃′′)dW (t̃′)⟩,

=
v20
γ2

(1− e−γt)2 +
2γkBT

M

∫ t

0
dt′e−γt

′
∫ t

0
dt′′e−γt

′′
∫ t′∧t′′

0
dt′′′e2γt

′′′
,

=
2γkBT

M
t+

v20
γ2

(1− e−γt)2 − γkBT

Mγ2
(3− 4e−γt + e−2γt).

where we have used the covariance of the Wiener process.

The short-time behavior is obtained by expanding exp(−t) ≈ 1− t+ . . . in the expression
found in b)

⟨x2(t)⟩ =2γkBT

M
t+

v20
γ2

(1− e−γt)2 − γkBT

Mγ2
(3− 4e−γt + e−2γt)

=
2γkBT

M
t+

v20
γ2

(γt+O(t2))2 − γkBT

Mγ2
(2γt+O(t2))

and dropping the terms O(t2) we get:

⟨x2(t)⟩ = v20t
2.

Similarly the expression ⟨x(t)⟩ = v0
γ (1− e−γt) becomes

⟨x(t)⟩ = v0t

in the limit of short t.

The long-time behavior, of course is that the rms displacement is proportional to
√
t. This

is what we expect for diffusional motion. The fact that we observe ballistic motion at
short times is because, in the limit of short times, the particle has not collided very many
times yet and its trajectory is mostly rectilinear. At longer times, the particle undergoes
significant number of collisions, and its net displacement is greatly reduced. ■

Problem 92. Calculate the canonical partition function Z(β) =
∫
exp(−βH(x))dx (inte-

gration is over all phase space) for the following systems. Then compute the mean energy
U = ⟨H⟩ = −∂ logZ/∂β, the heat capacity CV = ∂U/∂T .
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a) Particle in a box. A particle of unit mass is confined to a three-dimensional box of side
length L. The Hamiltonian function is

H(p,q) =
1

2
(p2x + p2y + p2z).

b) An apple of unit mass is falling from a tree. Its Hamiltonian is the sum of kinetic and
potential energies:

H(z, ż) =
ż2

2
+ gz,

where g is the gravitational acceleration constant (-9.8 m/s2). The canonical coordinates
are simply (z, ż) and the phase space is [0,∞]× [−∞,∞], i.e. the apple is constrained to
fall on a table and lie above the table at z = 0.

Furthermore, consider the canonical density ρ = Z−1 exp(−βH) and integrate over all
momenta to find an expression for the probability density for finding the particle in the
interval [z, z + dz]. Show that this density decays exponentially with altitude z. What is
the meaning of this exponential distribution?

c) Linear harmonic oscillator. The state is described by the coordinates x = (p, q) and the
Hamiltonian function is

H(p, q) =
p2

2
+ ω2 q

2

2
.

d) A ”lazy” oscillator with Hamiltonian function

H(p, q) =
p2

2
+ q4.

e) Multiple independent oscillators. The Hamiltonian takes the form:

H(p, q) =

N∑
i=1

p2i
2

+ ω2
i

q2i
2
.

Solution. a) Particle in a box. Integration over the position variables gives L3, and making
use of the formula

∫
R exp(−x2)dx =

√
π gives:

Z(β) = L3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(−βH(p, q))dpxdpydpz = L3

(
2π

β

)3/2

.

From this, it is trivial to differentiate to get the internal energy and the heat capacity.

b) The partition function for the falling apple is:

Z(β) =

∫ ∞

0

∫ ∞

−∞
exp

(
−β
[
ż2

2
+ gz

])
dzdż =

1

gβ
·
√

2π

β
= g−1(2π)1/2β−3/2

It is trivial to differentiate to get the internal energy and the heat capacity.
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Integrating the canonical density we get:

Z−1

∫ ∞

−∞
exp(−βH)dż ∝ exp(−βgz).

This exponential distribution says that as z increases it is much less likely to find the apple
at that height. At “thermal equilibrium”, it is most likely that we will find the apple on
the table (at z = 0). This is a consequence of the action of the gravitational force.

c) Evaluating the Gaussian integrals we find:

Z(β) =

∫ ∫
exp

(
−β
[
p2

2
+ ω2 q

2

2

])
dpdq =

2π

ωβ
.

It is trivial to differentiate to get the internal energy and the heat capacity.

d) The tricky part is to evaluate the quartic term, which requires the use of the Gamma
function Γ(z) =

∫∞
0 rz−1e−rdr:

Z(β) =

∫ ∫
exp

(
−β
[
p2

2
+ q4

])
dpdq =

√
2π

β
· 2Γ(5/4)β−1/4,

where it is now trivial to differentiate to get the internal energy and the heat capacity.

The integral
∫∞
0 e−q

4
dq was evaluated with the substitution r = q4, dq = (1/4)r1/4−1dr to

give
1

4

∫ ∞

0
e−re1/4−1dr =

1

4
Γ(1/4) = Γ(5/4)

with the use of the property zΓ(z) = Γ(z + 1).

e) Since the individual harmonic oscillators are independent, their partition function is
simply a product of individual ones. We can use the result from c) to write:

Z(β) =
N∏
i=1

Zi =
N∏
i=1

2π

ωiβ
.

Once again, it is now trivial to differentiate to get the internal energy and the heat capacity.
■



Chapter 3

Thermodynamics

Thermodynamics provides a framework to account for exchanges (transfers) of energy
among different systems or subsets of a given system. Energy transfers can occur in the
form of heat exchanges or different types of work. Thermodynamics is a topic that crosses
many disciplines (physics, chemistry, engineering, life sciences, etc.). This chapter only
provides a brief introduction to this vast topic. To learn more, the reader should consult
the more authoritative treatises by Callen [1], Kittel [2], Moran & Shapiro [3], Atkins [4],
McQuarrie & Simon [5], Ben-Amotz [6], Sonntag & Borgnakke [7] and Honig [8].

In thermodynamics the universe is divided into two parts: the system and its surroundings.
We must then specify whether or not particles and heat are allowed to exchange between
the system and its surroundings (Fig. 3.1).

3.1. Heat vs Work

Energy is the capacity to do work. A change in energy can be thought of as the sum of
heat and work (done, say, by the system on its surroundings, or vice-versa). Heating is
the transfer of energy that makes use of disorderly molecular motion. See Fig. 3.2.

Work is the transfer of energy that makes use of organized motion (organized, as opposed
to random molecular motions). See Fig. 3.3.

211
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Systems

Open

Closed

Isolated

Matter

Energy

Energy

Matter

Matter

Energy

Figure 3.1. If matter can be transferred to the system, it is called open, otherwise it is
closed. An isolated system cannot exchange mass or heat with its surroundings. Walls
of the system that allow transfer of heat are called diathermic whereas those that don’t
are called adiabatic. Energy is the capacity of a system to do work. Energy can also
be transferred as heat.

System

Surroundings

energy energy energy

Figure 3.2. When energy is transferred to the surroundings as heat, the transfer stim-
ulates random motion of the atoms in the surroundings. Transfer of energy from the
surroundings to the system makes use of random motion (thermal motion) in the sur-
roundings.
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System

Surroundings

energy energy energy

Figure 3.3. When a system does work, it stimulates orderly motion in the surroundings.
For instance, the atoms shown here may be part of a weight that is being raised. The
ordered motion of the atoms in a falling weight does work on the system.

An exothermic process is one that releases energy as heat to the surroundings.1 All
combustion reactions are exothermic. An endothermic process is a process in which
energy is acquired from its surroundings as heat. An example is vaporization of water.

Heat occurs through random thermal motion. Heat transfer from a hot to a cold body
occurs through random thermal motion, so heat should be thought of as a kind of disorderly
motion. Suppose a system is in contact with its surroundings and heat flows into the
system, the system’s energy is increased as a result of the heat transfer. In contrast, work
is a transfer of energy, but does not involve disorderly motion. Instead, it involves concerted
motion of all particles. For example, a force can be used to lift an object. In this case, all
of the molecules move together and in the same direction. This process does not involve
disorderly motion.

Universe=System+Surroundings. We should always think of a thermodynamic system
together with its surroundings. Heating is the energy transfer to the system making use
of thermal motion in the surroundings. Work is the energy transfer to the system resulting
from concerted motion of atoms in the surroundings.

1Heat transfer is a process. Heat is not viewed as an entity. It is instead a process: the transfer of energy as a result

of temperature difference. Similarly to a diffusion process which is a flux Ji in the i-th chemical species driven by
gradients in the chemical potential of that species,

Ji(particle flux) = −D
d

dx
µi(x) Fick’s law of diffusion

(D is a diffusion coefficient), heat transfer is a flux driven by gradients in temperature

q (heat flux) = −k
d

dx
T (x) Fourier’s law

where k is the coefficient of thermal conductivity (in general, k = k(T ) is temperature dependent). At the interface

between a hot and a cold body, the temperature gradient is large, causing a transfer of heat from the hot to the cold
body. The direction hot → cold is enforced by the minus sign.
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3.2. Heat Capacity

Suppose we transfer some amount of heat ∆Q to a system, its temperature will increase
by an amount ∆T . If you transfer double the heat 2∆Q, the temperature will increase by
double the amount, 2∆T . The proportionality “constant” is the heat capacity, C(T ),
which itself depends on temperature:

q ≡ ∆Q = C(T )∆T.

In thermodynamics we make the distinction between the heat capacity at constant pressure
(CP ) and at constant volume (CV ) using a subscript P or V , respectively. This refers to
the kind of experiment used to measure the heat capacity. As we will see later, those two
values are different.

The specific heat capacity, denoted by a lowercase c, is the heat capacity per unit
material.

• Per unit mass: c = C/m, where m is the mass of the body. SI Units: [J/kg.K]

• Per mole: c = C/n, where n is the number of moles. This is called the molar heat
capacity. SI Units: [J/mol.K]

Why should we care about specific heat capacity? Because without it, heat capacity is an
extensive property, i.e. it depends on the amount of material used. q = C∆T says that
for a 1◦C increase, q will double if the amount of material doubles (because a body twice
as large requires twice the amount of heat transfer to cause this 1◦C increase), therefore
C should double. Because of this dependence, it is impossible to tabulate values of C.
Dividing by the amount of material (n or m) renders the heat capacity independent of the
amount of material. It is then an intensive property which is intrinsic to the material type,
not its quantity.

Another notation you may see for the definition of heat capacity is in terms of infinitesimal
quantities:

C(T ) =
δq

dT
,

or the corresponding molar heat capacity

c(T ) ≡ 1

n
C(T ) =

1

n

δq

dT
.

While this notation appears awkward, it is sometimes useful conceptually.

This notation appears to suggest that heat capacity is some type of derivative (δ/dT ) of
an extensive parameter (heat flow) with respect to an intensive property (temperature).
These are, however, formal definitions. In practice, measured heat capacities are evaluated
as derivatives with respect to temperature while holding some other variables constant (P or
V ). This is done as such, because the measured heat flow will depend on which parameters



3.2. Heat Capacity 215

are held constant. CV is the most convenient quantity for gases and theoreticians. CP is
the most common tabulated form.

3.2.1. Heat Capacity of a Solid: Dulong-Petit Law. In 1819, Dulong and Petit
measured the specific heats2 of several solids and found that the values for the various
materials differed considerably. However, their heat capacity was close to 6 cal/deg.mol
(Table 3.1).

Element Atomic Specific heat Heat capacity
weight (cal/deg.mol) (cal/deg.mol)

Lithium 6.9 0.92 6.3
Beryllium 9.0 0.39 3.5
Magnesium 24.3 0.25 6.1
Carbon (diamond) 12.0 0.12 1.4
Aluminum 27.0 0.21 5.7
Iron 55.8 0.11 6.1
Silver 107.9 0.056 6.0
Lead 207.2 0.031 6.4
Mercury 200.6 0.033 6.6

Table 3.1. Heat capacities of some solid elements.

Heat capacity arises because of the many different ways (degrees of freedom) in which
molecules can absorb energy. The Law of Dulong and Petit is:

Law of Dulong and Petit. The molar specific heats of most solids at room
temperature and above are nearly the same value. (This value is 3R ≈ 25 J/-
mol/K.)

We note that the Dulong-Petit heat capacity is independent of temperature (in the high-T
limit only). See Fig. 3.4.

Units of heat transfer. The connection between heat transfer (SI units: Joule) and
temperature change (units: Kelvin) should not be so unfamiliar to you at this point. We

have seen in the case of gases that the average kinetic energy per molecule, K ≡ 1
2mv

2 =
3
2kBT , established a connection between temperature and energy. Thus, a change in the
kinetic energy ∆K is proportional to a change in temperature ∆T . The two quantities
(energy and temperature) were related by the Boltzmann constant. kB and C have the
same SI units (J/K).

2Specific heat is the number of calories (or Joules) required to raise one gram (or kilogram) of material one degree
celsius. The term heat capacity often refers to the heat required to raise one mole of material one degree celsius.
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Figure 3.4. The dimensionless heat capacity divided by three, as a function of tem-
perature as predicted by the Debye and Einstein models. The horizontal axis is the
temperature divided by the Debye temperature. The dimensionless heat capacity is zero
at absolute zero, and rises to a value of three as the temperature becomes much larger
than the Debye temperature. The red line corresponds to the classical limit of the Dulong-
Petit law.

3.2.2. Heat Capacity of Ideal Gas. Consider an ideal monatomic gas held at constant
volume V . The internal energy of an ideal monatomic gas is purely kinetic. There is no
potential energy. From

K ≡ 1

2
mv2 =

3

2
kBT

or (3/2)RT for 1 mole, we can easily derive the heat capacity of an ideal gas by considering
the change in temperature that accompanies an infinitesimal change in internal energy,
which for an ideal gas is just the kinetic energy (U = K).

The heat capacity is obtained by taking the derivative of energy with respect to tempera-
ture. For 1 mole of substance, the heat capacity is,

cV =
3

2
R ideal gas

Here, cV denotes the specific (molar) heat capacity at constant volume. (The volume is
constant because the gas is contained in a volume V .)

It can be shown that at constant pressure, the heat capacity of the ideal gas is:

cP =
5

2
R. ideal gas

3.2.3. Internal Energy. The internal energy of a system, U , is the sum of total kinetic
and potential energy of the molecules in the system. Potential energy includes the energy
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stored in the chemical bonds. The internal energy is a state function, meaning that it
depends only on the state of the system, not on the history or path taken to reach this
state.

For a state function, we can express changes in the state function in terms of the final state
minus the initial state, ∆U = Uf − Ui, without any mention of the intermediate states
taken to reach the final state from the initial state.

Internal energy is an extensive property of the system (i.e. if we double the size of the
system, its internal energy doubles). The SI units of U are Joule (J). However, the internal
energy per mole, U/n, is an intensive property of the system. The SI units of U/n are
J/mol.

The change in internal energy U will contain terms which can be classified as heat transfer
or work:

change in U = (heat) + (work)

In general, we do not need to enumerate all contributions to the energy because thermo-
dynamics is only concerned about changes in the energy (e.g. ∆U or dU), in which case,
only the terms that are involved in the change are needed.

In thermodynamics we are interested in dU , the total differential of the function U . dU is
the sum of “infinitesimal” heat transfer, δQ, and “infinitesimal” work done on the system
δW :

dU is the sum of infinitesimal heat transfer and work
The change in internal energy is:

dU = δQ+ δW

The total change in heat and work is obtained by integrating the infinitesimal expressions,
∆Q =

∫
δQ and ∆W =

∫
δW . For ∆U , we have:

∆U =

∫
dU =

∫
δQ+

∫
δW = ∆Q+∆W.

Some books write q for heat transfer. Here, we write ∆Q to emphasize that it is a change.
We will see later that the first law of thermodynamics states that U is a state function, or

equivalently, that dU is an exact differential. This implies that ∆U =
∫ f
i dU = Uf − Ui

only depends on the state of the system (hence the name “state function”), not on the
history of changes it undergoes between i and f .

3.2.4. Compression Work (Hydrostatic Pressure Work). Suppose that we com-
press a gas using a piston by applying an external force (pressure), as shown in Fig. 3.5.

The system is the gas inside the chamber. The surroundings is everything else external to
it. The external pressure Pext originates from the surroundings. The pressure is force per
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Figure 3.5. Work accomplished when compressing a gas using a piston.

unit area:

Pext =
Fext
A

3.2.5. Work Done by the Surroundings to the System is −Pext∆V . We also know
that mechanical work, ∆W , is obtained by integrating the force over distance (let z denote
the vertical direction which corresponds to the direction of the displacement ∆h):

∆W =

∫ zf

zi

PextAdz =

∫ Vf

Vi

Pext dV.

As a matter of convention in chemistry we put a negative sign to denote work done on
the system by the surroundings. Engineers use the opposite convention (work done by the
system). For example, if a gas is compressed (work done on the system), ∆V < 0, leading
to positive values of W in the definition below:

Compression work

∆W = −
∫ Vf

Vi

Pext dV or δW = −Pext dV

If Pext remains constant during this change (as would be the case if the surroundings were
atmospheric pressure, which remains essentially constant), we can pull it out of the integral
and the work done on the system is the product of the external pressure and the change
in the volume of the gas:

∆W = −Pext∆V.
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In general, depending on what you consider to be the surroundings, Pext may not necessarily
be constant, in which case you need to use δW = −Pext dV and integrate ∆W =

∫
δW

along the path of the change.

3.2.6. RECALL: Work = Force × Distance. In classical mechanics, we learn that
force times distance is the mechanical form, i.e.

work =

∫ f

i
F⃗ · dx⃗,

where i and f denote the initial and final points, respectively. If the force is in the x

direction, F⃗ = Fx̂, we have

work =

∫ f

i
Fdx.

The integral is taken along some path with initial point i and final point f . The result is
generally path-dependent, unless Fdx is the derivative of some function (say) g, i.e. Fdx =

dg, in which case it only depends on the initial and final points since
∫ f
i dg = g(f)− g(i)

(fundamental theorem of calculus).

If F is constant along the path, then the work is simply F (xf − xi) = F∆x.

Now let’s return to the example from the previous section, where a gas is compressed by a
piston. Starting from Pext = Fext/A, substituting A = ∆V/∆h yields Pext = Fext∆h/∆V .
Thus, Pext∆V = Fext∆h. For infinitesimal changes, PextdV = Fextdh. Since the work
done by the surroundings on the system is −PextdV ,

−dw = PextdV = Fextdh Pext
dV

dh
= Fext.

The external force (force exerted on the system by its surroundings) is seen to be related
to the spatial derivative of the work Fext = −dw

dh . If h is the x direction:

Fext = −dw

dx
.

This is a general principle. The force is generally obtained by taking minus the gradient
(spatial derivative) of the (potential) energy:

Fext = −dU

dx
.

(The kinetic energy does not appear because it rarely depends on position.)

3.3. Expansion (P − V ) Work

In chemistry, P − V work is important because it describes the behavior of gases and the
work arising from a change in volume. This includes the work done by a gas as it expands
and pushes against the atmosphere. Chemical reactions generate gases. The P − V work
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here is the work that must be done to make room for the gas it has produced. P −V work
also describes compression (negative changes in volume).

3.3.1. Free Expansion. Suppose that a gas is allowed to expand in a vacuum. Since
there is zero opposing force, Pext = 0 and the work is zero ∆W = 0.

3.3.2. Expansion Against Constant Pressure. Suppose that a gas inside a piston
expands, and the piston is pressing against the atmosphere. The latter corresponds to a
constant pressure Pext. Thus, it is constant and we can take it outside the integral:

∆W = −
∫ Vf

Vi

PextdV = −Pext
∫ Vf

Vi

dV = −Pext(Vf − Vi) = −Pext∆V.

3.3.3. Reversible Process. Reversible processes are important because they represent
the most efficient processes. They are idealizations (no process in nature can be perfectly
reversible) which enable us to do useful calculations. A process is fully reversible if both
system and surroundings will return exactly to their initial states if the process is run
in reverse. Less efficient processes do not have this property, and so are referred to as
irreversible. A process is said to be reversible if it remains arbitrarily close to equilibrium
with its surroundings at all times.

When a system is arbitrarily close to equilibrium with its surroundings, we mean close in
the sense of infinitesimals. If T, P, µ are the temperature, pressure and chemical potential
of the system and Text, Pext, µext are those of the surroundings, then arbitrarily close means
that they are close in the sense of infinitesimals:

Text =T + dT

Pext =P + dP

µext =µ+ dµ

According to the rules of calculus, we can handle expressions containing infinitesimals such
as dT , dP and dµ. However, second-order quantities such as (dT )2 or (dT )(dP ) should
be neglected because the square of an infinitesimally small quantity is so small that it is
effectively zero.3

3From calculus, we know that

df =
df

dx
dx. (1)

However, it is also the case that:

df(x) = f(x+ dx)− f(x).

Taylor-expanding the first term,

df =

[
��f(x) + (dx)

df

dx
+

(dx)2

2

d2f

dx2
+O((dx)3)

]
−��f(x) (2)

But for (1) and (2) to be equal we are “forced” to drop terms of order (dx)2 or higher. Thus, when handling

differential expressions we keep terms of order O(dx) only. The higher order infinitesimal terms are negligible (too
small).
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3.3.4. Reversible Compression. If the mechanical compression work done by the sur-
roundings on a system

δW = −PextdV
is reversible, this means we can write Pext = P + dP ,

δW = −(P + dP )dV.

Noting that the product of infinitesimals dPdV is much smaller than the term PdV , we
neglect dPdV :

δW = −PdV.
The reversible work done on the system is then:

∆W rev =

∫
δW = −

∫ Vf

Vi

(P + dP )dV = −
∫ Vf

Vi

PdV.

It seems that we have accomplished by little because there is little difference between the
work δW = −PextdV and δW = −PdV . On the contrary, the difference is significant
because this allows us to replace Pext by P . In many experiments P is known, because
the gas mixture is known, and obtained from the equation of state, whereas Pext is often
unknown (e.g., the surroundings may be out of your control).

Indeed, when computing the work done on the gas, −
∫
F ds = −

∫
Pext dV , the force F

must be the gravitational force acting downward on all of the mass supported by the gas
at pressure P . This mass includes that of the piston, the piston rod, the pan, any weight
placed on the piston (to compress the gas), and the atmosphere above the piston. In the
case of a reversible process this force F is never more than minutely out of balance with
the force exerted upward on the piston face by the gas and given by the product of pressure
and piston area. Thus, for all practical purposes, F = PA for the reversible process. The
volume change of the gas (system) is dV = Ads; thus ds = dV/A and the work done on
the gas is

∆W = −
∫
Fds = −

∫
PA

dV

A
= −

∫
PdV.

Therefore, if we can substitute PA for F , we can calculate the work from knowledge of
the system without knowing anything about what happens in the surroundings. This
substitution is possible only for reversible processes where the forces are never more than
differentially out of balance (e.g. Pext = P + dP ).

For irreversible processes this substitution is not possible because we may not have thermal
equilibrium. For example, suppose that gas expansion takes place: when a finite weight is
removed from the piston in the processes described, the forces of gravity acting downward
is overbalanced by the gas pressure acting upward by a finite amount (i.e. Pext = P −∆P ,
where ∆P is not an infinitesimal), and F does not equal PA again until a new equilibrium
position of the piston is reached. (Similarly, for gas compression we have Pext = P +∆P ,
and the internal gas pressure is overcome by the external pressure from the weight pressing
downward.) Thus PA cannot be substituted in the integral

∫
F ds, and it is not possible
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to calculate the work from a knowledge of the properties of the system (the gas). The
integral

∫
F ds is given by

∫
P dV only when the process is reversible; that is,

∆W rev = −
∫ V2

V1

P dV

This work for an expansion process is the maximum work which the system can produce.

3.3.5. Why are Reversible Processes Important? The reversible process is unique,
and important in thermodynamics, because it represents the limit of what is possible in the
real world. We cannot imagine anything better than a reversible process. Such processes
lend themselves to exact mathematical analysis, which is not the case for other processes.
In thermodynamics, our choice is often to do calculations for reversible processes, or to do
no calculations at all. The reasons for this is that reversible processes are those for which
the forces causing change are almost exactly in balance. Thus the states through which the
system passes during a reversible process are for all practical purposes equilibrium states,
or more precisely are never removed more than differentially from equilibrium states (e.g.
Pext = P + dP ).

3.3.6. Example: (Reversible Compression of an Ideal Gas). To illustrate the ap-
plication of this result, let’s look at a specific example. The easiest case is an isothermal
compression (T = const) for an ideal gas (P = nRT/V ):

∆W rev = −
∫ V2

V1

P dV = −
∫ V2

V1

nRT

V
dV = −nRT

∫ V2

V1

dV

V
= nRT log(V1/V2).

3.3.7. Example: (Reversible Compression of VDW Gas). A slightly more compli-
cated example is the van der Waals gas. Suppose that n moles of gas is expanded from V1
to V2 reversibly and isothermally. Calculate ∆W for a Van der Waals gas.
Solution:

P =
nRT

V − nb
− n2a

V 2

∆W rev =−
∫ V2

V1

P dV = −
∫ V2

V1

nRT

V − nb
dV +

∫ V2

V1

n2a

V 2
dV

=− nRT

∫ V2

V1

dV

V − nb
+ n2a

∫ V2

V1

dV

V 2

=− nRT log
V2 − nb

V1 − nb
+ n2a

(
1

V1
− 1

V2

)
.

3.3.8. Example: (w/ numbers) Calculate the work done when 50 g of iron reacts with
hydrochloric acid to produce FeCl2(aq) and hydrogen in (a) a closed vessel of fixed volume,
(b) an open beaker at 25◦C.
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Solution: For (a) the volume cannot change, so the expansion work done is zero (∆W = 0).
For (b) the gas pushes against the atmosphere, ∆W = −Pext∆V . After production of gas,
the volume changed by ∆V = Vf − Vi ≈ Vf = nRT/Pext (the initial volume is so small
compared to Vf that it can be neglected), where n is the amount of H2 produced. Therefore,

∆W = −Pext∆V = −Pext
nRT

Pext
= −nRT.

Because the reaction is Fe(s)+2HCl(aq) →FeCl2(aq)+H2(g), we know that 1 mol H2 is
generated when 1 mol Fe is consumed, and n can be taken as the amount of Fe atoms that
react. The molar mass of Fe is 55.85 g/mol. Then,

∆W ≈ − 50 g

55.85 g/mol
× (8.3145 J/K.mol)× (298 K) ≈ −2.2 kJ.

3.3.9. Why the Infinitesimals? In the previous sections we have been writing down
the work in terms of infinitesimal changes δW . The total work is obtained by integrating:

∆W =

∫
δW.

where δW represents infinitesimal work. For example, the P − V work term is

δW = −Pext dV
or

δW = −P dV

in the case of reversible P − V work.

You may ask, why are we working with infinitesimal expressions? This is because the
intensive quantity (e.g., the pressure) may change along the path of integration. To get the
total work ∆W , we may need to express the intensive quantity in terms of the extensive
quantity. This can be done using an equation of state, as we did in the above examples
for the reversible compression of an ideal and VDW gas. The exact dependence of this
intensive quantity is problem-dependent.

Working with infinitesimal expressions reminds us that integration is the process where in-
finitesimals are added along the path of integration. These infinitesimals are not necessarily
constant along the path.

3.4. Other Types of Work

Apart from P-V work (compressive mechanical work), δW = −Pext dV , there exists several
different other types of work corresponding to the various laws of physics available. Let us
look at some examples.

3.4.1. Work Done by Gravity. Suppose we lift an object of mass m from the surface
of the earth (z = 0) to a height (z = h). The gravitational force F = mg, where m is mass

and g is the gravitational acceleration, leads to a term of the form ∆W =
∫ h
0 F .dz = mgh.
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Thus, elevating a body of mass m to a height h from the ground requires an amount of
work mgh. The SI units of g are m/s2.

3.4.2. Work Done by a Spring. The linear restoring force F = kx (Hooke’s law), where
k is the spring constant and x is the extension of the spring from its rest position, leads to
a term of the form ∆W =

∫
F.dx =

∫
kxdx = 1

2kx
2.

3.4.3. Electrostatic Work. Suppose that we add an electric charge to a system of
charged particles. The charged particles distribution is described by an electric poten-
tial ϕ or electromotive force, E . The charge added is dq. The work is δW = Edq or
δW = ϕdq, depending on the notation used (E vs ϕ). E vs ϕ are the same thing; different
books use different notations. The units of E and ϕ are volt (V), whereas those of dq are
Coulomb (C).

3.4.4. Work Done by an Electric Field. Suppose that we have an electric field E⃗ and
an object with an electric dipole moment p⃗. If this object is re-oriented in the presence

of the electric field, work is required according to δW = E⃗·dp⃗. The units of E⃗ are V/m

whereas those of p⃗ are C·m, since a dipole p⃗ = qd⃗ consists of two point charges +q and

−q, separated by a displacement vector d⃗. We recall from electrostatics that E⃗ = −∇ϕ, so
you can see how these units also agree with the previous work δW = ϕdq (the units ∇ are
1/m).

3.4.5. Work Done by a Magnetic Field. Suppose that we have a magnetic field B⃗ and
an object with a magnetic dipole moment m⃗. If this object is re-oriented in the presence

of the magnetic field, work is required according to δW = B⃗·dm⃗. The units of B⃗ are Tesla
(T) whereas those of m⃗ are J/T=A.m2 (amperes-meter square), since a magnetic dipole

m⃗ = IA⃗ can be described as a current I flowing around a loop whose area is A (area is a
vector pointing normal to the surface).

3.4.6. Adding Molecules to a System. It requires work to add a molecule to a system.
The energetic cost is given by the chemical potential:

µi ≡
(
∂U

∂Ni

)
S,V,Nj ̸=i

≈ ∆U

∆Ni

where the subscript S, V,Nj ̸= i indicates that other variables are being held constant. µi
is the energy required to add 1 particle to the system (the resistance to adding particles).
It costs energy to add particles because at equilibrium the particle must have energy
comparable to the average energy. The associated work is:

δW = µidNi.
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In chemistry, we normally work with molar quantities:

µi =

(
∂U

∂ni

)
S,V,nj ̸=i

, δW = µidni.

The units of µi are the same (joules) except that the amount of energy involved is that
which involves adding a mole of substance to the system.

3.4.7. The Infinitesimal Work Terms Follow a General Pattern. We note that all
types of works are of the form:

δW = (intensive quantity)× d(extensive quantity).

In the above examples, our intensive and extensive quantities were:

Intensive variable Corresp. Extensive variable Type of work

P (pressure) V (volume) mechanical (e.g. P − V )

work: when a system goes from
high pressure Pext to lower
pressure while changing its volume V .

The energy changes by −PextdV .

ϕ (electrostatic potential) q (electric charge) electrical (e.g. electromotive force, emf): when
or E (electromotive force) a system goes from high emf E

to low emf by transferring electric charges q
between the two electrodes.
The energy changes by E.dq.

E⃗ (electric field) p⃗ (electric dipole moment) electrical polarization work: the force is

defined by the surroundings’ electric field strength
and the “displacement” is change of the polarization
of the medium (the sum of the electric dipole

moments of the molecules).

B⃗ (magnetic field) m⃗ (magnetic dipole moment) magnetic work:
here the force is defined by the surroundings’
magnetic field strength and the “displacement”

is the change of total magnetic dipole moment.

mg (gravitational force) h (displacement) gravitational work: the force is defined by the

surroundings’ gravitational field and the generalized
displacement is change of the spatial distribution of

the matter within the system. For example, the work

involved when a point particle of mass m is
dropped from height h2 to h1 is mg(h2 − h1).

kx (spring force) x (displacement) (same as above)

µ (chemical potential) N (number of molecules) chemical: a system can go from high chemical
or n (number of moles) potential µi to low potential by transferring

particles ni. The energy change by µidni.

T S thermal: a system equilibrates by going

from high T to low T while transferring
a quantity known as entropy S. If T
depends on position, heat will flow from

regions of high T to regions of low T .
The energy of the system changes by TdS.
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3.5. Laws of Thermodynamics

3.5.1. Classical thermodynamics describes systems close to equilibrium. The
laws of thermodynamics describe the behavior of systems which are in thermal equilib-
rium or approaching thermal equilibrium. An equilibrium system is defined as one whose
macroscopically observable properties do not change with time.

Equilibrium implies the macroscopic properties are spatially homogeneous, i.e. there are
no gradients (spatial derivatives) in the properties. For, if gradients were present, forces
(fluxes) would be set into motion to restore the system to equilibrium conditions, elimi-
nating the gradients.

Thermodynamics is capable of describing changes away from equilibrium, but only provided
we are not too far from equilibrium. For example, it can predict the direction of a chemical
reaction, heat flow or mass flux.

However, if the system is far from equilibrium, equilibrium thermodynamics will not predict
its detailed behavior except to indicate the direction of change. What it does not do is
provide information about the microscopic properties of the system. For that, we need
statistical mechanics.

3.5.2. The Four Classical Laws. There are four classical laws of thermodynamics. The
first and second laws introduce state functions, U and S. The zeroth law introduces the
existence of temperature T , whereas the second law establishes the absolute temperature
scale. The third law is statement regarding the properties of systems in equilibrium at
absolute zero temperature.
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Zeroth Law (Maxwell 1871, Carathéodory

1909)

If two systems are in thermal equilibrium with a third

system, then they are in equilibrium with each other.

In fact, there is a single system property (called
temperature) that serves to indicate whether systems

are in thermal equilibrium. Note: this law postulates

the existence of a thermometer.

First Law (Hess 1841, Clausius & Rankine
1850)

There is a system property (i.e. state function) called
energy, U , that is conserved, but can take several

different forms that can interconvert. Note: this law

postulates the existence of a state function, U .

Second Law (Clausius 1854, Kelvin 1851,
Carathéodory 1909, Carnot 1824)

There is a system property (i.e. state function), S,
called entropy that, if the system is isolated from its

environment, either increases or (in principle) remains

constant during thermodynamic processes.
Mathematically, dSuniv ≥ 0, where Suniv is the

entropy of the isolated system. Note: Suniv can be

taken to be the whole universe (system plus
surroundings) because the universe is an isolated

system. Note: this law postulates the existence of a

state function, the entropy.

Third Law (Nernst 1912) The entropy of a system is a universal constant (set to
zero, for a perfect crystal) at the absolute zero of

temperature.4 Note: S(T → 0) = 0 for a perfect

crystal. The third law was first conjectured by
Walther Nernst in 1912 and proved in 2017 by Lluis

Masanes and Jonathan Oppenheim.5

3.6. Zeroth Law

The Zeroth Law of thermodynamics states that thermal equilibrium is an equiva-
lence relation: If A is in equilibrium with B and B is in equilibrium with C then A is
in equilibrium with C. What is an equivalence relation? A binary relation ∼ on the set
X = {A,B,C, . . . } is an equivalence relation if and only if it is reflexive, symmetric and
transitive, i.e. for all A,B,C in X:

• A ∼ A (reflexivity)

• if A ∼ B then B ∼ A (symmetry)

• if A ∼ B and B ∼ C then A ∼ C (transitivity)

Here, A ∼ B denotes “A is in thermodynamic equilibrium with B”. X denotes the set of
all possible thermodynamical systems. In spite of its apparent simplicity, the zeroth law
has the important consequence that it establishes any number of possible empirical tem-
perature scales. Each thermodynamic system can be labeled with a temperature, similar to
a real number system (systems with the same temperature are considered equivalent). The
existence of an absolute temperature scale is then a consequence of the Second Law, which

4The entropy of degenerate systems tends to a nonzero value when T → 0. This is why the Third Law is formulated
in terms of “the entropy of a perfect crystal”. For perfect crystals, the ground state is non-degenerate.
5Masanes and Oppenheim, A general derivation and quantification of the third law of thermodynamics, Nature
Comm. 8, 14538 (2017) https://www.nature.com/articles/ncomms14538
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establishes the existence of the entropy. Other physical meanings of the zeroth law include:
“All heat is of the same kind” (Maxwell) and “All diathermal walls are equivalent”.

3.7. First Law

The importance of changes is embedded in the statement of the First Law of thermody-
namics,

First Law of Thermodynamics Statement 1: There is a system property (i.e.
state function) called energy that is conserved, but can take several different forms
that can interconvert.
Statement 2:

dU = δQ+ δW is an exact differential.

dU is the sum of“infinitesimal” heat transfer (from the surroundings to the sys-
tem), δQ, and “infinitesimal” work done on the system δW by the surroundings.
Here, ∆Q = q =

∫
δQ and ∆W =

∫
δW . Many textbooks write q for heat

transfer.

3.7.1. U is a state function, meaning it is path independent. If dU is an exact

differential, its integral is independent of path, ∆U =
∫ f
i dU = Uf − Ui (according to the

fundamental theorem of calculus), and only depends on the initial and final points. This
is the definition of a state function.

First Law of Thermodynamics (in integral form)

∆U = ∆Q+∆W is independent of path.

A function U which is independent of path is called a state function in the language of
thermodynamics. This is because it only depends on the state of the system, not on the
path taken to arrive at the final state.

In other books (e.g. Oxtoby [9], p.529) you may encounter a slightly different notation
(q = ∆Q, w = ∆W ) which writes ∆U = q + w. These definitions are equivalent. A state
function implies that the change ∆U can be written as the difference of final and initial
states, Uf − Ui. Thus, internal energy is a state function. This is the same as saying that

dU is an exact differential, which implies that ∆U =
∫ Uf

Ui
dU = Uf − Ui. Obviously, this is

independent of path (it only depends on initial and final states).

3.7.2. First Law is a Statement on Conservation of Energy. In this section we
show that the First Law can be interpreted as a statement of conservation of energy.
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Conservation of energy and energy transfer to the system or its sur-
roundings. In any process, the heat added to the system is removed from the
surroundings (q = −qext). The work done on the system is the work done by the
surroundings (w = −wext). Adding these two and invoking the first law,

∆U = −∆Uext.

The total energy changes in the universe (system plus surroundings) is always
zero in any process:

∆Uuniv = ∆U +∆Uext = 0.

Thus, energy is conserved (even in the presence of heat exchange and dissipation).
It can only be exchanged between the system and its surroundings. Note: We
will drop the notation sys to denote the system. By default, quantities without a
subscript refer to the system.

The statement ∆Uuniv = 0 (“The energy of the universe is constant”) is another formulation
of the First Law.

3.7.3. Summary of First Law: dU = δ(heat) + δ(work). The change in the internal
energy for a closed system, by any process, is defined by the change in external variables:

dU = δQ+ δW.

Since heat, Q, and work, W , are not state functions, many alternative paths can result in
a given change dU . One may choose a reversible path where δQ = TdS and δW = −PdV ,
and thus dU can be expressed by internal variables:

dU = TdS − PdV.

Here, the change in the internal energy is expressed by state functions only. The change
in a state function is independent of the path and this last equation is valid, regardless of
which path the change in internal energy was brought about. For a closed system, U is a
function of S and V ; thus dU is a total differential of internal variables.

For an open system, the internal energy is, in addition, a function of the amount of matter,
i.e. U is a function of S, V, {ni}, where ni is the amount (moles) of component i. The
change in internal energy, expressed as the total differential of internal variables, will then
be

dU(S, V, {ni}) = TdS − PdV +
∑
i

µidni

where
µi = (∂U/∂ni)S,V,nj ̸=i

is the chemical potential of component i. The summation is over all components. This
latter expression for the differential dU contains only state functions. dU is a total differen-
tial of internal variables and the equation is generally valid for an open system. Chemical
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potentials have no absolute values, and the value of dU for an open system can only be
given with respect to a reference state.

3.7.4. Choice of System vs Surroundings. The differential dU used in the statement
of the first law, dU = δ(heat)+δ(work), can refer to the system, its surroundings or the
whole universe. It’s up to us to decide what we call the system and its surroundings. For
example, when writing dU = δQ − PextdV , we could be referring to the circular region
below, or its surroundings. See Fig. 3.6.

Figure 3.6. The universe is divided into a system and its surroundings. This division is
largely arbitrary and a matter of convenience.

On the left, we have a system and its surroundings. The union of these two is the universe.
On the right, we have the inverted situation: the system what used to be the surroundings,
and the surroundings is what used to be the system. This inverted configuration is also
possible. On the left, dU refers to the circular region, δQ is the heat transferred into it,
dV refers to its volume change, Pext refers to the external pressure acting on it from the
surroundings. On the right, dU refers to the change in internal energy of the grey region,
dV refers to the change in volume of the grey region and Pext refers to the pressure exerted
on the grey region by the colored region.

3.8. Second Law

There is an extensive thermodynamic state function called entropy, S, which can be used
to indicate the direction in which systems may spontaneously evolve. S also dictates the
maximum amount of work that can be obtained from a given chemical transformation or
maximum efficiency for extracting work out of a heat engine.

To operate at maximum efficiency, a process must be fully reversible. Clausius defined
change in entropy of a system6 dS in terms of the quantity of heat δQrev that is reversibly

6In the definition of entropy, dS = δQrev/T , the 1/T factor is an integrating factor. This integrating factor is
analogous to integrating factors in the theory of differential equations, which are used to transform the differential

equation into an exact differential equation. The reversible heat transfer, δQrev , by itself is not an exact differential.

However, when multiplied by 1/T , it is. Another way to say this is that while dS is exact differential, the product
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added to the system at a given temperature T :

Thermodynamic definition of entropy: (of a system)

dS ≡ δQrev

T
.

dS: infinitesimal entropy change of the system.
δQrev: heat added reversibly to the system.

Note: A process for which dS = 0 is called isentropic. A process for which δQ = 0
is called adiabatic. The two notions are equivalent when the process is reversible
(δQ = δQrev = TdS).

This implies that to find the entropy change in the system, we need to find a reversible
path and integrate. (In practice, a reversible path is one that involves slow changes.) It
will yield a state function which depends on initial and final point:

∆S =

∫ f

i
dS = Sf − Si =

∫ f

i

δQrev

T
.

The equality on the right hand side applies for a reversible process, in which case, dS =
δQrev/T .

The problem is further simplified if the process is isothermal, in which case temperature is
a constant and can be taken out of the integral:

∆S =
1

T

∫ f

i
δQrev ≡ ∆Qrev

T
, where ∆Qrev ≡

∫ f

i
δQrev.

The total entropy is
dSuniv = dS︸︷︷︸

entropy change
in system

+ dSext︸ ︷︷ ︸
entropy change
in surroundings

.

The second law states that the total entropy change (of the universe) must be nonnegative:

TdS is no longer exact. An example discussed in class is the exact differential df = ydx + xdy (which we verified

was exact using Euler’s test). When multiplying by another function, df may no longer be exact. For example,
ω = ydf = y2dx+ xydy is no longer an exact differential even though df was exact.
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Second Law of Thermodynamics (Clausius inequality):
The entropy of the universe is a nondecreasing function of time:

dSuniv = d(S + Sext) = dS + dSext ≥ 0.

where
Suniv = S + Sext.

The equality holds at thermal equilibrium (when processes become reversible).
This statement applies to an isolated system (“the entropy of an isolated system
is nondecreasing”), not only the universe. The universe, of course, is an isolated
system. We often use the terms “universe” and “isolated” (system) interchange-
ably.

3.8.1. Classical Statement of the Second Law. Clausius defined change dS in en-
tropy of a system S in terms of the quantity of heat δQrev that is reversibly added to the
system at a given temperature T :

Thermodynamic definition of entropy:
The addition of heat to a system changes its entropy by an amount:

dS ≡ δQrev

T
.

Note: S refers to the entropy of the system, not its surroundings. dS is a total
differential which can be positive, zero or negative (since heat can be added or
removed from the system). δQrev by itself is not exact, but when multiplied by
1/T it becomes exact.

Consider a system with entropy S and its surroundings at entropy Sext. Let Suniv =
S + Sext.

Second Law of Thermodynamics (Clausius inequality): dSuniv is an
exact differential which is non-negative:

dSuniv = dS + dSext ≥ 0.

This is the statement that entropy of the universe is a nondecreasing function
of time. The equality holds at thermal equilibrium (when processes become re-
versible). This statement applies to an isolated system (“the entropy of an isolated
system is nondecreasing”). The universe, of course, is an isolated system.

The equality on the right hand side applies for a reversible process, in which case, dS =
δQrev/T .
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Heat added to the surroundings is opposite in sign to the heat added to the system

δQrevext = −δQrev.
Thus, for a reversible process (dS = δQrev/T ),

dSuniv = dS + dSext =
δQrev

T
+
δQrevext
T

=
δQrev

T
− δQrev

T
= 0.

This is the case dSuniv = 0 (reversible process). The remaining case is dSuniv > 0 (ir-
reversible process). In a general process, the heat exchanged between the system and
surroundings may be irreversible. The difference (excess) between heat transferred irre-
versibly and reversibly gives the increase in entropy:

dSuniv = dS + dSext =
δQrev

T︸ ︷︷ ︸
dS≡ δQrev

T

−δQ
T

≥ 0,

which leads to the following form of the Clausius inequality:

δQrev ≥ δQ,

where δQ is the amount of heat absorbed by the system from its surroundings (in a process
that can be irreversible), whereas δQrev is the heat added to the system in a reversible
process. The equality holds in the reversible case.

Note: there are many different formulations of the Clausius inequality. See, for example:

http://www.eoht.info/page/Clausius+inequality

For a general irreversible process, we then have the change in entropy of the system:

∆S =

∫ B

A
dS = SB − SA =

∫ B

A

δQrev

T︸ ︷︷ ︸
dS≡ δQrev

T

≥
∫ B

A

δQ

T
.

For any cyclic process (process which begins and ends at the same state)

SB − SA = 0

so that ∫ B

A

δQrev

T
≡
∮
δQrev

T
= 0.

Therefore, ∮
δQ

T
≤ 0. Clausius’ theorem (1854)

The symbol
∮
denotes that the process is carried out along a path that is cyclic (end point

= start point).
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It is helpful to learn more about the Carnot engine (see, e.g., Oxtoby [9], Section 13.4,
“Carnot cycles, efficiency and entropy”), where this integral is carried out along paths of
constant T and S.

3.8.2. Isentropic vs Adiabatic Process. From the thermodynamic definition of en-
tropy dS ≡ δQrev

T , we have that the heat transferred to the system in a reversible process
is δQrev = TdS. A process for which dS = 0 is called isentropic. A process for which
δQ = 0 is called adiabatic. The two notions are equivalent when the process is reversible
(δQ = δQrev = TdS).

3.8.3. Reversible Process, Fundamental Equation of Thermodynamics. For a
reversible process the heat transferred is δQrev ≡ TdS. The infinitesimal change in energy
is then

dU = TdS − PdV +
∑
i

µidNi

This equation is so important that it is called the fundamental equation of thermodynamics.
It is valid for a reversible process. For the case of P − V work only,

dU ≡
(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV = TdS − PdV

is plotted in Fig. 3.7.

Figure 3.7. An overall change in U , which is denoted dU , arises when both V and S
are allowed to change. If second-order infinitesimals are ignored, the overall change is the
sum of changes for each variable separately.

3.8.4. Inequality for First Law, Irreversible Process. For a general process we have
δQ ≤ TdS, according to the Clausius inequality

δQrev ≥ δQ.
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Therefore, the Clausius inequality implies that

dU ≤ TdS − PdV +
∑
i

µidNi. (First Law)

On the left hand side, dU refers to a general (not necessarily reversible) process. This
inequality is true for a general process.

Note: we have not changed the First Law, which is still “dU = δQ + δW is an exact
differential”. All we have done is express dU as an inequality because δQ ≤ δQrev = TdS.

The equality δQrev = TdS, of course, follows from the thermodynamic definition of entropy
dS = δQrev/T .

3.8.5. Proof of Second Law. A proof of the Second Law can be found in the articles [10,
11]. By examining the second law in the context of a finite system evolving over a short
time period, the authors show from first principles that random fluctuations in the behavior
of a non-equilibrium system can appear to violate the second law of thermodynamics over
isolated periods of time, and that these local violations become more probable exponentially
as we decrease either the size of the system or the time over which we measure the entropy.
The mathematical form of this result is known as the fluctuation theorem. Remarkable, at
the same time that the fluctuation theorem shows that the total entropy can decrease over
very short periods of time in small systems, it also shows that in the limit of long times
and macroscopic systems the entropy must increase, providing a mathematical proof of the
second law.

3.9. Third Law

According to theThird Law of thermodynamics (Nernst), we can find the absolute entropy
of a perfect crystal:

lim
T→0

S = 0.

Combining dS = δQ
T , with δQ = CV dT (heating at constant volume),

S(T ) = S0 +

∫ T

0

CV (T )

T
dT.

S0 is the entropy at absolute zero. An analogous formula exists at constant pressure:

S(T ) = S0 +

∫ T

0

CP (T )

T
dT.

Note that since the heat capacity is always positive, the entropy increases with increasing
temperature.



236 3. Thermodynamics

If S0 is known, the absolute entropy S(T ) can be obtained at any temperature T through
measurements of the heat capacity versus temperature from 0 up to T .

Invoking the third law, S0 = 0, and

S(T ) =

∫ T

0

CV (T )

T
dT.

The plausibility of the Third Law can be appreciated from the Boltzmann entropy:

S = kB log Ω,

which is zero (S = 0), because at T = 0 K the system is in its unique ground state, i.e.
there is only 1 ground state configuration.7

3.9.1. Absolute Zero. The third law is equivalent to the statement that “It is impossible
by any procedure, no matter how idealized, to reduce the temperature of any system to
zero temperature in a finite number of finite operations” (Guggenheim, 1967).

3.9.2. Proof of Third Law. A proof of the Third Law can be found in [12].

3.9.3. Common Thermodynamic Potentials. In classical thermodynamics, we often
use thermodynamics potentials, such as U , H, A and G, depending on the experimental
situation. They are all energies, and serve the same purpose of calculating changes in the
energy of the system. Except that which one we should use depends on the experimental
conditions. U depends on S, V, {Ni}. This may not be a convenient representation to
use in many situations, because it may be difficult to keep S and V constant. It may be
easier, for example, to keep T and P constant instead, as is the case for many chemistry
experiments. In which case, we prefer to use G, the Gibbs free energy.

3.9.4. Internal Energy. The change in internal energy is

dU(S, V, {Ni}) = TdS − PdV +
∑
i

µidNi

if there is more than one chemical species. The differential form dU is exact, according to
the First Law.

7(Optional) For those familiar with the Gibbs-Shannon entropy,

S = −kB
∑
i

pi log pi,

this situation corresponds to p0 = 1 (where 0 denotes the ground state) and pi ̸=0 = 0. But this implies that S = 0.

Even if the ground state is degenerate, their probability would be pi = 1/N for each of these eigenstates of the

ground state. Then, S = −kB
∑N

i=1
1
N

log 1
N

= kB logN , where N denotes the number of states (not the number

of particles). Suppose that the degeneracy is as large as Avogadro’s number (n = 6× 1023), kB = 1.38× 10−23, so
S = (1.38 × 10−23) log(6 × 1023) ≈ (1.38 × 10−23) · 55 ≈ 10−21 J/K/mol, which is vanishingly small (well below a

measurable value of S).
Note: The Third Law is formulated in terms of “the entropy of a perfect crystal”. This is because in a perfect crystal
the ground state is unique and non-degenerate. When the ground state is degenerate, the entropy tends to a nonzero

value when T → 0.
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3.9.5. Enthalpy. The enthalpy is defined as:

H(S, P, {Ni}) = U + PV.

Differentiating:

dH(S, P, {Ni}) = dU + (PdV + V dP ) = (TdS − PdV +
∑
i

µidNi) + (PdV + V dP ).

This gives:

dH(S, P, {Ni}) = TdS + V dP +
∑
i

µidNi.

The enthalpy is useful for processes carried out at constant entropy and pressure, such as
chemical reactions. Constant pressure because the reaction is often exposed to atmospheric
pressure. The entropy is constant if there is no heat transferred to the system, since
δQrev = TdS = 0 (for a reversible process).

A calorimeter is a device that measures the heat flow during a process. They
are the chief diagnostic tool in thermodynamics. Many calorimeters operate with
the sample at fixed volume. We can design a calorimeter to maintain a constant
temperature (using a suitable temperature control system, such as water bath or
heating mantle) and constant pressure (by exposure to the atmosphere). Keeping
certain variables fixed is important because it isolates the ones of interest. During
a process, the enthalpy change is:

∆H =

∫
dH =

∫
(TdS + V dP ).

If the pressure is fixed during a process (dP = 0), then the enthalpy change is
equal to the heat transferred:

(∆H)P =

∫
TdS =

∫
δQ = ∆Q.

The enthalpy was invented to make this relationship true.

3.9.6. Helmholtz Free Energy. The Helmholtz free energy is denoted as A or F , de-
pending on the textbook. It is defined as:

A(T, V, {Ni}) = F = U − TS.

Applying the same ideas as above, you can verify that

dA(T, V, {Ni}) = −SdT − PdV +
∑
i

µidNi

The differential form dA is also exact because it was obtained by differentiating A. The
Helmholtz free energy is useful for processes carried out at constant temperature and
volume (e.g., such as solids, whose volumes don’t change).
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Note: here, F denotes Helmholtz free energy, not force. In the section below, we will use F
to denote force. While F is widely used in the literature to denote Helmholtz free energy,
we will use A in these notes to avoid confusing the Helmholtz potential with the force F .

The definition A = U − TS shows that A is determined by a balance between internal
energy and entropy. At low temperatures, the energy dominates. At high temperatures,
the entropy dominates.

3.9.7. Gibbs Free Energy. The Gibbs Free energy is defined as:

G(T, P, {Ni}) = U + PV − TS.

Similarly,

dG(T, P, {Ni}) = −SdT + V dP +
∑
i

µidNi

The differential form dG is exact because it was obtained by differentiating G. The Gibbs
free energy is useful in chemistry for processes carried out at constant temperature and
pressure. Notice that H = U + PV and G = U + PV − TS are related by G = H − TS.

By integrating dG at constant temperature (dT = 0) we have the famous formula:8

∆G = ∆H − T∆S.

Notice that at constant T, P (dT = 0, dP = 0), the Gibbs free energy is simply a
measure of the energy exchanged through chemical transformation:

dG(T, P, {Ni}) =
∑
i

µidNi. (constant T, P )

The Gibbs energy was invented with this experimental situation in mind. Many
chemistry experiments are carried out at constant T, P .

By its construction, G = H − TS, the Gibbs free energy describes the balance between
enthalpy and entropy (enthalpy dominates at low temperatures; entropy dominates at
high temperatures). In a system held at constant P, T , the Gibbs energy will be at a
minimum. The system can exchange energy with the surroundings by volume changes and
heat transfer. Equilibrium is the state at which the entropy of the system plus surroundings
is at a maximum. However, for the system itself, at constant P, T,N , equilibrium occurs
when G is at a minimum.

3.9.8. Landau Potential (Grand potential). The grand potential is a quantity used
in statistical mechanics, especially for irreversible processes in open systems. The grand

8Take G = H − TS and differentiate to get dG = dH − TdS − SdT = dH − TdS (since dT = 0). Integrating gives
∆G = ∆H − T∆S, where ∆G =

∫
dG, ∆H =

∫
dH and ∆S =

∫
dS.
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potential is the characteristic state function for the grand canonical ensemble.

Ω(T, V, {µi}) = U − TS −
∑
i

µiNi

dΩ(T, V, {µi}) = −PdV − SdT −
∑
i

Nidµi

3.9.9. Meaning of Free Energy. The term “free energy” refers to any thermodynamic
potential that has T as its independent variable instead of S. We know that the entropy of
an isolated system can never decrease, however, an isolated system is of little experimental
interest. We consider instead a system connected to a much larger system (heat bath)
whose properties do not change significantly. For example, a bath may be chosen with
T, P constant. Chemical reactions are rarely studied under conditions of constant entropy
or constant energy. Usually, the chemist carries out reactions at constant temperature and
pressure (T, P ), or constant volume and temperature (V, T ).

Examples of “free energies” include the Gibbs free energy, G ≡ G(T, P, {Ni}), and the
Helmholtz free energy, A ≡ A(T, V, {Ni}). Per this definition, the Landau potential is also
a type of free energy, since Ω ≡ Ω(T, V, {µi}). On the other hand, H and U are not free
energies, since they depend on S not T .

The free energies include:
A(T, V, {Ni}) = U − TS,

G(T, P, {Ni}) = H − TS,

Ω(T, V, {µi}) = A−
∑
i

µiNi.

The thermodynamic potentials that are not free energies include: U(S, V, {Ni}), S(U, V, {Ni}),
H(S, P, {Ni}) = U + PV .

3.9.9.1. Meaning of Free Energy. First law, dU = δQ+ δW and second law, dS ≥ δQ/T ,
combined: TdS ≥ dU − δW . (When changes are slow9, and the process is reversible, the
equality holds, TdS = dU − δW .) Thus, δW ≥ dU −TdS. Since A = U −TS, at constant
temperature, dA = dU − TdS, we have that δW ≥ dA or ∆W ≥ ∆A. In a reversible
process, the equality holds and the total work done is equal to the free energy change. For
an irreversible process, the work done on the system by its surroundings is always greater
than the increase in free energy. An equivalent formulation is obtained: the work done
by the system to the surroundings is always less than or equal to the decrease in its free
energy. Thus, the free energy of a system determines the maximum amount of work that
the system can do.

9This relation holds for closed systems (closed to particle exchange). When particles can transfer, TdS = dU−δW −
µdN .
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3.9.10. Any (“Create-Your-Own”) Potential. There are situations where other choices
of thermodynamic variables may be more convenient than the ones given above. For ex-
ample, consider the following potential:

Φ(S, P, {µi}) = U + PV −
∑
i

µiNi

dΦ(S, P, {µi}) = TdS + V dP −
∑
i

Nidµi

dΦ has the units of work. In classical mechanics infinitesimal work is of the form Fdx.10

Suppose that the variables S, P and µi are all spatially-dependent, i.e. S = S(x) [or
S = S(x⃗) in 3D]. Dividing through by dx gives the force:11

F =
dΦ

dx
= T

dS

dx︸ ︷︷ ︸
entropic

+ V
dP

dx︸ ︷︷ ︸
mechanical

−
∑
i

Ni
dµi
dx︸ ︷︷ ︸

chemical

where T dS
dx is interpreted as an entropic force.12

Fentropic = T
dS

dx
.

The three terms are:

• T dS
dx is the entropic force. Entropic force is an emergent force that reflects a system’s

tendency to reach equilibrium by increasing entropy (in accordance to the Second Law).

• V dP
dx is the force of P − V work originating from a pressure gradient (spatially non-

uniform pressure). Pressure gradients drive flow.

• Ni
dµi
dx is the force corresponding to the chemical work.

3.9.11. Entropy Representation, Fundamental Equation. It is sometimes conve-
nient to treat S (rather than U) as the dependent variable, so that S(U, V,Ni) leads to the
following entropy representation of the fundamental equation

dS(U, V,Ni) =

(
∂S

∂U

)
V,Ni

dU +

(
∂S

∂V

)
U,Ni

dV +
∑
i

(
∂S

∂Ni

)
U,V,Nj ̸=Ni

dNi.

10(Optional) F⃗ · dx⃗ in 3D.
11We are not really dividing through by dx but rather invoking the chain rule, i.e. since S = S(x), dS(x) =

S′(x)dx = dS
dx

dx.
12(Optional) In 3D, the analogous expression is:

F⃗ · dx⃗ = ∇Φ · dx⃗ = T∇S · dx⃗+ V∇P · dx⃗−
∑
i

Ni∇µi · dx⃗.

where ∇S = ∂S
∂x
x̂+ ∂S

∂y
ŷ + ∂S

∂z
ẑ is the gradient of S, ∇S · dx⃗ is the dot product of ∇S and dx⃗ = dx x̂+ dy ŷ + dz ẑ,

i.e. ∇S · dx⃗ = ∂S
∂x

dx+ ∂S
∂y

dy + ∂S
∂z

dz, etc.
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Which can be read out from the Fundamental equation by isolating dS:

Entropy Representation of the Fundamental Equation:

dS(U, V,Ni) =

(
1

T

)
dU +

(
P

T

)
dV −

∑
i

(µi
T

)
dNi.

(reversible process, P = Pext)

Matching the coefficients we get:

1

T
=

(
∂S

∂U

)
V,Ni

,
P

T
=

(
∂S

∂V

)
U,Ni

,
µi
T

= −
(
∂S

∂Ni

)
U,V,Nj ̸=Ni

.

The entropy representation gives a natural decomposition of the entropy as the sum of
two terms: heat (dU/T ) + work (here, PV + chemical term). When dV = 0, we are left
with heat transfer dU/T plus chemical terms. The chemical term can describe transport
of chemical species in and out of the system, or it can describe spontaneous (irreversible)
chemical transformations within the system. The heat term can be positive, zero or nega-
tive. It can describe reversible or irreversible heat transfer. Spontaneous chemical reactions
are irreversible and lead to “entropy production”. The latter is nonnegative (≥ 0).

3.9.12. Gibbs Free Energy, Criteria for Spontaneity. The criterion for spontaneity
is given by the Second Law (dSuniv ≥ 0):

Spontaneity Criterion (Entropy, dSuniv ≥ 0):

dSuniv >0 spontaneous (irreversible)

dSuniv =0 reversible

dSuniv <0 not spontaneous (“forbidden”)

In terms of the Gibbs energy G = H − TS, this becomes (fixed T and P ):

Spontaneity Criterion (Gibbs energy, dGuniv ≤ 0):

dGuniv <0 spontaneous (irreversible)

dGuniv =0 reversible

dGuniv >0 not spontaneous (“forbidden”)

Thus, maximizing the entropy of the universe is equivalent to minimizing the Gibbs energy.
Note that spontaneity does not imply that the reaction will necessarily occur at a detectable
rate.
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3.9.13. Free Energy in Statistical Thermodynamics. The concept of free energy
in statistical thermodynamics is pivotal for understanding the conditions under which a
thermodynamic system can perform work. The term “free energy” refers to thermodynamic
potentials where the temperature T is held constant. The two main types of free energy are
the Helmholtz free energy, F , and the Gibbs free energy, G, which are defined for systems
at constant volume and constant pressure, respectively.

The Helmholtz free energy is given by:

(3.1) F = U − TS

where U is the internal energy, T is the absolute temperature, and S is the entropy.
Minimization of the Helmholtz free energy corresponds to the system reaching equilibrium
at constant volume and temperature.

The Gibbs free energy, more common in chemical processes, is defined as:

(3.2) G = H − TS

where H is the enthalpy of the system. The change in Gibbs free energy, ∆G, is a crucial
criterion for spontaneity under constant pressure and temperature conditions. A process
is spontaneous if ∆G is negative, non-spontaneous if ∆G is positive, and at equilibrium if
∆G is zero.

The spontaneity of a process is not solely determined by the change in enthalpy ∆H, as it
does not account for the entropy change of the system. The free energy change combines
both enthalpic and entropic factors, providing a complete thermodynamic criterion for
spontaneity:

(3.3) ∆G = ∆H − T∆S

This equation implies that even if a process is exothermic (∆H < 0), it may not be spon-
taneous if the entropy decreases sufficiently (∆S < 0) such that T∆S is greater than ∆H.
Conversely, endothermic processes (∆H > 0) can be spontaneous if they are accompanied
by a significant increase in entropy (∆S > 0).

The equilibrium condition, dG = 0, signifies that the system has reached a state where no
further spontaneous change is possible, encompassing both enthalpy and entropy changes.
While dH = 0 and dF = 0 also indicate equilibrium states for their respective constant
pressure and constant volume conditions, dG = 0 is the most comprehensive condition for
equilibrium in terms of free energy, applicable to a broad range of chemical and physical
processes.

3.9.14. Differences between Enthalpic and Thermodynamic Equilibria. Enthalpy,
denoted by H, serves as a comprehensive measure of the total heat content within a system,
expressed mathematically as the sum of the system’s internal energy U and the product
of its pressure P and volume V : H = U + PV . An isenthalpic process, implied by a
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differential change of zero in enthalpy (dH = 0), indicates that the system neither absorbs
nor releases heat under constant pressure conditions.

However, the absence of heat exchange alone does not necessarily confer a state of thermo-
dynamic equilibrium. Equilibrium, in a broader thermodynamic context, requires the min-
imization of a potential function that accounts for both energy and entropy factors—such
as the Gibbs or Helmholtz free energy—depending on the system constraints.

Isothermal and Isobaric Conditions: Under constant temperature and pressure, a pro-
cess or reaction that proceeds without a net heat exchange with its surroundings (∆H = 0)
is considered isenthalpic. Nevertheless, this constraint does not guarantee the maximiza-
tion of entropy, a requisite for thermodynamic equilibrium.

Throttling Process: In a throttling process, a fluid’s expansion from a region of high
pressure to one of lower pressure occurs adiabatically and without external work, main-
taining constant enthalpy. This process underpins certain refrigeration cycles, although it
may not achieve thermodynamic equilibrium.

Chemical Reactions: A chemical reaction that manifests no change in enthalpy at con-
stant pressure and temperature is enthalpy-neutral. However, this condition does not
imply thermodynamic equilibrium, as the system may be driven away from equilibrium by
changes in entropy.

The concept of thermodynamic equilibrium encompasses a state of minimal free energy,
not merely an isenthalpic condition. For example, a system may experience no change
in heat content (∆H = 0) yet not be spontaneous if the process involves an entropy
decrease (∆S < 0) that is not compensated by temperature or other contributing factors.
Mathematically, the spontaneity of a process at constant temperature and pressure is
determined by the Gibbs free energy change (∆G), given by ∆G = ∆H−T∆S. A process is
spontaneous only if ∆G is negative, implying that an isenthalpic process (∆H = 0) lacking
a sufficient entropy increase (∆S > 0) to offset the T∆S term will not spontaneously
proceed toward equilibrium.

3.9.15. Thermodynamic Equilibrium and Potential Functions. Thermodynamic
equilibrium is a state where macroscopic changes are absent, and the system’s properties
are unvarying in time. It is a condition that is not merely characterized by constant energy,
such as enthalpy, but by a balance between energy and entropy, ensuring the system is at
maximum entropy allowed by the constraints.

Two fundamental potential functions are considered in the analysis of thermodynamic
equilibrium: Gibbs free energy (G) and Helmholtz free energy (F ). These potentials are
minimized at equilibrium under specific conditions.

• Gibbs Free Energy (G): This potential is minimized for a system at constant pressure
(P ) and temperature (T ). The differential form of Gibbs free energy is given by:

dG = dH − TdS − SdT
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At equilibrium and constant temperature (dT = 0), the above relation simplifies to:

dG = dH − TdS

where dH represents a differential change in enthalpy, T the temperature, and dS the
differential change in entropy. A system is in thermodynamic equilibrium when dG is
at a minimum, which implies that any spontaneous process at constant T and P will
proceed until this minimum is reached.

• Helmholtz Free Energy (F ): This potential is minimized for systems at constant
volume (V ) and temperature (T ). The differential form is:

dF = dU − TdS − SdT

With dT = 0 at constant temperature, it simplifies to:

dF = dU − TdS

Here, dU is the differential change in internal energy. At equilibrium, dF is at its
minimum, indicating that any spontaneous change at constant T and V will proceed
towards this state.

The second law of thermodynamics dictates these conditions by stating that the entropy (S)
of an isolated system will tend to increase over time, reaching a maximum at equilibrium.
The Gibbs and Helmholtz free energies incorporate both the system’s internal energy and
the entropy term, weighted by temperature. Their minimization ensures that the system is
in a state where no additional “useful” work can be extracted, and the entropy is maximized
within the system’s constraints, which is indicative of true thermodynamic equilibrium.

3.9.16. Euler Relation. Since U is extensive and is also a function of extensive variables
S, V,Ni, if these variables are all multiplied by λ, then U will also change by the same factor:

U(λS, λV, {λNi}) = λU(S, V,Ni). (∗)
Differentiating both sides with respect to λ gives:

d

dλ
λU(S, V,Ni) = U(S, V,Ni).

and

d

dλ

∣∣∣∣
λ=1

U(λS, λV, {λNi}) =
∂U

∂S
· d(λS)

dλ
+
∂U

∂V
· d(λV )

dλ
+
∑
i

∂U

∂Ni
· d(λNi)

dλ

=
∂U

∂S
· S +

∂U

∂V
· V +

∑
i

∂U

∂Ni
·Ni

by the chain rule. Here, d
dλ

∣∣
λ=1

denotes the derivative with respect to λ evaluated at the

point λ = 1. The partial derivatives ∂U
∂S ,

∂U
∂V and ∂U

∂Ni
are all evaluated at λ = 1.
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Thus, U obeys

U =

(
∂U

∂S

)
︸ ︷︷ ︸

T

S +

(
∂U

∂V

)
︸ ︷︷ ︸

−P

V +
∑
i

(
∂U

∂Ni

)
︸ ︷︷ ︸

µi

Ni.

Recall13 that T ≡ (∂U/∂S), P ≡ −(∂U/∂V ), µi ≡ (∂U/∂Ni). Then, we get the Euler
relation:

U = TS − PV +
∑
i

µiNi,

which can also be expressed in the entropy representation as:

S =
U

T
+
PV

T
−
∑
i

µiNi

T
.

3.9.17. Gibbs-Duhem Relation. Differentiating the Euler relation (reversible process,
P = Pext):

14

U = TS − PV +
∑
i

µiNi,

we obtain
dU = TdS + SdT − PdV − V dP +

∑
i

µidNi +
∑
i

Nidµi.

Comparing with the First Law:

dU = TdS − PdV +
∑
i

µidNi,

we see that for both to be correct we must have:

SdT − V dP +
∑
i

Nidµi = 0. (Gibbs-Duhem)

Note: Writing the heat term as TdS implicitly assumes reversibility of the process. There-
fore, we wrote P instead of Pext. The Gibbs-Duhem equation shows that three intensive
variables are not independent; if we know two of them, the value of the third can be
determined from the Gibbs-Duhem equation.

13From dU = TdS − PdV + µdN we get T = ∂SU , P = −∂V U and µ = ∂NU .
14Reversibility is assumed because the expression for dU (First Law) makes use of δQ = TdS, which is true for a

reversible process. For an irreversible process we have δQ ≤ TdS. (See Clausius inequality below.) Incidentally, you
can see that this Clausius inequality also implies that dU ≤ TdS − PdV +

∑
i µidNi.
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3.9.18. Application: (Chemical Potential of Ideal Gas). Write down Gibbs-Duhem15

for a single component system:16

dµ =

(
V

N

)
dP −

(
S

N

)
dT.

If we assume that the temperature is constant (dT = 0) and integrate:∫
dµ = µ(T, P )− µ◦(T, P ) =

∫ P

P0

(
V

N

)
dP.

Substituting V/N = kBT/P from the ideal gas law:

µ(T, P ) =µ◦(T, P ) + kBT log

(
P

P0

)
= µ◦ + kBT log

(
ρ

ρ0

)
=µ◦ + kBT log

(
[c]

[c]0

)
(3.4)

where ρ = N/V and [c] = n/V = ρ/NA.

3.10. Multi-Component Gas

Suppose we have a mixture of gases. Such an expression holds for each component:

µi(T, P ) = µ◦i (T, P ) + kBT log

(
Pi
P0

)
For ideal gases, Dalton’s law holds, Pi = XiP , where P is the total pressure and Xi is
the mole fraction of component i. P0 is a reference pressure, often taken to be 1 atm.
Substituting Dalton’s law and collecting the terms independent of composition into the
square bracket:

µi(T, P ) = [µ◦i (T, P ) + kBT log(P/P0)]︸ ︷︷ ︸
µ∗i

+kBT logXi

Some textbooks call the square bracket µ∗i . Regardless of notation, this offset/baseline
term corresponds to the chemical potential of the pure substance under some reference
conditions (P, T ). P0 can be regarded as the unit of pressure used. When Xi = 1 (pure
substance of type i), the log term is zero and only the square bracket remains. What
should this square bracket represent? It is the chemical potential of the pure substance. If
our pure substance were an ideal gas, U = 3

2NkBT . Taking the derivative with respect to

N gives 3
2kBT , which is the energy cost of adding a molecule to a gas at temperature T .

3.10.1. Gibbs Free Energy (Integrated Form, using Euler’s Formula).

15An easy trick to remember this equation is to start from the First Law for a reversible chemical process, dU =
TdS − PdV +

∑
i µidNi, and reverse the roles of the intensive and extensive variables, then set dU = 0.

16Gibbs-Duhem assumes reversibility because its derivation involved a TdS term; hence we may write P = Pext.
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Definition of Gibbs energy. The Gibbs energy is defined as17

G(P, T, {Ni}) = U + PV︸ ︷︷ ︸
H

−TS,

where the transformation from U swaps the roles of V in favor of P and S in favor of T . In
chemistry it is common to work at constant T and P. With dU = TdS−PdV +

∑
i µidNi

(for a reversible process, δQ = TdS),

dG = −SdT + V dP +
∑
i

µidNi.

Constant T, P. At constant T, P (dT = 0, dP = 0)

dG =
∑
i

µidNi.

3.10.1.1. Integrated Form. Combining G = U − TS + PV with the Euler formula18 U =
TS − PV +

∑
i µiNi

G =
∑
i

µiNi.

Thus, the Gibbs free energy is equal to the sum of all the chemical potentials of the molecules
in any system, regardless of any assumptions of constant T or P. (Here we did not impose
any restrictions such as constant temperature or pressure19.)

3.10.1.2. Single-Component, Ideal Gas. For a single component20, G = µN and substitut-
ing Eq. (3.4) yields:

G = G◦ + kBTN log

(
P

P0

)
= G◦ + kBTN log

(
ρ

ρ0

)
= G◦ + kBTN log

(
[c]

[c]0

)
.

or in terms of molar Gibbs energy G/n,

G

n
= µ◦ +RT log

(
P

P0

)
= µ◦ +RT log

(
ρ

ρ0

)
= µ◦ +RT log

(
[c]

[c]0

)
.

3.10.2. At Equilibrium, dG = 0. For a chemical reaction (usually, T, P are constant),
dG =

∑
i µidNi. The second law states that dG = 0 at equilibrium. Thus,

∑
i µidNi = 0.

17Note: we have assumed reversibility because of the presence of the TdS term. In this case, we write P in place of

Pext.
18An easy way to remember the Euler formula is to start with the First Law for a reversible chemical process,
dU = TdS − PdV +

∑
i µidNi, and remove the ’d’ in the differentials.

19The only two elements that were used to derive this formula were the definition of the Gibbs energy and the Euler

relation. The latter was derived using the extensively property of the thermodynamic variables. Thus, the result

was obtained without assuming constant P or T .
20We often write P , ρ and [c] instead of P/P0, ρ/ρ0 and [c]/[c]0, where P , ρ and [c] are expressed in units of P0, ρ0
and [c]0, respectively.



248 3. Thermodynamics

Or, in integrated form,

∆G =

∫ prod.

react.
dG = G(prod.)−G(react.) =

∑
i

µi

∫
dNi =

∑
i

µi∆Ni.

The equilibrium condition is therefore equivalent to
∑

i µi∆Ni = 0. However, ∆Ni (and
also dNi) is proportional to the stoichiometric coefficient νi. Thus, the equilibrium condi-
tion is

∑
i µiνi = 0.

There is a sign convention that we must follow for the stoichiometric coefficients: the
products are positive, the reactants are negative. Let’s look at a simple example:

aA+ bB ⇌ cC + dD

is written in the more general form

0 =
∑
i

νiAi,

where Ai denotes the i-th chemical species and νi is the associated stoichiometric coefficient
(taken negative for a reactant species or positive for a product species) in the balanced
chemical equation.

For example, with the reaction aA + bB ⇌ cC + dD, we have that ν1 = −a, ν2 = −b,
ν3 = c, ν4 = d and A1 = A, A2 = B, A3 = C and A4 = D.

3.10.3. Chemical Potential, Activity. Activities are used as a way to account for non-
idealities of solutions. Chemical potentials can be written in terms of activities (ai), as
follows:

µi = µ◦i +RT log ai.

This can be taken as the definition of activity:

ai ≡ exp

(
µi − µ◦i
RT

)
.

The equilibrium condition
∑

i µiνi = 0 becomes

0 =
∑
i

µ◦i νi +RT
∑
i

νi log ai.

The values µ◦i can be found tabulated for different (pure) chemical species i and some
standard conditions.

3.10.4. Gibbs Free Energy of Reaction. To recap what we have done, we just calcu-
lated ∆G of the reaction, by integrating dG from reactants to products. Some textbooks
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use a subscript “rxn” to emphasize this:

∆Grxn =

∫ prod.

react.
dG = G(prod.)−G(react.)

=
∑
i

µiνi =
∑
i

µ◦i νi︸ ︷︷ ︸
∆G◦

rxn

+RT
∑
i

νi log ai.

At equilibrium ∆Grxn = 0. (Obviously, this is only valid at constant T, P .)

3.10.5. Standard Gibbs Free Energy of Reaction. The first term is a collection of
constants describing an energy change going from reactants to products:∑

i

µ◦i νi = G◦
prod. −G◦

react. = ∆G◦
rxn

which depends only on the properties of the unmixed species. The quantity ∆G◦
rxn is

known as the standard Gibbs free energy of the reaction. Its value can be obtained from
tables.

The second term is rewritten as

RT
∑
i

νi log ai = RT
∑
i

log aνii = RT log

[∏
i

aνii

]
.

Then we have, at equilibrium,

∆G◦
rxn +RT log

[∏
i

aνii

]
= 0.

The quantity in the brackets can be identified as the reactant quotient, Q, the ratio of
product and reactant activities, each raised to its stoichiometric power. For example, for
the symbolic reaction:

aA+ bB ⇌ cC + dD

Q =
∏
i

aνii =
products

reactants
=
acCa

d
D

aaAa
b
B

.

3.10.6. Reaction Constant. At equilibrium ∆G◦
rxn and T are constants, Q = K and

we have the central equation of chemical equilibrium theory:

∆G◦
rxn = −RT logK

where K =
acCa

d
D

aaAa
b
B

(activities are equilibrium values). Your book uses the notation KC =

[C]ceq [D]deq
[A]aeq [B]beq

when dealing with solutions. Here, the concentrations are equilibrium values.
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Note that ai ∝ [Ai] = ni/V and the proportionality constants have been absorbed into the

definition of KC . Similarly, for gaseous mixtures, ai ∝ Pi and KP =
P c
CP

d
D

Pa
AP

b
B

.

3.10.7. What is the Meaning of the Standard Gibbs Free Energy? We saw in the
previous lecture that chemical reactions can be written in the general form,

∑
i νiAi = 0,

where Ai denotes the i-th chemical species and νi is the associated stoichiometric coefficient
(taken negative for a reactant species or positive for a product species) in the balanced
chemical equation. For example, with the reaction aA + bB ⇌ cC + dD, we have that
ν1 = −a, ν2 = −b, ν3 = c, ν4 = d and A1 = A, A2 = B, A3 = C and A4 = D. At chemical
equilibrium we have that dG = 0 (constant T, P ), where dG =

∑
i µidni. Integrating from

reactants to products gives

∆Grxn = G(prod.)−G(react.) =
∑
i

µiνi,

since ∫ prod.

react.
dni = ∆ni = νi

(with the above sign convention). Thus,
∑

i µiνi = 0. Finally, we note that the combination
of G = U−TS+PV and the Euler formula, U = TS−PV +

∑
i µini, leads to G =

∑
i µini,

which, for a single component, implies that Gi/ni = µi (µi, the chemical potential, is also
the molar Gibbs energy). We have seen that substitution of the ideal gas expression for
µi into

∑
i µiνi = 0 leads to ∆Grxn = ∆G0

rxn + RT logQ, where ∆G0
rxn =

∑
i µ

◦
i νi. It is

important to note that ∆Grxn and ∆G◦
rxn are two different things.

∆G◦
rxn is computed as follows:

∆G◦
rxn =

∑
i

νi(∆G
◦
f )i,

where νi are the stoichiometric coefficients of species i in the reaction (products are positive,
reactants are negative) and ∆G◦

f are standard Gibbs energies of formation (i denotes the

i-th chemical species in the reaction). These values are found in tables. The symbol ◦

attached to ∆Grxn means “standard” Gibbs energy, which has a single value for a particular
reaction at a given temperature and pressure. We can obtain the value of ∆G◦

rxn from
tables (such as Appendix D of Oxtoby [9]). It corresponds to the free energy change for a
process that never really happens: the complete transformation of pure reactants into pure
products at a constant pressure of 1 atm (or whatever the reference conditions happen to
be; but usually 1 atm). In the case of the reaction:

C(s, graphite) + 2O2(g) → CO2(g),

∆G◦
rxn is the free energy change for the complete transformation of pure graphite and O2

into pure CO2 at a constant pressure of 1 atm.
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In contrast to ∆G◦
rxn, which is a constant for a given reaction, ∆Grxn varies continuously

as the composition changes, finally reaching zero at equilibrium. ∆Grxn is the “distance”
(in free energy) from the equilibrium state of a given reaction. The two are related by:

∆Grxn = ∆G◦
rxn +RT logQ,

where Q is the reaction quotient, which would be, for a reaction

aA+ bB → cD + dD

Q = P cCP
d
D/(P

a
AP

b
B) or Q = [C]c[D]d/([A]a[B]b). At equilibrium we have ∆Grxn = 0 and

the above equation gives ∆G0
rxn = −RT logK (because Q = K at equilibrium).

The change in standard Gibbs free energy for the above reaction is the sum of standard
Gibbs energies of formation:

∆G◦
rxn = c(∆G◦

f )C + d(∆G◦
f )D − a(∆G◦

f )A − b(∆G◦
f )B.

The equation, ∆G0
rxn = −RT logK, is important because it relates the equilibrium compo-

sition of a chemical reaction system to measurable physical properties of the reactants and
products. If you know the entropies (S◦) and the enthalpies (∆H◦

f ) of formation of a set

of substances, you can predict (since ∆G◦
rxn = ∆H◦

rxn−T∆S◦
rxn at constant temperature)

the equilibrium constant of any reaction involving these substances without the need to
know anything about the mechanism of the reaction. We may find tables of ∆G◦

f , S
◦ and

∆H◦
f for different substances in chemistry handbooks (e.g., [13]) or textbooks (e.g., [9]).

The standard enthalpy of formation or standard heat of formation of a compound is the
change of enthalpy during the formation of 1 mole of the substance from its constituent ele-
ments, with all substances in their standard states, and at a pressure of 1 atm. There is no
standard temperature. It is usually denoted ∆H◦

f . The superscript ◦ on this symbol indi-
cates that the process has occurred under standard conditions at the specified temperature
(usually 25◦C).

The standard Gibbs free energy of formation of a compound is the change of Gibbs free
energy that accompanies the formation of 1 mole of a substance in its standard state from
its constituent elements in their standard states (the most stable form of the element at 1
atm of pressure and the specified temperature, usually 25◦C).

3.10.8. Where to Find Values for ∆H◦
f , ∆G

◦
f and S◦. Values of ∆H◦

f , S
◦ and ∆G◦

f

can be found tabulated in most chemistry textbooks (usually, in appendices), and on
the internet. In chemistry books, we do not find ∆G◦

rxn values for all possible chemical
reactions, because it would be impossible to list all possible chemical reactions (there
are too many of them). Instead, we will find tables of the energy of formation of various
compounds, which may be involved in your reaction. Textbooks often denote these energies
of formation as ∆G◦

f .
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Standard enthalpies of formation can be found at
https://en.wikipedia.org/wiki/Standard enthalpy of formation

Standard Gibbs free energies of formation can be found at
https://en.wikipedia.org/wiki/

Standard Gibbs free energy of formation

Appendix D of Oxtoby [9], entitled “Standard Chemical Thermodynamic Properties”,
contains tabulated values for enthalpies, entropies and Gibbs energies of formation. Please
note that Oxtoby [9] writes S◦ and not ∆S◦

f . This is because the Third Law guarantees
the existence of an absolute entropy scale. So what is being tabulated here is the absolute
entropy S◦ for each substance. On the other hand, there exists no absolute scale for ∆H◦

f

and ∆G◦
f , hence the ∆ notation.

Table 3.2 is an excerpt from page 1 of the Appendix D of Oxtoby [9]. Oxtoby [9] prefaces
the table as follows: “This table lists standard enthalpies of formation ∆H◦

f , standard
third-law entropies S◦, standard free energies of formation ∆G◦

f , and molar heat capacities

at constant pressure, cP , for a variety of substances, all at 25◦C (298.15 K) and 1 atm.
[...] Note that the solution-phase entropies are not absolute entropies but are measured
relative to the arbitrary standard S◦(H+(aq)) = 0. Consequently, some of them (as well
as some of the heat capacities) are negative.”

Table 3.2. Excerpt from Appendix D of Oxtoby [9].

Substance ∆H◦
f (25

◦C) S◦(25◦C) ∆G◦
f (25

◦C) cP (25
◦C)

units kJ/mol J/K/mol kJ/mol J/K/mol
H(g) 217.96 114.60 203.26 20.78
H2(g) 0 130.57 0 28.82
H+(aq) 0 0 0 0
H3O

+(aq) -285.83 69.91 -237.18 75.29
Li(s) 0 29.12 0 24.77
Li(g) 159.37 138.66 126.69 20.79
Li+(aq) -278.49 13.4 -293.31 68.6
LiH(s) -90.54 20.01 -68.37 27.87
Li2O(s) -597.94 37.57 -561.20 54.10
LiF(s) -615.97 35.65 -587.73 41.59
LiCl(s) -408.61 59.33 -384.39 47.99
LiBr(s) -351.21 74.27 -342.00 —
LiI(s) -270.41 86.78 -270.29 51.04
Na(s) 0 51.21 0 28.24
Na(g) 107.32 153.60 76.79 20.79
Na+(aq) -240.12 59.0 -261.90 46.4
Na2O(s) -414.22 75.06 -375.48 69.12
NaOH(s) -425.61 64.46 -379.53 59.54
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NaF(s) -573.65 51.46 -543.51 48.86
NaCl(s) -411.15 72.13 -384.15 50.50

3.10.9. The Standard States. When writing ∆G◦
f , the

◦ indicates that all components

(reactants and products) are in their standard states. This concept of standard states
is especially important in the case of the free energy. For most practical purposes, the
following definitions are used

(see https://en.wikipedia.org/wiki/Standard enthalpy of formation)

• Gases: 1 atm partial pressure (i.e., the hypothetical state it would have assuming it
obeyed the ideal gas equation at a pressure of 1 atm).

• Pure liquids: for a solute present in an ideal solution, a concentration of exactly 1 M at
a pressure of 1 atm.

• Solutes: an effective concentration of 1 mol/L. (“Effective” concentrations approach real
concentrations as the latter approach zero; for practical purposes, these can be considered
identical at real concentrations smaller than about 10−4 molar.)

• Solids: for a pure substance or a solvent in a condensed state (a liquid or a solid), the
standard state is the pure liquid or solid under a pressure of 1 atm.

• For an element: the form in which the element is most stable under 1 atm of pressure.
One exception is phosphorus, for which the most stable form at 1 atm is black phosphorus,
but white phosphorus is chosen as the standard reference state for zero enthalpy of
formation.

• All elements in their standard states (oxygen gas, hydrogen gas, nitrogen gas, solid
carbon in the form of graphite, etc.) have a standard enthalpy of formation (∆H◦) of
zero, as there is no change involved in their formation.

• There is no “standard temperature” in thermodynamics, but one often uses 25◦. (Ther-
modynamic standard state is different from STP used in gas law calculations.)

• Some texts will use 1 atm as the reference pressure; others may use 1 bar.

3.10.10. Example Calculation. Find the standard Gibbs energy change for the reaction

CaCO3(s) → CaO(s) + CO2(g)

where the following values of standard Gibbs energies of formation are found from tables:
CaCO3(s): -1128 kJ/mol, CaO(s): -603.5 kJ/mol, CO2(g): -137.2 kJ/mol.

Solution: Substitute these values into the equation for ∆G◦
rxn, we find:

∆G◦
rxn = (−603.5− 137.2)− (−1128) kJ/mol = +387.3 kJ/mol.

A positive value for ∆G◦
rxn means that the process is not spontaneous (under standard

conditions), i.e. solid calcium carbonate will not form solid calcium oxide and CO2 at 1
atm at 25◦. Note: This reaction is carried out on a large scale to manufacture cement, so
obviously the process can be spontaneous under different conditions.
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Recall the relationship between K and ∆G◦
rxn:

K = exp

(
−∆G◦

rxn

RT

)
.

Here, since ∆G◦
rxn is positive, K < 1, meaning the equilibrium favors the reactants, mean-

ing that CaCO3 wants to remain in its solid form.

The practical importance of the Gibbs energy is that it allows us to make predictions based
on the properties (∆G◦

rxn values) of the reactants and products themselves, eliminating the
need for experiment.

3.10.11. Heat Transfer at Constant Volume and Pressure. For a closed system
(dNi = 0) under constant volume,

dU = δQ− Pext dV︸ ︷︷ ︸
dV = 0

= δQV = CV (T )dT,

which implies that

CV (T ) =

(
∂U

∂T

)
V

If the temperature dependence of CV over some temperature range of interest is negligible,
CV (T ) = CV , the expression for dU can be integrated to give:

∆U = CV∆T.

For a closed system at constant pressure,

dH = δQ+ V dPext︸ ︷︷ ︸
dPext = 0

= δQP = CP (T )dT,

which implies that

CP =

(
∂H

∂T

)
P

.

If CP is independent of temperature we can integrate dH to get:

∆H = CP∆T.

3.10.12. Relationship Between Specific Heats. Take the derivative of

H = U + PV (definition of enthalpy)

with respect to temperature:

∂H

∂T︸︷︷︸
CP

=
∂(U + PV )

∂T
=
∂U

∂T︸︷︷︸
CV

+
∂(PV )

∂T

CP = CV +
∂(PV )

∂T
.
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For an ideal gas, PV = nRT , so the second term equals nR, and we obtain:

CP = CV + nR.

Dividing through by n we get a relationship between the specific heats:

cP = cV +R. (Mayer’s relation)

A look at the term ∂(PV )
∂T reveals that it is always positive because as temperature increases,

PV also increases. Thus, CP > CV .

The situation is illustrated in Fig. 3.7.

Adiabatic walls
No particle change

V = constant
All energy goes into heating gas

Volume can expand
Some energy goes into heating gas

Some goes into P-V Work

Figure 3.8. Difference between heating at constant pressure vs volume.

Thus, (
∂U

∂T

)
V

≡ CV < CP ≡
(
∂H

∂T

)
P

.

The enthalpy accounts for energy transfer to the environment through the expansion of
the system.

3.10.13. Latent Heat. Latent heats are associated with phase transitions, such as the
melting of solids or vaporization of liquids and solids. It is the heat absorbed or released
by a thermodynamic system as it undergoes a phase transition.

At the microscopic level, this heat serves to break or form bonds. Such heats are also called
heat of fusion (melting), heat of vaporization, etc. There are entropy changes associated
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with such phase transitions, namely, the entropy of fusion, entropy of vaporization, etc.
Entropy changes because there is a spatial rearrangement of the molecules in the system
(e.g. from ordered crystal to disorder in a liquid). See Fig. 3.9.

Figure 3.9. Difference between heating at constant pressure vs volume.

For a reversible process,

dS =
δQrev

T
Consider a small temperature interval [TC−ϵ, TC+ϵ] centered on TC (critical temperature),
with ϵ so small that the temperature is essentially constant. The system undergoes a phase
transition at TC . The latent heat associated with this transition is

δQlat = TC dSlat, or ∆Qlat = TC ∆Slat,

where ∆Slat is called the entropy of fusion or vaporization, if the process is one of melting
or evaporation, respectively.

We can also express it in terms of the enthalpy change dH = TdS + V dP at constant
pressure (dP = 0) gives

∆S =

∫ TC+ϵ

TC−ϵ

dH

T

across the phase transition (see Fig. 3.10).

and

∆Slat =
∆Hlat

TC
,

where TC is the phase transition temperature (critical temperature) and ∆Hlat is the latent
heat. Since we assumed constant P , ∆Hlat is the same as ∆Qlat. This formula gives the
entropy change ∆Slat corresponding to latent heat ∆Hlat of a phase transition at constant
P .
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Figure 3.10. Latent heat.

Remarks:

• ∆Slat and ∆Hlat represent discontinuous changes between two phases of the same sub-
stance occurring at the transition temperature TC .

• Latent heats are tabulated as specific latent heats, L, which is an intensive property:
L ≡ ∆Qlat/m, where m is the mass of the substance. The common units are kJ/kg.

3.10.14. Application of First and Second Laws: Equilibrium Establishes a Com-
mon Temperature. Suppose that A denotes the system and B denotes the surroundings
(see Fig. 3.11) and that A and B are separated by a thermally conductive wall. Assume
that the volumes of A and B do not change. The combined system is the universe and it
is isolated. Because entropy is an extensive property, SA and SB added yields the entropy
of the universe:

S = SA + SB.

Figure 3.11. Two closed, constant-volume, sub-systems are separated by a thermally
conducting partition. The second law requires that at thermal equilibrium the tempera-
tures of the two subsystems will necessarily become equal (TA = TB).
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First, we rewrite the fundamental equation

dU = TdS − PdV +
∑
i

µidni

in the entropy representation:

dS =

(
1

T

)
dU +

(
P

T

)
dV −

∑
i

(µi
T

)
dni.

The entropy of the isolated system (“universe”) is the sum of entropies of A and B, S =
SA + SB (entropy is additive). Then, we invoke the fundamental equation in the entropy
representation (with dV = 0 and dNi = 0),

dS = dSA + dSB =

(
1

TA

)
dUA +

(
1

TB

)
dUB

where we have invoked the First Law twice, once for SA and once for SB. Since energy is
conserved (A+B is an isolated system) dUA = −dUB:

dS =

[(
1

TA

)
−
(

1

TB

)]
dUA.

Since VA, VB, NA, NB are all constant, there can be no mechanical or chemical work ex-
changed between the system and its surroundings and so dUA = δQ.

(3.5) dS =

[(
1

TA

)
−
(

1

TB

)]
δQ

where δQ is the heat transferred to the system (or to the surroundings if δQ < 0). At
thermal equilibrium, entropy of the system is maximized dS = 0. So a nonzero infinitesimal
heat exchange δQ ̸= 0 implies that the temperatures of A and B must be equal:

TA = TB. (A and B in thermal equilibrium)

Note: Suppose that TA (the system) is higher than TB. Then we expect heat to flow
from the system into the surroundings. The second law dS ≥ 0 and Eq. (3.5) imply that
dUA = δQ < 0 and indeed heat flows out of the system. So the Second Law correctly
predicts the direction of the heat exchange.

3.10.15. When is Heat Transfer Reversible? We have previously seen that reversibil-
ity is defined as a process for which the surroundings have intensive variables that are
arbitrarily close to those of the system, i.e. P = Pext +dT , P = Pext +dP , µ = µext +dµ.
We’ve also seen that dS = 0 when a process is reversible. Let us check that these two con-
ditions imply each other. Using the notation from the previous section, we would expect
that if TA is vastly different than TB, the process would not be reversible. Let TB = T and
TA = T − dT so that the process is truly reversible. Then,

dS =

[(
1

T − dT

)
−
(
1

T

)]
δQ
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Factoring out 1/T and invoking the geometric series, 1/(1 − r) = 1 + r + r2 + . . . with
r = dT/T , we have:

dS =

[(
1 +

dT

T
+

dT 2

T 2
+ . . .

)
− 1

]
δQ

T
≈ δQdT

T 2
≈ 0,

since δQdT is an infinitesimal of the second order. Thus, the entropy change dS is zero
when the process is reversible.

3.10.16. Can we Have Isothermal Heat Transfer? Isothermal means dT = 0 or
T = constant. From dS = δQrev/T , a heat transfer δQrev to the system corresponds to
a change in its energy in the amount of TdS. Thus, it describes a change in entropy, i.e.
given ∆Qrev > 0, we must have ∆S > 0. This can happen, for example, during the course
of a phase transition. Some amount of heat (latent heat) is transferred to the system at
constant temperature while the entropy changes.

3.10.17. Application of First and Second Laws: Chemical Equilibria. In a similar
way, we can use the Second Law to predict that at thermal equilibrium the chemical
potentials of the reactant and product species should be equal to each other. Consider
a chemical a system in which one chemical component (A) may react to form another
component (B). For example, A and B could be the gauche and trans conformational
isomers of n-butane, or they could be the native and denatured states of a protein. See
Fig. 3.12.

Figure 3.12. A closed, insulated, constant-volume, system contains molecules that can
inter-convert between two different chemical states (A and B). The second law requires
that the chemical potentials of the two compounds must become equal (A = B) at
equilibrium.

We will also assume that the container which holds the system is insulated and sealed
(so neither heat nor matter can enter or leave), and that the volume of the container is
constant. Thus, no work or heat exchange can take place between the system and its
surroundings (so it is isolated).
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Now imagine that we initially put some amounts of A and B into the system which are not
equal to their equilibrium concentrations. The entropy representation of the fundamental
equation implies that the total entropy change is

dS(U, V,Ni) =

(
1

T

)
dU +

(
P

T

)
dV −

∑
i

(µi
T

)
dNi,

and since energy and volume are constant dU = dV = 0,

dS = −
(
µA
TA

)
dNA −

(
µB
TB

)
dNB.

At thermal equilibrium TA = TB = T . Moreover, stoichiometric balance requires that
dNB = −dNA,

dS = −
[(µA

T

)
−
(µB
T

)]
dNA.

At equilibrium dS = 0 and (provided dNA ̸= 0),

µA = µB.

Away from equilibrium dS > 0, so if µA > µB then we must have dNA < 0 (reactants are
consumed), as would be expected. Thus, the Second Law correctly predicts the direction
of change in a chemical reaction.

3.10.18. Generalization to Arbitrary Reactions. The above result may be extended
to chemical reactions involving more complex stoichiometry,

nR∑
i=1

aiAi ⇌
nP∑
i=1

biBi

where ai and bi are stoichiometric coefficients for the reactant Ai and product Bi species,
respectively. nR is the number of reactants. nP is the number of products.

The chemical reaction can be written as an equation, where {Ai} denote the set of all
reactants and products, {νi}, the set of stoichiometric coefficients with the convention that
νi are positive numbers for the reactants (νi = ai) and negative numbers for the products
(νi = −bi),

nS∑
i=1

νiAi = 0,

with nS = nR + nP .

For any such reaction one may use the following equation to express the relationship be-
tween the chemical potentials of the reacting species at equilibrium:

Chemical Equilibrium:
nS∑
i=1

νiµi = 0 at equilibrium.
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This result follows from the same analysis as in the previous section. There, we would also
have that at thermal equilibrium, all temperatures are the same, Ti = T for all i.

The dNi are parametrized by a new variable t, i.e. so that dNi(t) = N ′
i(t)dt, where t ∈ [0, 1]

is a variable that denotes the “extent of the reaction”. Then t = 0 the reaction begins
and when t = 1, it ends. N ′

i(t) is the speed at which species i is produced or depleted; it
is proportional to the stoichiometric coefficient νi, so we write N ′

i(t) = ανi, where α is a
constant.21

Under those conditions, the chemical term in dS reads:

dS = −

[
nS∑
i=1

(
µi
Ti

)
ανi

]
dt = −α

T

[
nS∑
i=1

µiνi

]
dt.

At equilibrium, dS = 0 (provided dt ̸= 0), from which it follows that the coefficient of dt
must vanish, i.e.

∑nS
i=1 νiµi = 0.

3.10.19. Application of First and Second Laws: Phase Equilibrium. Consider a
system composed of two sub-systems whose boundary allows the exchange of molecules, as
well as heat and mechanical work. For example, one sub-system could be a vapor phase A
and the other a liquid phase B, as shown in Fig. 3.13. In such a situation, we may again
invoke the Second Law to obtain general relations between all of the intensive variables of
the two sub-systems at equilibrium.

Figure 3.13. A closed, insulated, constant-volume, system contains two phases (A and
B). The second law requires that at equilibrium the temperature, pressure and chemical
potentials of the two phases will necessarily become equal (TA = TB , PA = PB and
µA = µB).

21If t is time, then dNi denotes the change in number of molecules of species i whereas N ′
i(t)dt denotes the rate of

change in Ni times dt.
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For simplicity we will assume there is only one chemical component in the system (such as
water). We assume that the number of water molecules in the vapor phase is NA and in
the liquid phase is NB.

Note that when molecules are exchanged between the two phases the volumes VA and VB,
as well as the energies UA and UB, of each phase will also change. We further assume that
both phases are enclosed by a sealed and insulated container of fixed total volume (so the
entire system is isolated from its surroundings).

When we apply the fundamental equation to each phase we obtain the following expressions.

dSA =

(
1

TA

)
dUA +

(
PA
TA

)
dVA −

(
µA
TA

)
dNA

dSB =

(
1

TB

)
dUB +

(
PB
TB

)
dVB −

(
µB
TB

)
dNB.

The entropy change of the entire system is again dS = dSA+dSB. Since the total energy,
volume and number of molecules are all conserved, we may equate dUA = −dUB = dU ,
dVA = −dVB = dV , and dNA = −dNB = dN . Thus, an infinitesimal entropy change
of the whole system, resulting from the transfer of some molecules between phase A and
phase B, may be expressed as follows.

dS =

(
1

TA
− 1

TB

)
dU +

(
PA
TA

− PB
TB

)
dV −

(
µA
TA

− µB
TB

)
dN.

At equilibrium dS = 0 when dU ̸= 0 and dV ̸= 0 and dN ̸= 0, so all three quantities
in parentheses must equal to zero. Thus implies that all three of the following intensive
variables of the two phases must be equal at equilibrium:

TA = TB, PA = PB, µA = µB.

In fact, you can check that

TA = TB + dT, PA = PB + dP, µA = µB + dµ,

leads to equilibrium (dS = 0).

In any two phase equilibrium all of the intensive variables of the two phases – temperatures,
pressures and chemical potentials – must be in perfect balance with each other.

If the system contained more than one chemical species then similar expressions would hold
for each chemical species. Moreover, if the system contained molecules that can chemically
react with each other, then

∑
i νiµi = 0 would impose an additional equilibrium condition

which must hold for any such reactive species.

3.10.20. Application of Chemical Potential, Various Equilibria.

Gibbs energy of mixing. Suppose that we have two perfect gases, A and B, in two
containers, in the amounts nA and nB, respectively. Both are at temperature T and
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pressure P . The chemical potentials of the two gases have their “pure” values,

µ = µ◦ +RT log(P/P0)

where µ◦ is the standard chemical potential, the chemical potential of the pure gas at 1
bar. See Fig. 3.14.

Figure 3.14. Arrangement for calculating the thermodynamic functions of mixing of two
perfect gases.

Taking P0 to be 1 bar and writing P instead of P/P0, the Gibbs energy of the total system
is (before mixing):

Gi = nAµA + nBµB = nA(µ
◦
A +RT logP ) + nB(µ

◦
B +RT logP ).

After mixing, the partial pressures are PA and PB (PA+PB = P ). The total Gibbs energy
changes to:

Gf = nA(µ
◦
A +RT logPA) + nB(µ

◦
B +RT logPB)

The difference, Gf −Gi, the Gibbs energy of mixing, ∆Gmix, is therefore

∆G = Gf −Gi = nART log(PA/P ) + nBRT log(PB/P ).

Replacing nA by XAn, where n is the total number of moles of A and B, and using Dalton’s
law, PA = XA · P , we have:

∆Gmix = nRT (XA logXA +XB logXB).

Because 0 ≤ XA, XB ≤ 1, the logs are negative and ∆Gmix < 0. Thus, perfect gases mix
spontaneously in all proportions. And from dG = −SdT + V dP , S = −(∂G/∂T ), the
entropy of mixing is:

∆Smix = −nR{XA logXA +XB logXB}.
Note: since ∆G = ∆H − T∆S, it follows that ∆Hmix = 0. This is expected for a system
in which there are no interactions between the molecules forming the gaseous mixture. It
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follows that the driving force for mixing comes from the increase in entropy of the system
because the entropy of the surroundings is unchanged.

3.10.20.1. Example: (Gibbs energy of mixing). A container is divided into two equal com-
partments (Fig. 3.15). One contains 3.0 mol H2(g) at 25◦C. The other contains 1.0 mol
N2(g) at 25

◦C. Calculate the Gibbs energy of mixing when the partition is removed. As-
sume perfect behavior.

Figure 3.15. The initial and final states considered in the calculation of the Gibbs energy
of mixing of gases at different initial pressures.

Solution: The formula from the previous section cannot be used directly because the initial
gas pressures are different. Given that the pressure of nitrogen is P and the pressure of
hydrogen is 3P , the initial Gibbs energy is

Gi = (3.0 mol){µ◦(H2) +RT log 3P}+ (1.0 mol){µ◦(N2) +RT logP}
When the partition is removed and each gas occupies twice the original volume, the partial
pressure of nitrogen falls to 1

2P and that of hydrogen falls to 3
2P . Therefore, the Gibbs

energy changes to

Gf = (3.0 mol){µ◦(H2) +RT log 3
2P}+ (1.0 mol){µ◦(N2) +RT log 1

2P}
Taking the difference gives the Gibbs energy of mixing:

∆Gmix = Gf −Gi =(3.0 mol)RT log

(
3
2P

3P

)
+ (1.0 mol)RT log

(
1
2P

P

)
=− (3.0 mol)RT log 2− (1.0 mol)RT log 2

=− (4.0 mol)RT log 2 = −6.9 kJ
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Here, ∆Gmix < 0, however, the negative sign does not necessarily indicate spontaneity.
dG < 0 indicates spontaneity only at constant temperature and pressure. (Here, the
pressure dropped from 4P to 2P when opening the partition.)

Problem. Suppose that 2.0 mol H2 at 2.0 atm and 25◦C and 4.0 mol N2 at 3.0 atm
and 25◦C are mixed at constant volume. Calculate ∆Gmix. What would be the value of
∆Gmix had the pressures been identical initially? [-9.7 kJ, -9.5 kJ]

Figure 3.16. At equilibrium, the chemical potential of the gaseous form of a substance
A is equal to the chemical potential of its condensed phase. The equality is preserved if
a solute is also present. Because the chemical potential of A in the vapor depends on its
partial vapor pressure, it follows that the chemical potential of liquid A can be related to
its partial vapor pressure.

3.10.21. Ideal Solutions & Raoult’s Law. Suppose we have an ideal solution made
up of two components, A and B (Fig. 3.16). Let us denote with a ∗ the quantities relating
to pure substances. Let µ∗A(l) denote the chemical potential of pure A (liquid). Vapor
pressure of the pure liquid is P ∗

A. Chemical potential in the vapor is µ◦A + RT logP ∗
A.

These two chemical potentials are equal at equilibrium:

µ∗A(l)︸ ︷︷ ︸
liquid

= µ◦A +RT logP ∗
A.︸ ︷︷ ︸

gas

(pure A)

If another substance, a solute, is also present in the liquid, the chemical potential of A in
the liquid is changed to µA(l) and its vapor pressure is changed to PA. The vapor and
solvent are still in equilibrium, so we can write

µA(l) = µ◦A +RT logPA. (add some B)

Next, we combine these two equations to eliminate the standard chemical potential of the
gas. To do so, we solve for µ◦A in both equations an equate the two results to obtain

µA(l) = µ∗A(l)−RT logP ∗
A +RT logPA = µ∗A(l) +RT log(PA/P

∗
A).
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Substituting Raoult’s law, PA = XA · P ∗
A, we get:

µA(l) = µ∗A(l) +RT logXA.

This important equation can be used as the definition of an ideal solution (so that it implies
Raoult’s law rather than stemming from it) and is better, because it does not assume that
the vapor is a perfect gas.

3.10.22. Liquid Mixtures: Ideal Solutions. Suppose that we mix two liquids A and
B. Before mixing, we have:

Gi = nAµ
∗
A + nBµ

∗
B.

When they are mixed, the individual chemical potentials are modified, and the total Gibbs
energy is,

Gf = nA{µ∗A +RT logXA}+ nB{µ∗B +RT logXB}.
Consequently, the Gibbs energy of mixing, Gf −Gi is

∆Gmix = nRT{XA logXA +XB logXB}.
And from dG = −SdT + V dP , S = −(∂G/∂T ), the entropy of mixing is:

∆Smix = −nR{XA logXA +XB logXB}.

3.10.23. Elevation of Boiling Point. The vapor pressure of a pure liquid represents
a balance between the increase in disorder arising from vaporization and the decrease in
disorder of the surroundings. See Figs. 3.17 and 3.18.

Figure 3.17. (a) Liquid is represented by the blue space. (b) When solute (red circles) is
present, the disorder of the condensed phase is increased, and there is decreased tendency
to acquire the disorder of the vapor.

The heterogeneous equilibrium of interest when considering boiling is between the solvent
vapor and the solvent in solution at 1 atm. We denote the solvent by A and the solute by
B. The equilibrium is established at a temperature for which

µ∗A(g) = µ∗A(l) +RT logXA.
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Figure 3.18. The heterogeneous equilibrium involved in the calculation of the elevation
of boiling point is between A in the pure vapor and A in the mixture, A being the solvent
and B an non-volatile solute.

(The pressure of 1 atm is the same throughout and is not written explicitly.) This equation
implies22 that the presence of a solute at a mole fraction XB causes an increase in normal
boiling point from T ∗ to T ∗ +∆T , where

∆T = K ·XB, K =
RT ∗2

∆vapH
.

Figure 3.19. Heterogeneous equilibrium involved in the calculation of the lowering of
freezing point is between A in the pure solid and A in the mixture, A being the solvent
and B a solute that is insoluble in solid A.

22From Atkins [4]: Rearranging the equation to logXA =
µ∗
A(g)−µ∗

A(l)

RT
=

∆vapG

RT
, where ∆vapG is the Gibbs

energy of vaporization of the pure solvent (A). Differentiating both sides with respect to T gives: d logXA
dT

=
1
R

d(∆vapG/T )

dT
= −∆vapH

RT2 , where use was made of the Gibbs-Helmholtz equation, (∂(G/T )/∂T )P = −H/T 2. Mul-

tiplying both sides by dT and integrating from XA = 1 (boiling point T = T ∗ of pure solvent) to XA (boiling point

T ),
∫ logXA
0 d logXA = − 1

R

∫ T
T∗

∆vapH

T2 dT . The left hand side integrates to logXA = log(1 − XB). For constant

enthalpy of vaporization, log(1 −XB) = −∆vapH

R

∫ T
T∗

1
T2 dT , and therefore, log(1 −XB) =

∆vapH

R

(
1
T

− 1
T∗

)
. We

now suppose that the amount of solute present is so small that XB ≪ 1. We can write log(1 − XB) ≈ −XB

and obtain XB =
∆vapH

R

(
1
T∗ − 1

T

)
. Finally, because T ≈ T ∗, it follows that 1

T∗ − 1
T

= T−T∗

TT∗ ≈ ∆T
T∗2 , with

∆T = T − T ∗. PROOF of Gibbs-Helmholtz: on one hand, −S = (∂G/∂T )P = (G − H)/T , on the other hand,(
∂(G/T )

∂T

)
P

= 1
T

(
∂G
∂T

)
P

+ G
d(1/T )

dT
= 1

T

(
∂G
∂T

)
P

− G
T2 = 1

T

{(
∂G
∂T

)
P

− G
T

}
. In the curly bracket, we substitute(

∂G
∂T

)
P

− G
T

= G−H
T

− G
T

= −H
T
. Gibbs-Helmholtz follows.
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3.10.24. Depression of Freezing Point. The heterogeneous equilibrium now of interest
is between pure solid solvent A and the solution with solute present at a mole fraction XB

(Fig. 3.19). At the freezing point, the chemical potentials of A in the two phases are equal:

µ∗A(s) = µ∗A(l) +RT logXA

The calculation is the same as in the previous section, and the result is

∆T = K ′ ·XB, K ′ =
RT ∗2

∆fusH
,

where ∆T is the freezing point depression, T ∗ − T , and ∆fusH is the enthalpy of fusion
of the solvent. Larger depressions are observed in solvents with low enthalpies of fusion at
high melting points. When the solution is dilute, the mole fraction is proportional to the
molality of the solute, b, and it is common to write the last equation as

∆T = Kf · b.
where Kf is the empirical freezing-point constant.

3.10.25. Solubility. When a solid solute is left in contact with a solvent, it dissolves until
the solution is saturated. Saturation is a state of equilibrium, with the undissolved solute
in equilibrium with the dissolved solute. Therefore, in a saturated solution the chemical
potential of the pure solid solute, µ∗B(s), and the chemical potential of B in solution, µB,
are equal (Fig. 3.20).

Figure 3.20. Heterogeneous equilibrium involved in the calculation of the solubility is
between pure solid B and B in the mixture.

Because the latter is µB = µ∗B(l) +RT logXB, we can write

µ∗B(s) = µ∗B(l) +RT logXB.

This expression is the same as the starting expression in the last section, except that the
quantities refer to the solute B, not the solvent A. It leads to:

logXB =
∆fusH

R

(
1

Tf
− 1

T

)
.
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3.10.26. Example: (Ion transport Across Cell Membrane). There are ions (e.g.
Na+, Ca2+, K+, etc.) found in the intra and extra-cellular spaces at different concentra-
tions. Cell membrane proteins participate in the transport of such ions. As an example, let
us analyze the chemical equilibrium of K+ ions using the first two laws of thermodynamics.
Recall that for a chemical reaction:

∆Grxn = ∆G◦
rxn +RT logQ

where ∆G◦
rxn = −RT logKeq. This is valid when a chemical reaction is the only “work”

done. However, there may be other terms in the expression for ∆G that need to be
accounted for. Consider the “chemical reaction” where a potassium ion is shuttled in and
out of the cell cytoplasm:

K+
0 ⇌ K+

i

Chemical reaction equilibrium alone would state that

µi − µ0 = RT log

(
[K+]i
[K+]o

)
Where [K+]i is the potassium ion concentration inside the cell and [K+]o is its concentration
found outside (in the extracellular matrix). The difference µi − µ0 represents gradient
(difference) in the chemical potential across the cell membrane. This chemical potential
gradient acts as a driving force to shuttle ions in and out of the cell (depending on whether
[K+]i > [K+]o or [K+]i < [K+]o). See Fig. 3.21.

Figure 3.21. Potassium pump.

However, this cannot be the only force because if we shuttle all ions out of the cell (for
instance), the electrostatic repulsion among potassium ions in the extracellular matrix will
be large enough to drive some of these ions to re-enter the cytoplasm. Thus, we must
include electrostatic repulsions.

Electrostatic repulsions can be accounted for by adding electrostatic work. Recall that
the electrostatic work is of the form δWel. = ϕdq where dq is the charge added or re-
moved, and ϕ is the local electrostatic potential. Here we write ϕo for the electrostatic
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potential in the extracellular matrix and ϕi for the potential inside the cytoplasm. The
total work is obtained by integrating from reactants to products. As far as the integral

∆Wel. =
∫ products
reactants ϕdq is concerned, going from reactants to products means we subtract a

charge Q from the extracellular space (work = −Qϕ0) and add it to the intracellular space
(work = +Qϕi).

The total integral along this path yields the sum of these two terms: one from the extra-
cellular matrix, and one for the cytoplasm:

∆Wel. = Q(ϕi − ϕo),

where ϕ0 acquires a negative sign because we are removing an ion of charge Q from the
extracellular matrix (and add it to the cytoplasm). The difference ϕi − ϕo is the potential
difference across the cell membrane (units: volts). When the electrostatic force balances
out the chemical force, ∆G = 0 and these two terms are equal:

∆ϕ ≡ ϕi − ϕo =
RT

Q
log

(
[K+]i
[K+]o

)
.

This potential difference, ∆ϕ ≡ ϕi−ϕo (in volts), is called the Nernst potential. Inspection
of this equation shows that Q must be specified in units of Coulomb per mole; Q in these
units is often called the Faraday’s constant, F ≡ 9.65 × 104 C/mol. (Otherwise, replace
RT by kBT and Q is then specified in units of Coulomb.)

Please note that the above analysis is valid in thermal equilibrium (steady state) and does
not describe dynamics, such as those observed in cardiac tissues or neuronal networks.

There are ways to directly measure ion concentrations and voltages. For a discussion of
Ca2+ and voltage sensing via specially-designed fluorophores, see the paper [14].

3.10.27. Affinity of Reaction and Reaction Enthalpy. General chemical reactions
are represented by an equation,

∑
i νiAi = 0, where the stoichiometric coefficients νi are

negative for reactants and positive for products. For example:

0 = −N2 − 3H2 + 2NH3.

The extent of reaction ξ is defined by:

ξ =
ni(ξ)− ni(0)

νi
,

where ni(ξ) is the amount of substance Ai present when the extent of reaction is ξ. ni(0)
is the amount of Ai present when ξ = 0, corresponding to the specified initial conditions.
The units of ξ are moles. For example, if 1 mol of N2 and 3 mol of H2 are converted
completely into 2 mol of NH3

ξ =
nNH3(ξ)− nNH3(0)

νNH3

=
2 mol− 0 mol

2
= 1 mol
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ξ =
nN2(ξ)− nN2(0)

νN2

=
0 mol− 1 mol

−1
= 1 mol

ξ =
nH2(ξ)− nH2(0)

νH2

=
0 mol− 3 mol

−3
= 1 mol

ξ is independent of which chemical is used to compute it. Note also that

dξ =
dni
νi
.

Using this notation, the fundamental equation

dG = −SdT + V dP +
∑
i

µidni,

becomes:
dG = −SdT + V dP +

∑
i

µiνidξ.

If we define the reaction affinity by:

A = −
∑
i

µiνi.

Then dG is written:
dG = −SdT + V dP −Adξ.

From this, we see that

A = −
(
∂G

∂ξ

)
T,P

.

For the special case of constant T, P , we see that dG = −Adξ. Since G is a state function,
integrating from ξ = 0 to ξ = 1 mol yields:

A = −∆Grxn = −
∑
i

νiµi ≥ 0.

(This assumes that A is independent of ξ.)

In a similar manner, the fundamental equations for the thermodynamic potentials U , S,
H, A:

dU = TdS − PdV +
∑
i

µidni → dU = TdS − PdV −Adξ

dS =
1

T
dU +

P

T
dV − 1

T

∑
i

µidni → dS =
1

T
dU +

P

T
dV +

A
T
dξ

dH = TdS + V dP +
∑
i

µidni → dH = TdS + V dP −Adξ

dA = −SdT − PdV +
∑
i

µidni → dA = −SdT − PdV −Adξ
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dG = −SdT + V dP +
∑
i

µidni → dG = −SdT + V dP −Adξ

3.10.28. Enthalpy is the “Heat Content”. Recall the second law, dSuniv = dS +
dSext ≥ 0, where S is the system and Sext is the surroundings. Now consider the system
S; the total entropy production for this system can be decomposed into two terms:

dS = deS + diS.

The first term, deS, is the entropy produced by the interaction of the system with its
surroundings, e.g.

deS =
δQ

T
. (if process is reversible)

The second term, diS, is the entropy produced by irreversible processes going on inside the
system (for example, chemical reactions). When the only interaction with a system’s
surroundings is the absorption of heat δQ, and the only irreversible process going
on within the system is a chemical reaction, we can write explicit expressions for deS and
diS:

The fundamental equation for dS reduces to:

dS =
δQ

T︸︷︷︸
deS

+
A
T
dξ︸︷︷︸

diS

.

Thus,

deS =
δQ

T
, diS =

Adξ

T
.

These two contributions describe the measurable heat transfer and the irreversible heat
(absorbed or released) of the reaction. We note that the term diS can describe a bona fide
chemical reaction or the transfer of matter to another subsystem (essentially, any process
that can be described using chemical potentials). When matter is transported, this causes
a transfer of heat.

Consider the complete transformation of stoichiometric amounts of reactants at T, P into
products at T, P , so that ∆ξ = 1 mol. Because H is a function of the state of the system,
the enthalpy change due to the reaction

∆Hrxn = (∆Q)P

is equal to the heat absorbed at constant pressure. This quantity was formerly called the
heat of reaction at constant pressure, but is now called the reaction enthalpy. Another
historic name for enthalpy is heat content. The subscript rxn tells us that this is the
enthalpy change during the reaction. ∆Hrxn is the change in an extensive property, but
numerical data always refer to ∆ξ = 1 mol so that the units of ∆Hrxn are J/mol, or more
commonly kJ/mol.
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The idea that enthalpy is the heat transfer at constant pressure is illustrated by the fun-
damental equation for H:

(dH)P = TdS +���V dP −Adξ = TdS −Adξ

which, at constant pressure, features two terms, TdS, the measurable heat transfer and
−Adξ, the enthalpy associated with mass transport or irreversible chemical reaction. It is
because of this property that enthalpy is called heat content.

3.10.29. Forces and Fluxes. The fundamental equation in the entropy representation
is particularly important because of its special structure:

dS =

(
1

T

)
dU +

(
P

T

)
dV −

∑
i

(µi
T

)
dni.

It has the structure of a sum of terms, each of which represent a force times a flux. The
forces are:

• 1
T : tendency for heat flow

• P
T : tendency for volume change

• µ
T : tendency for particle exchange

Figure 3.22. A closed, insulated, constant-volume, system contains two phases (A and
B). The second law requires that at equilibrium the temperature, pressure and chemical
potentials of the two phases will necessarily become equal (TA = TB , PA = PB and
µA = µB).

Recall our previous analysis of phase equilibrium (Fig. 3.22), which begins by writing down
the First Law for each subsystem dS = dSA + dSB in the entropy representation (A + B
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is a closed system, so that dU = dUA = −dUB, dV = dVA = −dVB, dn = dnA = −dnB):

dS =

(
1

TA
− 1

TB

)
dU +

(
PA
TA

− PB
TB

)
dV −

(
µA
TA

− µB
TB

)
dn.

dS is called the dissipation function because dS > 0 indicates an irreversible process where
energy is dissipated (cannot be converted into useful work).

Notice that all the terms in the expression for dS are of the form of a gradient in intensive
property (1/T, P/T, µ/T ) times the differential of an extensive property (U, V, n). The
former is called a force; the latter is called a flux:

dissipation function = force × flux = X · J

3.10.30. Internal vs External Variables: Heat Transfer Only. A system with only
heat transfer can be exemplified as consisting of two pieces of metal at different absolute
temperatures, T1 and T2, where T1 > T2. A small quantity of heat, δQ, is allowed to pass
from subsystem 1 to subsystem 2 in course of a short time interval, dt (Fig. 3.23).

Figure 3.23. Only heat can transfer.

The quantity of heat is so small that changes in the temperatures of the subsystems can
be disregarded: Since there is no transfer of matter, each subsystem behaves as a closed
system. The transfer of δQ leads to the following changes in the subsystems:

dU1 = T1dS1 − P1dV1 dU2 = T2dS2 − P2dV2,

or with the equations solved with respect to entropy change:

dS1 =
dU1

T1
+

(
P1

T1

)
dV1 dS2 =

dU2

T2
+

(
P2

T2

)
dV2.

When P − V work is the only work carried out, dU1 and dU2 can be expressed by the
external variables, which are measurable quantities,

dU1 = δQ1 − P1dV1 dU2 = δQ2 − P2dV2.

The total system is adiabatic,
δQ = −δQ1 = δQ2,
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so that
dU1 + dU2 = −P1dV1 − P2dV2.

Total entropy production is:

dS = dS1 + dS2 = −δQ
T1

+
δQ

T2
=

(
1

T2
− 1

T1

)
δQ = ∆(1/T )δQ,

or
dS

dt
= ∆(1/T )

δQ

dt
.

Multiplying by T2 gives the dissipated energy

T2
dS

dt
= T2∆(1/T )

δQ

dt
,

where δQ/dt is the rate of transport of heat. The units of T2
dS
dt and δQ/dt are in watts

(1 W=1 J/s).

3.10.31. Internal vs External Variables: Heat Transfer + Matter Transport.
A system with transfer of heat and matter can be exemplified by two gas containers at
different absolute temperatures, T1 and T2, where T1 > T2 (Fig. 3.24).

Figure 3.24. Both heat and matter can transfer.

A small quantity of heat, δΦ, and small quantities of the different gas components, dni,
are allowed to pass from subsystem 1 to subsystem 2 in course of the time dt. The total
heat transferred, δΦ, is composed of a measurable heat and the enthalpy of the transferred
matter. Since the total system is adiabatic, the total heat removed from subsystem 1 is
equal to the total heat received by subsystem 2. The enthalpy of the transferred matter,
however, may be different in the two subsystems, and thus the measurable heat change
will be different in the two subsystems.

The changes in the subsystems are:

δΦ = δΦ2 = −δΦ1.

In terms of internal variables,

dU1 = T1dS1 − P1dV1 +
∑
i

µi,1dni,1 dU2 = T2dS2 − P2dV2 +
∑
i

µi,2dni,2.
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Solving for dS,

(3.6) dS1 =
dU1

T1
+
P1

T1
dV1 −

1

T1

∑
i

µi,1dni,1, dS2 =
dU2

T2
+
P2

T2
dV2 −

1

T2

∑
i

µi,2dni,2.

In terms of external variables, when we only have P − V work:

(3.7) dU1 = δΦ1 − P1dV1 dU2 = δΦ2 − P2dV2,

dU1 + dU2 = −P1dV1 − P2dV2.

Since δΦ = δΦ2 = −δΦ1. Then, plugging Eq. (3.7) into (3.6),

(3.8) dS1 = −δΦ
T1

+
1

T1

∑
i

µi,1dni, dS2 =
dΦ

T2
− 1

T2

∑
i

µi,2dni.

The production of entropy in the total system is dS = dS1 + dS2 and therefore

dS =

(
1

T2
− 1

T1

)
dΦ +

∑
i

(
µi,2
T2

− µi,1
T1

)
dni,

(3.9) dS = ∆(1/T )δΦ−
∑
i

∆(µi/T )dni.

Multiplying by T2 and dividing by time (dt), we have the dissipated energy (J/s)

T2
dS

dt
= T2∆(1/T )

δΦ

dt
− T2

∑
i

∆(µi/T )
dni
dt
.

It is possible to develop Eq. (3.9) further and put it in a more useful form (see Sec-
tion 3.10.32):

dS = ∆(1/T )δQ1 −
1

T

∑
i

∆µi,Tdni.

3.10.32. Algebraic Details. Starting from Eq. (3.8),

dS1 = −δΦ
T1

+
1

T1

∑
i

µi,1dni, dS2 =
δΦ

T2
− 1

T2

∑
i

µi,2dni,

and solving for δΦ, we have:

δΦ = −T1dS1 +
∑
i

µi,1dni,1 = T2dS2 +
∑
i

µi,2dni,2.

The entropy of an open system can be expressed as a function of temperature, pressure and
amounts of substances, S = S(T, P, {ni}). The experiment can be arranged such that the
pressure within each subsystem is kept constant. The change in entropy with temperature
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and amounts of substances for subsystem 1 can be written,

dS1 =

(
∂S1
∂T

)
P,ni

dT +
∑
i

(
∂S1
∂ni,1

)
P,T,nj ̸=i

dni,1

=(CP,1/T1)dT +
∑
i

Si,1dni,1,

and in a similar way for subsystem 2. The heat capacity of the system multiplied by the
change in temperature is equal to the measurable heat absorbed by the system, CP,1dT =
−δQ1 where δQ1 is the heat removed from subsystem 1. Here it is assumed that dT is so
small that changes in CP,1 can be neglected. When the amounts of substances transferred
from subsystem 1 to subsystem 2 are small, the change in partial molar entropy, Si,1 can
be neglected. Thus, for subsystem 1,

dS1 = −δQ1/T1 −
∑
i

Si,1dni.

This equation combines with Eq. (3.8) for dS1 to give

δΦ = δQ+
∑
i

(µi,1 + T1Si,1)dni,

or, since G = H − TS, the partial molar quantity at constant T is:

Gi ≡ µi =

(
∂G

∂ni

)
T

=

(
∂H

∂ni

)
T

− T

(
∂S

∂ni

)
T

≡ Hi − TSi.

Or Hi = µi + TSi,

(3.10) δΦ = δQ1 +
∑
i

Hi,1dni.

In a similar way, we can express dΦ by the heat absorbed by subsystem 2, δQ2, and the
enthalpy added to subsystem 2 by the transfer of dni moles of substance:

(3.11) dΦ = δQ2 +
∑
i

Hi,2dni.

Comparing Eq. (3.10) and (3.11) we see that the difference in δQ values corresponds to a
difference in the H values:

δQ2 − δQ1 =
∑
i

(Hi,1 −Hi,2)dni.

For gases, Hi,1 −Hi,2 ≈ 0.

The enthalpies, Hi, do not have absolute values, and therefore δΦ does not have an absolute
value. We shall choose subsystem 1 as the reference state, and replace δΦ in Eq. (3.9) by
the expression given in Eq. (3.10). The second term in Eq. (3.9),

∑
i∆(µi/T )dni, can also

be referred to subsystem 1 as the reference state. The chemical potentials are functions
of temperature, pressure and composition, and for small differences in these parameters
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between the two subsystems, we have by the rules of derivation

∆(µi/T ) = ∆(1/T )µi,1 +
1

T1
(∂µi,1/∂T )P,ni∆T +

1

T1
∆µi,T ,

where ∆µi,T gives the variation in µi with changes in composition and pressure.

Since (from Hi = µi + TSi)
(∂µi,1/∂T )P,ni = −Si,1,

and

∆(1/T ) =

(
1

T +∆T
− 1

T

)
≈ −∆T

T 2
,

and
T1 ≈ T.

Therefore,

(3.12)
∑
i

∆(µi/T )dni = ∆(1/T )
∑
i

(µi,1 + TSi,1)dni +
1

T

∑
i

∆µi,Tdni.

Introducing Eq. (3.10) and (3.12) into (3.9) we obtain

dS = ∆(1/T )δQ1 −
1

T

∑
i

∆µi,Tdni.

This form may be better because it explicitly separates the two contributions to the entropy
production originating from heat transfer and particle transport.

3.10.33. Gibbs Free Energy: Ideal Gas Equilibria. We have seen that the progress
of a chemical reaction

∑
i νiAi = 0 can be described using the extent of the reaction, ξ =

ni(ξ)−ni(0)
νi

. From this, dξ = dni/νi or dξ/dt = (1/νi)dni/dt. The fundamental equation,

dG = −SdT + V dP +
∑

i µidni, can be rewritten as dG = −SdT + V dP +
∑

i νiµidξ,

or dG = −SdT + V dP − Adξ, where A = −
∑

i µiνi or A = −
(
∂G
∂ξ

)
T,P

. Finally, A =

−∆Grxn = −
∑

i νiµi.

Consider a gas-phase reaction A ⇌ B. If the pressures are low enough, the gases can be
considered ideal gases. Recall that for ideal gases, the chemical potentials are:

µA(T, P ) = µ◦A(T ) +RT log(PA/1 atm)

µB(T, P ) = µ◦B(T ) +RT log(PB/1 atm)

where PA and PB are partial pressures in units of 1 atm.

Inserting these expressions into the expression for
(
∂G
∂ξ

)
gives:(

∂G

∂ξ

)
= µB − µA = (µ◦B +RT logPB)− (µ◦A +RT logPA) = ∆G◦

rxn +RT log
PB
PA

,

where ∆G◦
rxn = µ◦B − µ◦A. Writing Q = PB/PA, this is

∆Grxn = ∆G◦
rxn +RT logQ.
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At equilibrium ∆Grxn = 0, Q is denoted by K, and we have:

∆Grxn = −RT logK +RT logQ = RT log(Q/K).

This expression, together with the second law ∆Grxn ≤ 0, allows us to study the direction
of a reaction.

For a general chemical reaction of the form
∑

i νiAi = 0,, the quantity ∆Grxn ≡
(
∂G
∂ξ

)
=∑

i µiνi, is the Gibbs free energy change of the reaction. Then,(
∂G

∂ξ

)
=∆Grxn =

∑
i

[
µ0i +RT log(Pi/P

◦)
]
νi

=∆G0
rxn +RT

∑
i

νi log(Pi/P
0),

where P ◦ is a reference pressure (usually 1 atm or 1 bar). Then,

∆Grxn = RT log(Q/K),

where

Q =
∏
i

(Pi/P
◦)νi , K =

∏
i

(Pi,eq/P
◦)νi , ∆G0

rxn =
∑
i

νiµ
0
i = −RT log(K).

Recall that although Q has the form of an equilibrium constant, the pressures are not
necessarily at equilibrium.

The quantity ∆G◦
rxn(T ) is the change in standard Gibbs energy for the reaction between

unmixed reactants in their standard states at temperature T and a pressure of one bar to
form unmixed products in their standard states at the same temperature T and a pressure
of P0 (usually, taken to be 1 atm or 1 bar). If all pressures are referenced to 1 bar (or
1 atm), Q is unitless.

From the previous equation,

∆Grxn(T ) = −RT log(K) +RT log(Q) = RT log(Q/K).

We see that:

• At equilibrium, Q = K.

• If Q < K then Q must increase as the system moves toward equilibrium. Partial pres-
sures of the products must increase and those of reactants must decrease. The reaction
proceeds from left to right. In terms of ∆Grxn, if Q < K, then ∆Grxn < 0, indicating
that the reaction is spontaneous from left to right as written.

• If Q > K, then Q must decrease as the reaction proceeds to equilibrium. Pressures of
products must decrease and those of reactants must increase. Equivalently, if Q > K
then ∆Grxn > 0, indicating that the reaction is spontaneous from right to left as written.
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3.10.34. Enthalpy and Entropy Contribute to ∆G◦
rxn. We know that at constant

temperature we have:
∆G◦

rxn = ∆H◦
rxn − T∆S◦

rxn.

Consequently, we may express the equilibrium constant as a product of two contributions,
one from enthalpy and one from entropy:

(3.13) K = exp

(
−∆G◦

rxn

RT

)
= exp

(
−∆H◦

rxn

RT

)
exp

(
∆S◦

rxn

R

)
.

3.10.35. Example 1: Three Components Reaction. The above formula states that
the change in standard Gibbs energy for a reaction is related to the equilibrium constant.
But the latter depends on equilibrium partial pressures. For example,

3NO(g) ⇌ N2O(g) + NO2(g)

has

K =
(PN2O)eq · (PNO2)eq

(PNO)3eq
so (taking P0=1 atm and expressing pressures in units of P0),

∆G◦
rxn = −RT log

(PN2O)eq(PNO2)eq
(PNO)3eq

.

3.10.36. Example 2: Four Components Reaction. For a reaction of the type:

νAA(g) + νBB(g) ⇌ νY Y (g) + νZZ(g),

we have:

∆Grxn =νY µY + νZµZ − νAµA − νBµB

=νY µ
◦
Y (T ) + νZµ

◦
Z(T )− νAµ

◦
A(T )− νBµ

◦
B(T )

+RT

(
νY log

PY
P0

+ νZ log
PZ
P0

− νA log
PA
P0

− νB log
PB
P0

)
,

which can be written in the form:

∆Grxn(T ) = ∆G◦
rxn(T ) +RT logQ,

where
∆G◦

rxn(T ) = νY µ
◦
Y (T ) + νZµ

◦
Z(T )− νAµ

◦
A(T )− νBµ

◦
B(T ),

and

Q =
(PY /P0)

νY (PZ/P0)
νZ

(PA/P0)νA(PB/P0)νB
.

3.10.37. Standard Gibbs Energies of Reactions (Using Tabulated Values). Stan-
dard entropies (∆S◦

rxn) and enthalpies (∆H◦
rxn) of reactions can be combined to obtain the
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standard Gibbs energy of a reaction, ∆G◦
rxn = ∆H◦

rxn − T∆S◦
rxn (valid for constant tem-

perature). The standard Gibbs energy of a reaction is the difference in standard molar
Gibbs energies of the products and reactants in their standard states at the temperature
specified for the reaction as written.

In Oxtoby [9], what we denote here as µ0i is called standard Gibbs energy of formation and
denoted ∆G◦

f . Appendix D of your book can be used to calculate equilibrium constants;
e.g.

νAA+ νBB → νY Y + νZZ

has
∆G◦

rxn = νY∆G
◦
f [Y ] + νZ∆G

◦
f [Z]− νA∆G

◦
f [A]− νB∆G

◦
f [B].

where the values for the ∆G◦
f [Y ] can be looked up in tables.

The standard Gibbs energy of formation of a compound is the change of Gibbs free
energy that accompanies the formation of 1 mole of a substance in its standard state from
its constituent elements in their standard states (the most stable form of the element at 1
bar of pressure and the specified temperature, usually 298.15 K or 25◦C). Standard Gibbs
energies of formation are tabulated. See Appendix D of Oxtoby [9] for such a list.

In terms of the standard Gibbs energies of formation, ∆G◦
f :

∆G◦
rxn =

∑
I∈prod.

νI(∆G
◦
f )I −

∑
J∈react.

νJ(∆G
◦
f )J .

Example: To calculate the standard Gibbs energy of the reaction

CO(g) + 1
2O2(g) → CO2(g)

at 25◦C. Looking up tabulated values for each substance in Appendix D, we write:

∆G◦
rxn =∆G◦

f (CO2, g)−
{
∆G◦

f (CO, g) +
1
2∆G

◦
f (O2, g)

}
=− 394.4 kJ/mol−

{
(−137.2) + 1

2(0)
}

kJ/mol

=− 257.2 kJ/mol

3.10.38. Adiabatic Decompression. The process of adiabatic decompression is used
for cooling gases. The principle is illustrated in Fig. 3.25. In the equations below, ‘1’ refers
to the ‘initial’ state and ‘2’ refers to the ‘final’ state. Step 1 uses the law for isothermal
compression (see Section 3.3.6):

∆W = −nRT log

(
V2
V1

)
with ∆U = 0 for an ideal gas (isothermal process), so that ∆Q = ∆W . The second step
uses the law for adiabatic expansion:

T1V
γ−1
1 = T2V

γ−1
2 .
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Problem: Derive the law for adiabatic expansion.

Problem: Explain how this leads to cooling.

Piston

cylinder

Heat 
transferred 
to cooling 

water

Piston

cylinder

Heat 
insulation 

added

Piston

cylinder

Gas cools, 
as heat 
cannot 
re-enter

Figure 3.25. Adiabatic decompression leads to cooling of gas.

3.11. Electric and Magnetic Work

Can electric and magnetic fields generate work? In this section we look at the case of
electrical charges subjected to the influence of electric and magnetic fields. This material
is standard and can be found in most textbooks of electrodynamics, e.g. see Griffith [15]
or Jackson [16]. In electrodynamics, the electric field is denoted E. There is an associated
quantity called the electric displacements, denoted D. An applied electric field gives rise
to a polarization P (molecules develop an induced dipole moment). These three fields are
related by:

D = ϵ0E+P.

In linear media, D = ϵE, where ϵ is the dielectric constant of the linear medium. The
corresponding magnetic quantities are B (magnetic induction), H (magnetic field) and M
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magnetic polarization or magnetization. Magnetic polarization is magnetic moment (m⃗)
per unit volume: m⃗ = vol ·M. Similarly, p⃗ = vol ·P for the electric dipole moment. The
magnetic moments align when an external magnetic field is applied. These three fields are
related by:

H =
1

µ0
B−M.

In linear media, we have H = 1
µB, where µ is the magnetic permeability of the medium.

E and B are the fundamental fields because they determine the force on electric charges
according to the Lorentz force law:

F = q(E+ v ×B).

H and D are called auxiliary fields.

3.11.1. Derivation. Upon first reading, you may skip this section, which is provided for
completeness and whose details are not essential to the development of thermodynamical
relations. We start with the Lorentz force,

F = q(E+ v ×B).

Take the dot product23 with dl, an element of length:

F · dl = q(E+ v ×B) · dl.
We replace dl by vdt, where v is the velocity of electric charges, then divide by dt to
get dW/dt, the rate of change in the work (why we use the rate of change will be clear
later, as the Poynting vector emerges). Also, because electric charge is possibly distributed
elsewhere in space, we really should replace q by a charge density, ρ, and integrate over
volume to get the total work (and use J = ρv):

(3.14)
dW

dt
= −

∫
vol
ρ(E+ v ×B) · v d3r = −

∫
vol
ρE · v d3r = −

∫
vol

E · J d3r.

The negative sign appears because we are calculating the work done on the charge against
the action of the field (see Jackson [16], Chapter 1).

The magnetic force term dropped out because the triple product24 (v ×B) · v vanishes, as
two of its vectors are parallel. However, this does not mean that the magnetic field does
not play a role. Let us look at the current density, J. We can obtain an expression for
E · J by invoking Ampère’s law:

∇×H = J+
∂D

∂t
.

23The dot product is defined in Section ??.
24A triple product, (A×B) · C, is a scalar (number) which equals to the volume generated by the three vectors
A,B,C. When any two vectors are parallel, the volume is zero.
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Take the dot product with E:

(3.15) E · J = E · (∇×H)−E · ∂D
∂t

.

Next, we use the identity,25

H · (∇×E)−E · (∇×H) = ∇ · (E×H),

in which we substitute Faraday’s law

∇×E = −∂B
∂t
,

to get

(3.16) −H · ∂B
∂t

−E · (∇×H) = ∇ · (E×H).

In Eq. (3.15), we replace E · (∇×H) by Eq. (3.16), to get:

E · J = −H · ∂B
∂t

−∇ · (E×H)−E · ∂D
∂t

.

Substituting this expression into Eq. (3.14), we get:

(3.17)
dW

dt
= −

∫
vol

(
−H · ∂B

∂t
−∇ · (E×H)−E · ∂D

∂t

)
d3r.

The middle term can be converted to a surface integral using the Gauss divergence theorem:

(3.18)
dW

dt
=

∫
vol

(
H · ∂B

∂t
+E · ∂D

∂t

)
d3r+

∫
∂vol

(E×H) · ds.

In linear media, B = µH and D = ϵE, and we can write this as:

(3.19)
dW

dt
=

d

dt

∫
vol

1

2
(H ·B+E ·D) d3r+

∫
∂vol

(E×H) · ds.

The first integral is the total energy stored in the electromagnetic fields. The first term
represents the rate of change in the total energy stored. The quantity

WEH =
1

2
(H ·B+E ·D)

is the energy density of the electromagnetic field. The second term describes the transport
of energy in and out of the volume (vol), through the surface ∂vol. The vector S ≡ E×H is
called the Poynting vector. The Poynting vector is relevant in cases where electromagnetic
radiation is present.

25This can be verified as follows:

∇ · (E×H) = ∂i(ϵinmEnHm) = ϵinm(∂iEn)Hm + ϵinmEn(∂iHm) = H · (∇×E)−E · (∇×H),

where in the second term we have used ϵinm = ϵnmi = −ϵnim.
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The first term in Eq. (3.19) can also be written as (for linear media):

(3.20) dW =

∫
vol

d
1

2

(
B2/µ+ ϵE2

)
d3r =

∫
vol

1

2

(
µ−1B · dB+ ϵE · dE

)
d3r.

If the fields E and B are spatially uniform (over the volume vol), integration over the
volume yields a factor vol. Then, the total energy differential is:

dW = vol
(
µ−1B · dB+ ϵE · dE

)
.

This is often written as:

(3.21) dW = vol (H · dB+E · dD) .

Note: some authors go directly from Eq. (3.18) to

dW =

∫
vol

(H · dB+E · dD) d3r+ dt

∫
∂vol

(E×H) · ds.

This implies elimination of the time parametrization

(3.22)
∂B

∂t
dt→ dB,

∂D

∂t
dt→ dD.

Since B and D are functions of position and time, their total derivatives are:

dB =
∂B

∂r
· dr+ ∂B

∂t
dt, dD =

∂D

∂r
· dr+ ∂D

∂t
dt.

Thus, the substitution (3.22) can only be justified if spatial variations of B and D are
small (i.e. ∂B

∂r ≈ 0 and ∂D
∂r ≈ 0) or if vol is sufficiently large so that edge effects (spatial

non-uniformities) contribute negligibly to the volume integral.

3.11.2. Magnetic and Electric Polarizations. In Eq. (3.21), namely dW = vol (H · dB+E · dD),
only the fields E,D,B,H appear. When we derived Eq. (3.21), we could have just as easily
written instead (reader should check this):26

dW = vol (B · dH+D · dE) .

26Check also that substituting, B = µ0H+M and D = ϵ0E+P into dW = vol (H · dB+E · dD) yields:

dW =vol (H · d(µ0H+M) +E · d(ϵ0E+P))

=vol [(µ0H · dH+ ϵ0E · dE) +H · dM+E · dP]

=vol

[
1

2
d
(
µ0H

2 + ϵ0E
2
)
+H · dM+E · dP

]
It’s a matter of convenience which set of independent variables one uses. However, m⃗ = vol ·M and p⃗ = vol ·P are

extensive variables whereas H and E are intensive. We recall from Section 3.4.7 that work differentials are of the

form δW = (intensive quantity)× d(extensive quantity). Thus, the correct form is:

dW = vol

[
1

2
d
(
µ0H

2 + ϵ0E
2
)]

+H · dm⃗+E · dp⃗.
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It would be desirable to decompose the contributions of the external and internal fields.
Since B = µ0H+M and D = ϵ0E+P, we have:

dW =vol ((µ0H+M) · dH+ (ϵ0E+P) · dE)

=vol [(µ0H · dH+ ϵ0E · dE) +M · dH+P · dE]

A useful approximation can be obtained by decomposing the fields E,H as the sum of
externally applied fields (subscript 0) and any additional fields (subscript dm)27 arising
after introduction of the sample in the external field:

H = H0 +Hdm, E = E0 +Edm.

The dm fields are usually very small compared to the externally applied fields: ∥Hdm∥ ≪
∥H0∥ and ∥Edm∥ ≪ ∥E0∥. In this approximation the expression for work reduces to:28

(3.23) dW = vol

[
1

2
d
(
µ0H

2
0 + ϵ0E

2
0

)
+M · dH0 +P · dE0

]
.

The advantages of this expression are two-fold:

(1) The terms are broken down into two parts: the energy required to create29 the
external field (the µ0H

2
0 + ϵ0E

2
0 term), and the energy required to realign the

external fields (the M · dH0 +P · dE0 term).

(2) For the M · dH0 + P · dE0, we see that the external fields (H0 and E0) are the
control parameters. This is better representative of real experimental conditions,
where the experimentalist controls the external fields rather than the polarization
fields inside the material.

3.11.3. Linear Media, Curie’s Law. The internal energy differential with electromag-
netic work, Eq. (3.23), reads:

dU = δQ+ vol

[
1

2
d
(
µ0H

2
0 + ϵ0E

2
0

)
+M · dH0 +P · dE0

]
.

In paramagnetic materials, the Curie-Weiss law holds,

M = χH, χ =
C

T
,

where C is a material-dependent constant. In dielectric materials a similar law often holds,

P = χeϵ0E = αE,

27An example of field perturbation is the demagnetizing field associated with magnets.
28The factor of 1

2
arises because we used HdH = 1

2
dH2.

29Energy is required to bring the charges and currents required to create the fields.
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where α is a material-dependent constant called the polarizability (see Section ?? and
Table ??). Under these circumstances30, we have:

dU =δQ+ vol

[
1

2
d
(
µ0H

2
0 + ϵ0E

2
0

)
+

1

2
d

(
C

T
H2

0 + αE2
0

)]
=δQ+

vol

2
d

[
(µ0 +

C

T
)H2

0 + (ϵ0 + α)E2
0

]
The term C/T is much larger than µ0;

31 thus, we neglect the µ0 term.

3.11.4. Adiabatic Demagnetization. Adiabatic demagnetization (W.F. Giauque) can
be used for cooling (Fig. 3.26) in a process that is analogous to adiabatic decompression
(Section 3.10.38) but instead involves the spin degrees of freedom of paramagnetic salts.32

Adiabatic demagnetization33 of a paramagnetic salt is a two-steps sequence that enables
cooling below 1 K. Temperatures around 1 mK have been reached. The steps are: (1)
isothermal magnetization followed by (2) adiabatic demagnetization (Fig. 3.26):

(1) Isothermal magnetization (thermal contact with cold He gas). At time zero,
spins in the paramagnetic salt are randomly oriented (disordered state). The sys-
tem undergoes isothermal demagnetization in the presence of a strong magnetic
field. The entropy of the spin system decreases, as the spins align with the mag-
netic field (ordered state). While the final temperature is unchanged, heat is lost
to the surroundings in order to dissipate the entropy. (Lowering the temperature
would also lead to alignment of the spins.)

(2) Adiabatic demagnetization (He gas pumped away; no thermal contact with
He). Next, heat transfer is stopped (paramagnetic salt is insulated) and the
external field is turned off, leading the spins to randomly reorient. However,
the temperature has decreased. While heat transfer outside the system is not
allowed, heat can be transferred between spin and lattice. However, the lattice
entropy is much lower than the spin entropy. The total entropy of the isolated

30The conditions include: Curie law, linear media, and approximating H ≈ H0 and E ≈ E0.

31For those interested in a justification of this approximation: The Curie constant is given by
µ0µ

2
B

3kB
Ng2J(J + 1),

where J is the total angular momentum quantum number of the paramagnetic atoms, g is the Landé factor, g =

1 +
J(J+1)+S(S+1)−L(L+1)

2J(J+1)
(S: spin, L: orbital, J : total angular momenta). For an electron spin, g ≈ 2. N is

the density of magnetic atoms (10-100 ×1027 atoms/m3 for solids). µB is the Bohr magneton (9.274 ×10−24 J/T).

Plugging these typical values at room temperature gives C/T ≈ 103µ0, which is much larger than µ0. In adiabatic
demagnetization experiments, the temperature is typically much lower (liquid helium), so the approximation is well
justified.
32The isothermal compression of a gas (we apply pressure and the entropy decreases) is analogous to the isothermal
magnetization of a paramagnet or a soft ferromagnet: we apply an external magnetic field and the magnetic entropy

decreases. The subsequent adiabatic expansion of a gas (we lower pressure at constant entropy and temperature
decreases) is equivalent to adiabatic demagnetization (we remove the external field, the total entropy remains constant
and temperature decreases since the magnetic entropy increases).
33Giauque Nobel prize lecture:

http://www.nobelprize.org/nobel prizes/chemistry/laureates/1949/giauque-lecture.pdf
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system (paramagnetic salt) has not changed much, since heat was not allowed to
transfer (dS=δQ/T ≈ 0).

B=0

B=1

Isothermal process (T=constant)

Adiabatic process (S=constant)

B=1

B=0

S=high S=low

T=high T=low

Figure 3.26. Adiabatic demagnetization. The first step involves turning on a magnetic
field at constant temperature. The spins align with the magnetic field, reducing the
entropy. In the second step, the entropy is held constant while the field is turned off.
Since the entropy remains constant, the only possible outcome left to compensate for the
loss of magnetic field is for the temperature to decrease.

Let us see how this two-step process could possibly work (Fig. 3.27). Our starting point is
Eq. (3.23). Let us take the “system” as the paramagnetic salt plus electromagnetic coils
as well as the surrounding helium (liquid helium bath plus helium gas in contact with the
salt). This forms an isolated system. For isolated systems, the change in internal energy
is zero (dU = 0). During isothermal magnetization, heat is allowed to exchange between
the helium and the salt in order to maintain the salt temperature constant:

δQHe = −δQsalt.

If the process is reversible and isothermal,

THedSHe = −TsaltdSsalt,
we have THe = Tsalt ≡ T and dSHe = −dSsalt. The entropy in the context of heat transfer is
the lattice entropy (random atomic motions). The paramagnetic salt also has spin entropy,
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which does not exchange with the helium in any way because no exchange mechanism
exists34.

S

0 T

H=0

H≠0

Figure 3.27. Process of adiabatic demagnetization. During isothermal magnetization,
the entropy of the spins is lowered. During adiabatic demagnetization, entropy remains
constant but temperature decreases.

The total salt entropy should be viewed as the sum of lattice (L) and spin (S) contributions:

dSsalt = dSLsalt + dSSsalt.

Our previous statement δQHe = −δQsalt refers to the lattice contributions because heat
can only be transferred via lattice motions. We are left with a non-vanishing TdSSsalt term

describing changes in the spin entropy. (TdSSHe = 0 because helium is not magnetic.) The
physical origin of dSSsalt is the alignment of the magnetic moments of the paramagnetic salt
due to the ramping up of the magnetic field.

The first law then reads (with E0 = 0 and neglecting the µ0 term):

dU = 0 = TdSSsalt +
vol

2
d

[
C

T
H2

0

]
.

During isothermal magnetization, the field is ramped up from 0 to some value H. The spin
entropy decreases by an amount proportional to (H/T )2:

∆SSsalt =

∫
dSSsalt = SSsalt(H)− SSsalt(0) = −vol

2
C

(
H

T

)2

.

During adiabatic demagnetization, the entropy remains constant since δQ = TdS = 0.
The field is ramped down from H to Hint, where Hint is the internal magnetic field due to
coupling to neighboring magnetic moments. If the entropy is proportional to (H/T )2, the

34For spin entropy to exchange, we would need a spin-spin coupling mechanism, which does not exist here.
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condition of the initial entropy to equal the final entropy:

SSsalt(initial) = const×
(
H

Ti

)2

= SSsalt(final) = const×
(
Hint

Tf

)2

,

leads to:

Tf = Ti

(
Hint

H

)
.

The internal field is typically on the order of a few Gauss (10−4 T). The external field (H)
is on the order of a Tesla. Therefore, cooling by 3-4 orders of magnitude is possible.

3.12. Problems

Problem 93. We have seen that the standard Gibbs free energy of a reaction, ∆G◦
rxn,

is given as a sum of standard Gibbs energy of formation, for each reactant and products
(with reactants taken as negative):

∆G◦
rxn =

∑
i

νi(∆G
◦
f )i

where the sum i runs over all reactants and products. (a) Prove that this formula follows
from the fact that dG is an exact differential. (b) Using only the formula from (a) and the
relationship between G, H and S, prove also that:

∆H◦
rxn =

∑
i

νi(∆H
◦
f )i, ∆S◦

rxn =
∑
i

νiS
◦
i

where S◦
i and (∆H◦

f )i are the entropies (absolute) and enthalpies of formation for species
i, respectively. ∆H◦

rxn and ∆S◦
rxn are the standard enthalpy and entropy changes for the

reaction.

Solution. (a) ∆G◦
rxn =

∑
i νi(∆G

◦
f )i follows from the fact that G is a state function, i.e.

∆G =
∫ products
reactants dG. Integrate along the following path: Destroy all reactants one by one

(order is unimportant) and Form all the products one by one (order is unimportant). Each
molecule destroyed and formed contributes a term in the summation (with appropriate
sign).

(b) First we have the basic relationship from thermodynamics (constant T ), ∆G◦
rxn =

∆H◦
rxn − T∆S◦

rxn. Each term in the summation ∆G◦
rxn =

∑
i νi(∆G

◦
f )i, we view (∆G◦

f )i
as a small increment dGi that contributes to the integral, for which we apply the following
decomposition dGi = dHi − TdSi. Let’s call each term dHi ≡ (∆H◦

f )i and dSi ≡ S◦
i ,

respectively. This gives the decomposition

∆G◦
rxn =

∑
i

νi(∆G
◦
f )i =

∑
i

νi(∆H
◦
f )i − T

∑
i

νiS
◦
i .
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And since ∆G◦
rxn = ∆H◦

rxn − T∆S◦
rxn, in the limit T → 0, the second term vanishes, we

have ∆G◦
rxn = ∆H◦

rxn and ∆G◦
rxn =

∑
i νi(∆H

◦
f )i. Therefore,

∆H◦
rxn =

∑
i

νi(∆H
◦
f )i.

Taking the limit T → ∞, the first term is negligible compared to the second term, leaving
only ∆G◦

rxn = −T∆S◦
rxn and ∆G◦

rxn = −T
∑

i νiS
◦
i . It follows that:

∆S◦
rxn =

∑
i

νiS
◦
i .

■

Problem 94. Hess’s law states that the total enthalpy change during the complete course
of a reaction is the same whether the reaction is made in one step or in several steps.
Mathematically, the statement of Hess’s law, as pertains to the net or overall reaction, is:

∆H◦
rxn =

∑
I∈products

νI(∆H
◦
f )I −

∑
J∈reactants

νJ(∆H
◦
f )J ,

where the reaction is the net reaction. The summation is over all reactants (products)
in the net equation. (∆H◦

f )I is called enthalpy of formation (of species I) and νI is the

stoichiometric coefficient of species I. (Here, νI and νJ are all positive.) When the condi-
tions are standard, the enthalpy of formation is denoted as (∆H◦

f )I (standard enthalpy of

formation).

(a) Prove that Hess’s law is a consequence of the fact that H is a state function (dH is an
exact differential), i.e. it does not depend on the path taken to get from the reactants to
the products. Prove that the above statement for the net reaction is entirely equivalent to
summing up reaction enthalpies from individual reactions:

∆H◦
rxn =

∑
i∈reactions

∆H◦
rxn(i),

where ∆H◦
rxn(i) denotes the net (overall) reaction enthalpy of the i-th reaction. The sum

runs over all reactions that make up the net reaction. Suppose that we have two concurrent
reactions taking place:

C(s, gr) + O2(g) → CO2(g), ∆H◦
rxn(1) = −393.5 kJ

CO2(g) → CO(g) + 1
2O2(g) ∆H◦

rxn(2) = +283.0 kJ.

(b) Apply Hess’s law to obtain ∆H◦
rxn for the net reaction.

Solution. (a) Hess’s law follows from ∆H◦
rxn =

∫ products
reactants dH

◦
rxn and choosing a path in

the net reaction that destroys all reactant molecules regardless of order (destruction im-
plies a negative sign) and creates all product molecules (without regards to order). This
is equivalent to summing over all reactions: because H is a state function, the value of
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∆H◦
rxn is the same, regardless of the choice of path. Here, we choose a different path, which

takes us through all reactions one by one. This is entirely equivalent, because the chemical
reaction is treated as an equation; multiple reactions are added to give the net reaction.
The integral is a linear operator, hence, it is applied to each term in the summation (and
the summation is identical whether we look at the net reaction or the sum of individual
reactions).

(b) The net reaction (and net enthalpy change) is the sum:

C(s, gr) + 1
2O2(g) → CO(g) ∆H◦

rxn = ∆H◦
rxn(1) + ∆H◦

rxn(2) = −110.5 kJ.

■

Problem 95. METHOD OF BOND ENTHALPIES. In chemical reactions, bonds are
broken and new ones are formed. Think about reactants: one way to consume reactants
is to destroy all the chemical bonds of all reactants, until atoms are separate. On the
products side: to form the product molecules, we assemble the atoms together and create
a number of chemical bonds. There is an energy associated with breaking and forming
these bonds. It is possible to use this information to estimate the enthalpy change ∆H◦

rxn

of a reaction, which can be calculated from:

∆H◦
rxn =

∑
I∈bonds
broken

∆H◦
I −

∑
J∈bonds
formed

∆H◦
J ,

where ∆H◦
I is the energy absorbed when a particular bond is broken and ∆H◦

J is the
energy released when a bond is formed. (a) Prove that this restatement of Hess’s law is
entirely equivalent to the one in Problems 1 and 2. (b) Prove also that this new statement
follows from the fact that H is a state function (and dH is an exact differential). (c)
Consider the following example on cracking of propane (thermal decomposition, ∆H◦

rxn > 0
endothermic) to make ethene (Fig. 3.28).

C C C HH

H

HHH

HH

+C C
H

H

H

H
C

H
H
H

H

Figure 3.28. Method of bond enthalpy illustrated.

Here is some data on average bond enthalpy (units are kJ/mol)

C−H bond: +415
C− C bond: +345
C = C bond: +611
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Add up all the energies of the broken bonds; add up all the energies of the bonds that are
reformed and subtract one from the other. Show that ∆H◦

rxn = 4, 010−3, 931 = 79 kJ/mol.
(Hint: 10 bonds must be broken on the reactants side to consume the reactants, whereas
9 bonds must be formed on the products side to synthesize the needed products.)

Solution. (a) This reformulation of Hess’s law is justified by the choice of path, which
here involves destroying molecules or forming them, one chemical bond at a time. (This is
longer, and involves more steps, but the end result is the same, i.e. the value of ∆H◦

rxn is
identical.)

(b) This follows from the fact that dH is an exact differential because the original Hess’s
law is also based on this fact. And since the two are equivalent, the proof follows.

(c) We have, for the left hand side (bonds broken):

2 C− C 2× 345 =690

8 C−H 8× 415 =3, 320

These energies add up to a total of 4,010 kJ/mol.

For the right hand side (bonds formed),

1 C = C 1× 611 =611

8 C−H 8× 415 =3, 320

for a total of 3,931 kJ/mol. The net difference between reactant bonds destroyed and
product bonds formed is:

∆H◦
rxn = 4, 010− 3, 931 = 79 kJ/mol.

■

Problem 96. (e) Is it really necessary to completely break down all bonds and reform
them or can you find a short-cut to computing ∆H of the reaction without having to
completely take apart all molecules and reform them (including reforming the same bonds
that were broken!)? Reformulate the statement for the method of bond enthalpies with
this short-cut in mind.

Solution. No, it is not necessary to break ALL the bonds and reform them. When we
break a bond and reform it, there is no net change in this particular bond, so why bother
breaking and reforming it? Such pairs of events can be discounted because they cancel each
other out. In other words, for a given reaction (reactants + products), the initial conditions
(reactants) and final conditions (products) are fixed regardless of the path (from reactants
to products) we choose. Instead of the ‘long path” (that involves breaking ALL bonds),
we can instead choose a shorter path that does not involve destroying ALL bonds. Instead
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we may limit the breaking and forming of bonds to the bare minimum necessary. In real
reactions, not all bonds in all reactants are broken; only a small number of bonds are
broken. ■

Problem 97. Prove the following formula

d(∆G) = (∆V )dP − (∆S)dT,

which allows us to calculate how ∆G varies with temperature and pressure. ∆G =
∫
dG

denotes a change in G, for example, ∆G = G(products)−G(reactants) being one possible
application. (Note: we have not derived this formula in class; the fundamental equation of
thermodynamics (1st law) was given in terms of G, not ∆G.)

Solution. Apply the fundamental equation, dG = V dP − SdT , twice, once to all the
reaction products collectively, G(products), and once to all the reactants collectively,
G(reactants):

dGprod = VproddP − SproddT, dGreact = VreactdP − SreactdT

dGprod − dGreact =d(Gprod −Greact) = d(∆G)

=(Vprod − Vreact)dP − (Sprod − Sreact)dT = (∆V )dP − (∆S)dT.

■

Problem 98. Consider the reaction CuBr2(s) ⇌ CuBr(s) + 1
2 Br2(g, 1 atm). (a) In what

direction does this reaction proceed at 300 K and 1 atm pressure? At 300 K, 1 atm, the
following data is available from tables:

∆H◦
f kcal/mol S◦300 K cal/mol/K

CuBr2(s) -33.2 30.1
CuBr(s) -25.1 21.9
Br2(g, 1 atm) +7.34 58.64

Solution. The favored direction of reaction will be indicated by the sign of ∆G◦
300, to

calculate which we need only determine ∆H◦
300 and ∆S◦

300 for the reaction.

∆H◦
300 =(∆H◦

f )CuBr +
1
2(∆H

◦
f )Br2 − (∆H◦

f )CuBr2

=− 25.1 + 3.67− (−33.2) = +11.8 kcal/mol.

∆S◦
300 =(S◦

300)CuBr +
1
2(S

◦
300)Br2 − (S◦

300)CuBr2

=+ 21.9 + 29.32− 30.1 = +21.1 kcal/mol.

∆G◦
300 = ∆H◦

300 − T∆S◦
300 = 11, 800− (298)(21.1) = 5500 cal/mol = 5.5 kcal/mol

Not rightward, but rather, leftward progress of the reaction is thus strongly favored at
300 K, and will reduce the Br2 pressure far below 1 atm. ■
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Problem 99. (b) For the previous reaction, at what temperature will the three substances
coexist at equilibrium under a pressure of 1 atm?

Solution. At whatever temperature (T ) the three substances coexist at 1 atm pressure,
we will have ∆H◦

T − T∆S◦
T = ∆G◦

T = 0. Noting that ∆H◦ and ∆S◦ are the same in sign,
we essay the approximation in which the two terms are treated as substantially constant
over the temperature range concerned. In that case,

∆H◦
T ≈ ∆H◦

300 = 11.8 kcal/mol

∆S◦
T ≈ ∆S◦

300 = 21.1 kcal/mol.K

and then
11, 800− T (21.1) = ∆G◦

T = 0, T = 11, 800/21.1 = 560◦ K.

■

Problem 100. (a) Which is the more stable form of carbon at 300 K and 1 atm pressure,
diamond or graphite? (b) At 300 K, what pressure would be required to form diamond
(density, 3.5 g/ml) from graphite (density, 2.25 g/ml)? (c) How can you be confident of
the soundness of this entire mode of analysis? Some relevant data are as follows:

Heat capacity data yield for diamond (300 K), S
◦
300 = 0.58 cal/mol.K, where S = −(dG/dT )P

and G is the molar Gibbs free energy.

Heat capacity data yield for graphite (300 K), S
◦
300 = 1.37 cal/mol.K

For C(graphite) → C(diamond), ∆S
◦
300 = -0.79 cal/mol.K

On combustion: C(graphite) + O2 ⇌ CO2, ∆H
◦
300 = -94.03 kcal.

On combustion: C(diamond) + O2 ⇌ CO2, ∆H
◦
300 = -94.48 kcal.

For C(graphite) → C(diamond): ∆H
◦
300 = +450 cal/mol.

And the given densities imply:

For diamond: gram-atomic volume = 12/3.5 = 3.4 ml/gr-atom. (Note: Gram atomic mass
is another term for the mass, in grams, of one mole of atoms of that element. “Gram atom”
is a former term for a mole of substance (expressed in grams). Example: gram atomic mass
of Hydrogen is mass of 1 mole atoms =1.008 grams.)

For graphite: gram-atomic volume = 12/2.25 = 5.3 ml/gr-atom.

For C(graphite) → C(diamond): ∆V 300 = -1.9 ml/gr-atom, where V = (dG/dt)T .

Solution. (a) For the reaction C(graphite) → C(diamond),

∆G
◦
300 = ∆H

◦
300 − T∆S

◦
300 = 450− 300(−0.79) = +685 cal/mol

At room temperature and atmospheric pressure, the favored direction of reaction is thus the
inverse change of diamond into graphite. Under ordinary conditions diamond is therefore
a thermodynamically unstable species, which exists only because of the extreme slowness
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of its conversion into the more stable graphite.

(b) At atmospheric pressure the reaction C(graphite) → C(diamond) is characterized by

∆G
◦
300 > 0. But with ∆V < 0 in this reaction, a sufficient rise of pressure should change

the sign of ∆G and, hence, the favored direction of reaction at 300 K. For consider that
the effect of a change of pressure at constant temperature will be given by the following
reduced form

d(∆G) = ∆V dP.

If we approximate by treating ∆V as constant (=-0.0019 lit) over the entire pressure range
involved, the last equation can easily be integrated. For the upper limit we choose that
pressure (P ∗) at which ∆G

◦
300 = 0, i.e. the pressure under which diamond and graphite

stand in equilibrium with each other at 300 K. For the lower limit we use the standard
pressure of 1 atm, at which we have just found ∆G

◦
300 = +685 cal/mol. However, with

∆V in liters and pressure in atmospheres, the appropriate unit for ∆G is not calories but
lit-atm (1 lit-atm = 101.325 J). Multiplication by the factor 0.0413 converts a-figure in

calories to one in lit-atm, so that ∆G
◦
300 = 0.0413(685) = 28.3 lit atm. We have then,∫ 0

28.3
d(∆G) = −0.0019

∫ P ∗

1
dP,

0− 28.3 = −0.0019(P ∗ − 1),

P ∗ ≈ 15, 000 atm.

At 25◦C diamond and graphite would stand in equilibrium under a pressure of 15,000 atm.
At still higher pressures graphite becomes thermodynamically unstable, and its conversion
into diamond is then possible in principle, though so slow in practice as to be wholly un-
detectable.

(c) Since at room temperature no equilibrium of graphite with diamond ever is attained in
practice, there remains room for skepticism that we have correctly calculated what would
be the equilibrium condition. But, given expressions for ∆H and ∆V as functions of tem-
perature and pressure, by integration of equation d(∆G) = ∆V dP , we can calculate that
the equilibrium pressure is of the order of 75,000 atm at 1500◦K. And here the soundness
of our calculation is attested by an unmistakable production of diamond from graphite at
pressures that exceed the equilibrium pressure. ■

Problem 101. Iron has a heat capacity of 25.1 J K−1 mol−1, approximately independent
of temperature between 0◦C and 100◦C.
(a) Calculate the enthalpy and entropy change of 1.00 mol iron as it is cooled at atmospheric
pressure from 100◦C to 0◦C.
(b) A piece of iron weighing 55.85 g and at 100◦C is placed in a large reservoir of water
held at 0◦C. It cools irreversibly until its temperature equals that of the water. Assuming
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the water reservoir is large enough that its temperature remains close to 0◦C, calculate the
entropy changes for the iron and the water and the total entropy change in this process.

Solution. a)

∆HFe =ncP∆T = (1.00 mol)(25.1 J K−1 mol−1)(273.15− 373.15 K)

=− 2510 J = −2.51× 103 J

∆SFe = ncP log
Tf
Ti

= (1.00 mol)(25.1 J K−1 mol−1)log
273.15

373.15
= −7.83 J K−1

b) The entropy S is a function of state, and the initial and final states of the piece of iron
are the same as in part a). Therefore, ∆SFe = -7.83 J K−1. The reservoir of water gains
the 2510 J of heat from the piece of iron at a constant temperature of 273.15 K. Therefore
∆Swater = 2510 J/273.15 K = +9.19 J K−1.

∆Stotal = ∆SFe +∆Swater = 1.36 J K−1

■

Problem 102. (a) Use data from Appendix D from Oxtoby [9] to calculate ∆H◦ and ∆S◦

at 25 ◦C for the reaction

2CuCl2(g) ⇌ 2CuCl(s) + Cl2(g)

(b) Calculate ∆G◦ at 590 K, assuming ∆H◦ and ∆S◦ are independent of temperature.
(c) Careful high-temperature measurements show that when this reaction is performed at
590 K, ∆H◦

590 is 158.36 kJ and ∆S◦
590 is 177.74 J K−1. Use these facts to compute an

improved value of ∆G◦
590 for this reaction. Determine the percentage error in ∆H◦

590 that
comes from using the 298-K values in place of the 590-K values in this case.

Solution. a) The reaction of interest is

2CuCl2(s) → 2CuCl(s) + Cl2(g)

Text Appendix D supplies ∆H◦
f and S◦ values at 298 K for the computation of ∆H◦

298 and
∆S◦

298

∆H◦
298 = 2(−137.2) + 1(0)− 2(−220.1) = 165.8 kJ

∆S◦
298 = 2(86.2) + 1(222.96)− 2(108.07) = 179.2 J K−1

b)
∆G590 ≈ ∆H◦

590 − T∆S◦
590 = 165.8 kJ− (590 K)(0.1792 kJ K−1) = 60.1 kJ

c) Use the experimental values at 590 K instead of the values at 298.15 K

∆G590 = ∆H◦
590 − T∆S◦

590 = 158.36 kJ− (590 K)(0.17774 kJ K−1) = 53.5 kJ

The answer using ∆H◦
298 and ∆S◦

298 is about 12 % larger than the actual ∆G590. Tip. The
temperature dependence of ∆H◦ and ∆S◦ should not always be neglected. Taking it into
consideration becomes important when the temperature differs a lot from 298.15 K. ■
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Problem 103. Find the Gibbs free energy and the entropy associated with mixing 10 g
of liquid water, 5 g of liquid ethanol, and 1 g of liquid methanol at 298 K?

Solution.
Gi = nH2Oµ

∗
H2O + nEtOHµ

∗
EtOH + nMeOHµ

∗
MeOH

Gf = nH2O(µ
∗
H2O +RT log(XH2O)) + nEtOH(µ

∗
EtOH +RT log(XEtOH))

+ nMeOH(µ
∗
MeOH +RT log(XMeOH))

Gmix = Gf −Gi = nRT (XH2O log(XH2O) +XEtOH log(XEtOH)

+XMeOH log(XMeOH))

Smix = −nR(XH2O log(XH2O) +XEtOH log(XEtOH) +XMeOH log(XMeOH))

nH2O = 0.555 mol, nEtOH = 0.108 mol, nMeOH = 0.0312 mol, n = 0.694 mol

XH2O = 0.800, XEtOH = 0.156, XMeOH = 0.0450

Gmix = −454 J

Smix = 1.52 J/K

■

Problem 104. Find the reaction affinity at constant pressure and temperature for the
following reaction going to completion:

CH3COOH(g) + 2O2(g) → 2CO2(g) + 2H2O(g)

Data: G◦
f (CO2(g)) = −394.36 kJ/mol, G◦

f (H2O(g)) = −228.59 kJ/mol, G◦
f (CH3COOH(g)) =

−374.1 kJ/mol

Solution. ∆Grxn = Gf (products)−Gf (reactants) = 2×G◦
f (CO2(g))+2×G◦

f (H2O(g))−
G◦
f (CH3COOH(g)) = −871.8 kJ/mol

Affinity = −(∂G∂ξ )T,P
Affinity = −∆Grxn = −871.8 kJ/mol ■

Problem 105. For the reaction 2Ca(s)+O2(g)→ 2CaO(s) find the equilibrium constant
at 300 K given that µ◦CaO = -604.17 kJ mol−1 at that temperature. What can you conclude
about the reaction based on the magnitude of the equilibrium constant?

Solution. ∆µ◦ = µ◦CaO(2) - µ
◦
O2

(1) - µ◦Ca(2) = -1208.34 kJ mol−1

∆µ◦ = -RT log K

K = exp[−∆µ◦

RT ]

K = 2.5 × 10210 ■

Problem 106. Assume the reaction N2(g) + 3H2(g)→ 2NH3(g) has taken place in a 2 L
container and has reached equilibrium. There are 0.1 mole of H2(g), 0.15 mole of N2(g),
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and 1.5 moles of NH3(g) present at a temperature of 500 K. Find the change in chemical
potential for the reaction if the equilibrium constant is 0.1744 under the stated conditions.

Solution. µi = µ◦i + RT log(Pi)

∆µ = µ◦NH3
(2) - µ◦H2

(3) - µ◦N2
(1) + RT log (

P2
NH3

P 3
H2PN2

)

Let ∆µ◦ = µ◦NH3
(2) - µ◦H2

(3) - µ◦N2

∆µ◦ = -RT log (K) = 7260 J mol−1

If we treat the gases as ideal then we have:
PH2 = nRT/V = (0.1 mol)(0.08312 L bar mol−1 K−1)(500 K)/(2 L) = 2.0786 bar
PN2 = 3.1179 bar
PNH3 = 31.179 bar

RT log (
P2
NH3

P2
H2PN2

) = (4157.24 J mol1−)(3.55)= 14758 J mol−1

∆µ = 22018 J mol−1 ■

Problem 107. Suppose we have an ideal gas. We double the gas volume by an isothermal
expansion that proceeds (1) reversibly and (2) irreversibly into a vacuum. What is the
change in entropy during this process (1 and 2)?

Solution. (1) For the reversible expansion

∆S = nR log(V2/V1) = (2.30)(1)(1.99) log 2 = +1.38 cal/mol.K.

(2) For the irreversible expansion to the same final state, the entropy change in the gas
must again by +1.38 cal/mol.K. ■

Problem 108. What is the change in entropy of the surroundings when the volume of
an ideal gas is doubled by an isothermal expansion that proceeds (1) reversibly or (2)
irreversibly?

Problem 109. When the volume of an ideal gas is reduced two-fold by a reversible isother-
mal compression, what is the change of entropy of (1) the gas and (2) the surroundings?

Problem 110. Under 1 atm pressure at 279 K, the reversible crystallization of benzene
from its melt is accompanied by an entropy change of -8.53 cal/mol.K. What is the molar
heat of fusion of benzene at its melting point?

Problem 111. The heat capacity at constant pressure (cP ) for carbon monoxide is 7.0
cal/mol.K (ignore temperature dependences). What is the entropy change when a mole of
CO is (1) heated from 100 K to 200 K, or (2) cooled from 1500 K to 750 K?

Problem 112. At 1000 K, 4.49 × 10−2 as many molecules in a sample of carbon monoxide
(CO) are in the first excited vibrational-energy state as in the ground state. How far above
the ground state is the first excited state, in kJ/mol?

Solution. Given T = 1000 K, molecule=CO (carbon monoxide) and N1/N0 = 4.49×10−2

(vibrational energy). Let x=number of molecules in the ground state (vibrational) and
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4.49×10−2x = number of molecules in the 1st excited vibrational state. Using the equation

Ni

Nj
e−(ϵi−ϵj)/kBT = e−∆ϵ/kBT

N1

N0
=

4.49× 10−2x

x
= e−∆ϵ/(1.38×10−23 J/K)(1000 K)

log(4.49× 10−2) =
−∆ϵ

1.38× 10−20 J

(−3.10)(1.38× 10−20 J) = −∆ϵ

∆ϵ = 4.28× 10−20 J

Now, to convert to the final units of kJ/mol.

(4.28× 10−20 J)

(
1 kJ

1000 J

)(
6.022× 1023

1 mol

)
= 25.8 kJ/mol

■

Problem 113. Molecular nitrogen has a vibrational energy hν = 2230 cm−1. A sample
of nitrogen is heated in an electric arc. Spectroscopic methods are used to determine the
relative populations of excited vibrational levels. The results are presented in the table
below

Vibrational level (v) 0 1 2 3 4 . . .

Nv/N0 1.000 0.200 0.040 0.008 0.002 . . .

Use these results in combination with the information about the spacing of vibrational
energy levels to determine whether the nitrogen is in thermodynamic equilibrium with
respect to vibrational energy. In other words, does the vibrational population obey the
Maxwell-Boltzmann distribution law? If so, what is the vibrational temperature of the
gas? Is this value necessarily the same as the translational temperature of the gas? Why
or why not? Hint: try to rearrange the Maxwell-Boltzmann equation appropriate for this
problem so that there is a linear relationship between v and some function of NV /N0. Then
plot the data and calculate the slope.

Solution. Given: molecule is N2(g) and hν = 2230 cm−1. Relative populations of the first
four excited state to the ground state. One way to approach this problem is to rearrange
the Maxwell-Boltzmann distribution (equation) to look like a linear function, graph the
function and calculate T from the slope. We are looking at vibrational energy, so we
use: ϵv = (v + 1/2)hν and Nv/N0 = e−(ϵv−ϵ0)/kBT = e−((v+1/2)hν−(1/2)hν)/kBT , where the

second term in the exponent is from ϵ0 = (0 + 1/2)hν. Therefore, NV /N0 = e−vhν/kBT

Linearize this equation by taking the log of both sides: log(Nv/N0) = −nkν/kBT or
log(NV /N0) = −v(hν/kBT ) which is of the form y = mx.
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V 

log(Nv/N0)

The slope of this line is m = −1.5649 = −kν/kBT . Note: depending on your program and
graphing the data, the slope value may differ from mine. Solving for T , we get: T = 2050K,
which becomes T = 2000 K (1 sig. fig.). The Tv is usually the same as Ttranslational but
doesn’t have to be under certain conditions. ■

Problem 114. A tank is filled with 1000 g of nitrogen at 0.00◦C and 16.0 atm pressure.
The tank is then heated to 50.00◦C and the valve is opened. What is the total mass
(in grams) of the nitrogen that escapes if the external pressure is 1.00 atm. and the
temperature is maintained at 50.00◦C?

Solution. Using PV = nRT we can calculate the volume of the tank from the initial data.
PV = nRT , V = nRT/P , n =?.

n = (1000. g N2(g))

(
1 mol N2(g)

28.00 g N2(g)

)
= 35.714 mol N2(g)

V =
(35.714 mol)(0.08206 L.atm/mol/K)(273.15 K)

16.0 atm
= 50.03 L → 50.0 L

This gas will continue to escape until the internal pressure equals the external pressure of
1.00 atm. The amount of gas remaining in the tank:

n =
PV

RT
=

(1.00 atm)(50.03 L)

(0.08206 L.atm/mol/K)(323.15 K)
= 1.8867 mol N2(g)

(1.8867 mol N2(g))

(
28.00 g N2(g)

1 mol N2(g)

)
= 52.827 g N2(g)

The amount of gas that escaped = 1000. g-52.827 g=947.172 g → 927 g N2(g). ■

Problem 115. The Lennard-Jones potential is as follows: V (r) = 4ϵ[(σ/r)12 − (σ/r)6],
where ϵ and σ are constants. The ϵ corresponds to the potential well depth at the equilib-
rium intermolecular (interatomic) distance. (i.e. where the potential energy is a minimum).
Calculate the intermolecular (interatomic) distance in Å that corresponds to ϵ for a He..He
interaction. Derive an expression in terms of σ for this distance for any atomic/molecular
interaction.

Solution. You might start out by sketching a potential energy curve. From such a graph
we see that the distance we need to calculate occurs at the minimum of the function, so
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one technique to calculate this r is to take the derivative of the function and set it equal
to zero and solve for an r value that makes the derivative equal to zero.

You may also want to find the constants for He.

ϵ = 1.41× 10−22 J, σ = 2.56× 10−10m = 2.56 Å.

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
V (r) = 4ϵσ12r−12 − 4ϵσ6r−6.

dV (r)

dr
= (−12)(4ϵ)σ12r−11 − (−6)(4ϵ)(σ6)(r−5)

= (−6)(4ϵ)(σ)

[
2
(σ
r

)11
−
(σ
r

)5]
= 0

When the square bracket equals zero, dV/dr = 0. Thus, 2(σ11/r11) − (σ5/r5) = 0 and

2(σ11/r11) = (σ5/r5) which gives 2(σ)6 = (r)6 and r = (2σ6)1/6 = σ(2)1/6 = σ(1.122).
This is the general expression in terms of σ for the distance r. Now, plug in σ for He to
obtain the specific answer

e = (2.56 Å)(1.122) = 2.87 Å

for the He...He interaction. ■

Problem 116. The vapor pressures of each component in a mixture of propanone (acetone,
A) and trichloromethane (chloroform, C), were measured at 35◦ C with the following
results:

χc 0 0.2 0.4 0.6 0.8 1.0

PC/torr 0 35 82 142 219 293

PA/torr 347 270 185 102 37 0

Confirm that the mixture ”conforms” to Raoult’s law for the component in large excess
and to Henry’s law for the component that is minor. Estimate the Henry’s law constants,
KA and KC .

Solution. You should graph this data and realize that it shows a general conformity
to Raoult’s law by both components. Both components exhibit a negative deviation to
Raoult’s law. So, at large mole fractions the component obeys Raoult’s law (experimental
data will approach the line) and at small mole fractions the component obeys Henry’s
law. ■

Problem 117. Ethanol (CH3CH2OH) has a normal boiling point, Tb of 78.4◦C. When
46.58 g of Na2SO4 (sodium sulfate) is dissolved in the ethanol (mass = 1000 g) the boiling
point becomes 79.6◦C. Calculate the KB for ethanol (including appropriate units). Assume
the salt completely dissolves in the ethanol and behaves as a strong electrolyte.
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Solution. We will use: ∆Tb = Kb ·m. The solute, Na2SO4 has a molar mass of 142.04 g/-
mol. There is 1000 g of solvent (1.000 kg solvent). Therefore, the molality can be calculated.
Strong electrolyte:

Na2SO4︸ ︷︷ ︸
1 mol

→ 2Na+︸ ︷︷ ︸
2 mol

+SO2−
4︸ ︷︷ ︸

1 mol︸ ︷︷ ︸
3 mol

(46.58 g Na2SO4)

(
1 mol Na2SO4

142.04 g Na2SO4

)
= 0.3279 mol Na2SO4 × 3

= 0.9837 mol particles

m =
moles of solute particles

kg of solvent
=

0.9837

1.000 kg
= 0.9837 m

So, ∆T = Tnew−Tb = Kb ·m = 79.6◦C−78.4◦C = 1.2◦C. So, 1.2◦C = (Kb)(0.9837 mol/kg)

and Kb =
1.2◦C

0.9837 mol/kg
= 1.22◦C kg/mol which gives 1.2◦C kg/mol. ■

Problem 118. In thermodynamics, the partial derivatives of physical quantities are re-
lated to one another by application of the commutativity property of partial derivatives,
∂x∂yf(x, y) = ∂y∂xf(x, y), which follows from the equality of mixed partial derivatives for
sufficiently smooth functions. For example, if the internal energy is expressed as

dU = TdS + µdN

it follows that

T =
∂U

∂S

∣∣∣∣
N

and µ =
∂U

∂N

∣∣∣∣
S

The joint second derivative of U is then given by

∂2U

∂S∂N
=

∂2U

∂N∂S
=

∂T

∂N

∣∣∣∣
S

=
∂µ

∂S

∣∣∣∣
N

Since (∂y/∂x) = (∂x/∂y)−1, the above equation can be inverted to give

∂S

∂µ

∣∣∣∣
N

=
∂N

∂T

∣∣∣∣
S

.



304 3. Thermodynamics

Similar identities can be obtained from the variations of other state functions. Show that:

+

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

=
∂2U

∂S∂V

+

(
∂T

∂P

)
S

= +

(
∂V

∂S

)
P

=
∂2H

∂S∂P

+

(
∂S

∂V

)
T

= +

(
∂P

∂T

)
V

= − ∂2A

∂T∂V

−
(
∂S

∂P

)
T

= +

(
∂V

∂T

)
P

=
∂2G

∂T∂P

Recall that U = U(S, V ), H = H(S, P ), A = A(T, V ) and G = G(T, P ).

Solution. These “Maxwell relations” are all derived the same way. Take the third one,
for example, A(T, V ) = U − TS and dA = −SdT − pdV lead to

S = − ∂A

∂T

∣∣∣∣
V

and P = − ∂A

∂V

∣∣∣∣
T

Equating the second partial derivatives (∂2A/∂T∂V ) we get

∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

similarly for all other relations. ■

Problem 119. The reaction

1
2O2(g) + H2(g) → H2O(l)

is used to produce an electrical current. The details of the production of electrical current
are not important for solving this problem; we only need to assume that the free energy
can be converted into current (electrical work) through some process.

From tables of thermodynamic data, we find the following information in J/mol/K for
the standard entropies of formation (∆S◦

f ): O2(g): 205.0, H2(g): 130.6, H2O(l): 70.0.

Standard enthalpy of formation for water, ∆H◦
f=-285.9 kJ/mol; those for H2 and O2 are

zero.

Use this information to find:
a) The amount of heat released if the reaction were to take place by direct combustion (of
oxygen and hydrogen)
b) The amount of electrical work the same reaction can perform when carried out in a fuel
cell at 298K under reversible conditions
c) The amount of heat released under the same conditions (when electrical current is
produced)
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Solution. First, we need to find ∆H◦
rxn and ∆S◦

rxn for the process. Recalling that
the standard enthalpy of formation of the elements is zero, ∆H◦

rxn = H◦
f (products) −

H◦
f (reactants) = −285.9 kJ mol−1−0 = −285.9 kJ mol−1. Similarly, ∆S◦

rxn = S◦
f (products)−

S◦
f (reactants) = (70.0)− (12 × 205.0 + 130.6) = −163 JK−1mol−1.

a) When the hydrogen and oxygen are combined directly, the heat released will be ∆H◦
rxn

= -285.9 kJ mol−1.
b) The maximum electrical work the fuel cell can perform is given by ∆G◦

rxn = ∆H◦
rxn −

T∆S◦
rxn = -285.9 kJ mol−1 - (298 K)(-163 JK−1 mol−1) = -237.2 kJ mol−1.

c) The heat released in the reaction is the difference between the enthalpy change (the
total energy available) and the reversible work that was expended: ∆H◦

rxn − ∆G◦
rxn =

T∆S◦
rxn = (298 K)(−163 J.K−1mol−1) = -48800 J mol−1 = -48.8 kJ mol−1. ■

Problem 120. Two ideal gases at constant temperature and pressure are separated by a
partition. There are 0.07 mol of gas A and 0.12 mol of gas B. Find the entropy change
of the system after the partition is released and the two gases are allowed to mix. It is
useful to know that entropy is a state function and that the entropy of a system is given by
S = kB log Ω where Ω is the number of accessible microstates to the system and log is the
natural logarithm. For an ideal gas, Ω ∝ V N where V is the volume of the gas and N is
the number of gas particles. Since S depends on N through Ω, S is an extensive property.
To find the entropy change, you will want to consider the system as two subsystems, one
consisting of gas A and the other consisting of gas B, and then calculate the entropy of the
system before and after the gases mix. The change is equal to the difference between pre-
and post-mixing.

Solution. Since entropy is a state function, the entropy change is equal to the entropy of
the mixture subtracted by the entropy of the two gases prior to mixing.

∆S = Smixture − SA − SB

Smixture = kB log(C(VA + VB)
NA+NB )

where C is some constant of proportionality.

Smixture − SA − SB =kB(NA +NB) log(C(VA + VB))− kBNA log(CVA)

− kBNB log(CVB)

=kBNA log
(VA + VB

VA

)
+ kBNB log

(VA + VB
VB

)
Since we are dealing with ideal gases, we can relate the volumes to moles.

VA + VB
VA

=
nA + nB
nB

Next we insert kB = R/NAvogadro and XA = nA+nB
nA

.

∆S = R(nA logXA + nB logXB)
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= 8.314 J K-1

[
0.07 log

(0.19
0.07

)
+ 0.12 log

(0.19
0.12

)]
= 1.04 J K-1

■

Problem 121. A non-uniform chemical potential (dµ/dx ̸= 0) leads to a mass flux from
regions of high concentration to regions of low concentration. Let’s see how we can relate
this gradient (slope, dµ/dx) to the diffusion of particles. We know that the chemical
potential for an ideal gas is of the form

µ = µ0 + kBT log(c/c0)

where µ0 is a reference chemical potential (only depends on T , but otherwise a constant),
c(x, t) is the concentration ([M ]) of a chemical species of interest at position x and time t,
and c0 is a reference concentration (say, 1 M).

Let’s first establish the principle of “conservation of mass”. Let us consider a 1D flow of
particles along the x direction and a “volume element” of length dx centered at x+dx

2 . Since
we are working in 1D we may take the concentration c(x, t) to have units of particles per
unit length. The flow of particles can be described in terms of the particle flux, J = c(x, t)v,
where v is the velocity of particles. J has units of particles per unit time. Of course, J
represents a net flux, meaning that J = 0 describes equal number of particles moving to
the left as to the right. Thus, when J = 0, there is no change in the number of particles in
the volume element dx. Therefore, its rate of change is zero: ∂c/∂t = 0. Moreover, even
when J = constant, we still have ∂c/∂t = 0 because even though there may be a net flux
of particles, the number of particles that enter dx equals the number that leaves dx during
some time interval dt. The only way that ∂c/∂t can be nonzero is if J is not spatially
uniform. If there is a slope in J , there will be a change in c over time.

In a time interval dt, the increase in concentration with time, ∂c/∂t, will equal the excess of
molecules diffusing into the region at position x over those diffusing out at position x+dx,
divided by the volume (dx):

∂c

∂t
=

1

dx
[J(x)− J(x+ dx)]

(a) Show that ∂c/∂t = −∂J/∂x. This is a statement of the conservation of mass. Explain
why/how this equation amounts to mass conservation.35

Next we must deal with the particle flux J = c(x, t)v. What should v be? It turns out that
according to linear response theory, systems near equilibrium have currents proportional to
the first derivative (gradient) of their properties. The examples given in class are Fourier’s
law, J = k(∂T/∂x) (heat flow proportional to temperature gradient), and Fick’s law, J =

35Hint: Taylor expand J(x + dx). Recall from calculus that the Taylor expansion of f(x) at x is the series∑∞
i=0

f(n)(a)
n!

(x − a)n, where f (n) denotes the n-th derivative of f evaluated at the point a. In practice (i.e. in

the physical sciences), only the lowest order terms are needed when x is close to a. In that case, we only need

Taylor’s theorem, f(x) = f(a)+ f ′(a)(x− a)+O((x− a)2), where O((x− a)2) is a term that tends to zero as (x− a)
goes to zero.
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−D(∂µ/∂x) (particle flux proportional to the chemical potential gradient). Other examples
include Ohm’s law (electrical current proportional to the gradient of the electromagnetic
potential) and in viscous fluids, where the shear rate is proportional to the shear stress.

Thus, we set v = −γ(∂µ/∂x), where γ is a coefficient of mobility. This gives J ∝ ∂µ/∂x.
Namely, J = −γc(x, t)∂µ/∂x.
b) Insert the ideal gas expression for µ into J = −γc(x, t)∂µ/∂x to find J = −γkBT∂c/∂x.
Then use the expression found in part (a) to arrive at a diffusion equation whereD = γkBT .
Confirm that this diffusion equation is identical to the one derived in class using Einstein’s
method.

(c) Consider two solutes, A and B, dissolved in solution. Write an expression to describe
the diffusion of the sum of A and B and call cAB(x, t) = cA(x, t)+ cB(x, t). (Hint: no work
is needed here, just borrow the result you derived in the previous question.)

Solution. a) Taylor expansion of J(x+ dx) gives

J(x+ dx) = J(x) + dx

(
∂J

∂x

)
+O(dx2)

where O(dx2) are terms of order equal to or higher than dx2. Hence, in the limit dx→ 0:

∂c

∂t
=

1

dx

[
���J(x)−���J(x)− dx

(
∂J

∂x

)
+O(dx2)

]
= −∂J

∂x

b) Inserting the expression for µ for the ideal gas, we find:

J = −γc(x, t)∂µ
∂x

= −γc(x, t)∂(kBT log(c(x, t)/c0))

∂x

= −γc(x, t)kBT
c

∂c

∂x
= −γkBT

∂c

∂x
and thus the rate of change of c(x, t) is given by the diffusion equation

∂c

∂t
= −∂J

∂x
= γkBT

∂2c

∂x2

where D = γkBT .
c) The above treatment is for ideal solutions by choice of µ = µ0 + kBT log(c/c0). Thus,
solutes A and B are non-interacting and the diffusion of the sum, cAB(x, t), is the sum of
the parts, cA(x, t) and cB(x, t).

cAB(x, t) = cA(x, t) + cB(x, t)

∂cAB
∂t

=
∂cA
∂t

+
∂cB
∂t

= γAkBT
∂2cA
∂x2

+ γBkBT
∂2cB
∂x2

■

Problem 122. For the given equation of states (a) and (b) below, find the 2nd virial
coefficient, B2(T ), by both methods (1) and (2) which are explained below. Recall that
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the virial expansion is a polynomial expansion of P
kBT

with respect to the number density

ρ = N/V . To find B2(T ), you will want to re-write the given equation of state in the
proper form on the left hand side, and then do a polynomial expansion with respect to ρ
on the remaining terms on the right hand side. Recall that a Taylor expansion of f(ρ) at
ρ = 0 will yield a polynomial expansion. Note: You may want to rationalize why it is a
sound idea to Taylor expand P

kBT
at ρ = 0. Once you have the virial expansion, you can

find B2(T ) by two methods.
(1) You can group terms by powers of ρ and then “select” the coefficient that goes with ρ2.
(2) You can divide your virial expansion by ρ, subtract by one, divide by ρ again, then
take the limit as ρ→ 0 for the remaining terms. You may recognize the term Z = PV

NkBT
.

(a) P = RT
Vm−b −

a√
TVm(Vm+b)

(b) P = RT
Vm−b +

RT
Vm

(1− exp(b/Vm))

Solution. The general strategy is to write the given equation of state in the form of
the virial expansion P

kBT
= ρ + B2(T )ρ

2 + B3(T )ρ
3 + . . . and then compare orders of ρ

to determine the second virial coefficient, B2(T ). Alternatively, we can manipulate the
expression then take the limit as ρ→ 0. Both methods are demonstrated below.
(a) First we rewrite the expression to isolate constants and then do Taylor expansions with
respect to ρ to write the equation of state in powers of ρ.

P =
NkBT

V

1

1− Nb
V

− aN2

√
TV 2N2

A

1

1− Nb
V NA

= ρkBT
1

1− bρ
− aρ2√

TN2
A

1

1− bρ
NA

By Taylor expansion,
1

1− bρ
= 1 + bρ+ (bρ)2 + . . .

1

1− bρ
NA

= 1 +
bρ

NA
+
( bρ
NA

)2
+ . . .

Now utilizing the Taylor expansions and fitting to the form of the virial expansion,

P

kBT
= ρ+ ρ2

(
b− a√

TN2
A

)
+O(ρ3)

where O(ρ3) means terms of order equal to or higher than ρ3. By method (1), clearly

B2(T ) =
(
b − a√

TN2
A

)
. Alternatively by method (2), we can manipulate the expression

then take limit as ρ→ 0. Let Z = P
kBTρ

.

Z = 1 + ρ
(
b− a√

TN2
A

)
+O(ρ2)
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lim
ρ→0

Z − 1

ρ
= lim

ρ→0

(
b− a√

TN2
A

+O(ρ)
)
= b− a√

TN2
A

= B2(T )

Since O(ρ) depends on ρ or higher orders of ρ, it will vanish as ρ→ 0.

(b) We use the same strategy as in part (a)

P = kBTρ
( 1

1− bρ

)
− kBTρ

(
1− exp(bρ/NA)

)
By Taylor expansion,

1

1− bρ
= 1 + bρ+ (bρ)2 + . . .

1− exp(bρ/NA) =
bρ

NA
+

1

2!

( bρ
NA

)2
+ . . .

Now plugging in those Taylor expansions and fitting to the form of virial expansion,

P

kBT
= ρ+ ρ2

(
b+

b

NA

)
+O(ρ3)

Since we have grouped terms by order of ρ it is clear that

B2(T ) = b+
b

NA

Alternatively,

Z = 1 + ρ
(
b+

b

NA

)
+O(ρ2)

lim
ρ→0

Z − 1

ρ
= lim

ρ→0

(
b+

b

NA
+O(ρ)

)
= b+

b

NA
= B2(T )

■

Problem 123. Thermodynamic relationships can be used to accurately describe the slopes
of phase diagram coexistence curves. Specifically, the Clapeyron equation can be used to
characterize the discontinuous phase transition of a single material.

a) Show that at constant temperature T and pressure P , the infinitesimal change in Gibbs
free energy can be written as

dG = (µg − µl)dng

Note that for a liquid-gas phase change, dnl = −dng, the Gibbs free energy of a liquid-gas
mixture is given by G = Gl +Gg, and the chemical potential µ can be defined as

µ =

(
∂G

∂n

)
P,T

b) Derive the Clapeyron equation (subscript t=phase transition),

dP

dT
=

∆tH

T∆tV
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by taking the total derivative∗ of both sides of the following expression

µα(T, P ) = µβ(T, P )

where α and β represent two states of a phase transition at equilibrium. You may find the
following relationships useful, where the overline indicates the intensive molar quantity(

∂µ

∂P

)
T

=

(
∂G

∂P

)
T

= V and

(
∂µ

∂T

)
P

=

(
∂G

∂T

)
P

= −S

∆tS =
∆tH

T
∗The total derivative df is best explained by an example: consider a function f(x, y). Its
total derivative is

df =

(
∂f

∂y

)
x

dy +

(
∂f

∂x

)
y

dx.

c) How much does the melting point of benzene increase per atmosphere of pressure (within
the vicinity of 1 atm)? Take ∆fusH (at 278.7 K) to be 9.95 kJ mol−1 and ∆fusV (at 278.7
K) to be 10.3 cm3 mol−1.

Solution. a) Take the derivative of G = Gl +Gg with respect to n at constant T and P .

dG =

(
∂Gg

∂ng

)
P,T

dng +

(
∂Gl

∂nl

)
P,T

dnl

Since dnl = −dng,

dG =

[(
∂Gg

∂ng

)
P,T

−
(
∂Gl

∂nl

)
P,T

]
dng

dG = (µg − µl)dng (constant T and P )

b) Take the total derivative(
∂µα

∂P

)
T

dP +

(
∂µα

∂T

)
P

dT =

(
∂µβ

∂P

)
T

dP +

(
∂µβ

∂T

)
P

dT

Evoking the relationships(
∂µ

∂P

)
T

=

(
∂G

∂P

)
T

= V and

(
∂µ

∂T

)
P

=

(
∂G

∂T

)
P

= −S

results in
V
α
dP − S

α
dT = V

β
dP − S

β
dT

Since this expression is in equilibrium, it is appropriate to evoke

∆tS =
∆tH

T
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where it follows that
dP

dT
=

∆tH

T∆tV

c)
dP

dT
evaluates to:

9950 J mol−1

(278.68 K)(10.3 cm3 mol−1)

(
10 cm

1 dm

)3(0.08206 dm3 atm mol−1 K−1

8.314 J mol−1 K−1

)
= 34.2 atm K−1

Taking the reciprocal
dT

dP
= 0.0292 K atm−1

■

Problem 124. A chemical reaction is at equilibrium, according to its equilibrium constant,
K. It is possible to estimate the equilibrium constant at temperatures other than standard
conditions by using the enthalpy of reaction ∆H◦

rxn and the van’t Hoff equation.

a) First, show that the expression

∆Grxn = ∆G◦
rxn +RT log(Q)

follows from the definition

dG =
∑
J

µJdnJ

Recall that µJ = µ◦J +RT log(aJ) where µJ and aJ are the chemical potential and activity
of species J, respectively. Furthermore, the extent of reaction ξ can be defined by the
expression dnJ = vJdξ where vJ is the stoichiometric number of species J.

b) Derive the van’t Hoff equation

d(logK)

d(1/T )
= −∆H◦

rxn

R

by taking the derivative with respect to temperature of ∆Grxn = ∆G◦
rxn + RT logQ at

equilibrium standard conditions. Use the Gibbs-Helmholtz equation

d(∆G◦
rxn/T )

dT
= −∆H◦

rxn

T 2

in your derivation.

c) Consider the synthesis of ammonia at 298 K

N2(g) + 3H2(g) ⇌ 2NH3(g) K = 6.1× 105
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and using the van’t Hoff equation, estimate the equilibrium constant at 500 K. Take
∆H◦

rxn = −92.2 kJ mol−1 and assume it is constant over this temperature range.

Solution. a) Express the infinitesimal change in Gibbs free energy in terms of extent of
reaction ξ

dG =
∑
J

µJdnJ =

(∑
J

vJµJ

)
dξ

It follows that

∆Grxn =

(
∂G

∂ξ

)
P,T

=
∑
J

vJµJ

Substituting the chemical potential of species J

∆Grxn =
∑
J

vJµ
◦
J +RT

∑
J

vJ log(aJ) = ∆G◦
rxn +RT

∑
J

log(avJJ )

where the identity a log x = log xa has been used. Finally, evoking the identity log x +
log y + ... = log(xy . . . ) results in

∆Grxn = ∆G◦
rxn +RT

∏
J

avJJ = ∆G◦
rxn +RT log(Q)

where

Q =
∏
J

avJJ

b) Taking the derivative with respect to T of the following

logK = −∆G◦
rxn

RT
which results in

d logK

dT
= − 1

R

d(∆G◦
rxn/T )

dT
Substitute the Gibbs-Helmholtz equation

d logK

dT
=

∆H◦
rxn

RT 2

The required form of the van’t Hoff equation can be obtained by substituting the following
identity

d(1/T )

dT
= − 1

T 2
so dT = −T 2d(1/T )

c) Integrate the result of part (b) assuming constant standard enthalpy of reaction

logK2 − logK1 = − 1

R

∫ 1/T2

1/T1

∆H◦
rxnd(1/T ) = −∆H◦

rxn

R

(
1

T2
− 1

T1

)
logK2 = log(6.1× 105)− (−92.2× 103 J mol−1)

8.3145 J K−1 mol−1

(
1

500 K
− 1

298 K

)
= −1.71
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Thus
K2 = 0.18

■

Problem 125. Consider the chemical equilibrium reaction under standard conditions

H2(g) ⇌ H(g) + H(g)

By what factor is the rate of the reverse reaction greater than that of the forward? Take
the chemical potential of monatomic hydrogen gas µ◦H to be 203.26 kJ/mol.

Solution.

∆Grxn(T, P ) =
∑
J

vJµJ

2(203.26 kJ/mol)− 1(0) = 406.52 kJ/mol

∆G◦
rxn(T, P ) = −RT logKeq = 406.52× 103 kJ/mol

Keq =
K+

K−
= 5.5× 10−72

The reverse reaction occurs at a rate on the order of 1072 times faster (under standard
conditions). ■

Problem 126. Consider the following situation: (a) Let K = exp
(
−∆G◦

rxn
kBT

)
. If Kw =

10−14 at RT, will Kw be greater or less than 10−14 at T = 0◦C? (b) At a different temper-
ature Kw = 6.3× 10−13. Find pH of neutral water at this temperature. (c) Relate pH and
pOH using the value of Kw given in the previous step.

Solution. (a) K ∝ 1
ex , so it will be lower since the argument of the exponential will be

larger.
(b) Kw = [H+][OH−] = [H+]2

pH =-log[
√
6.3× 10−13] = 6.10

(c) pH + pOH = 12.2 ■





Chapter 4

Entropy Production,
Chemical Kinetics and
Irreversibility

In the context of chemical reactions we have stated that the reaction rate, ξ̇, can be written
down by inspection of the reaction mechanism (elementary reactions) as a sum of terms
describing various molecular collision events times a reaction rate. We also previously
stated, in the context of the Second Law, that differences in the chemical potential, ∆(µ/T )
give rise to a driving force for chemical transformations (or mass transport, if the properties

are spatially inhomogeneous). The method of molecular collisions for determining ξ̇ agrees

with experiments and molecular dynamics simulations. On the other hand, ξ̇ should also
depend on ∆(µ/T ). But exactly how? An arbitrary function of ∆(µ/T ) could be expressed
as a power series in ∆(µ/T ). For small deviations from equilibrium, the affinity is very

low and only the first power matters. Thus, ξ̇ should depend linearly on ∆(µ/T ) in this
near-equilibrium regime.

This chapter is a very short introduction to a vast subject. To learn more about non-
equilibrium phenomena in the context of thermodynamics, see [5, 17, 18]. Our presenta-
tion follows Chapter 14 of McQuarrie [5]. We use both upper and lower case letters for
the state variables, with the latter referring to “per unit volume” quantities, i.e. u ≡ U/V
is the internal energy per unit volume.

315
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About notation: we consider the case of two variables (time, t, and space, x) and write
d/dx for the spatial derivative, where it is understood that when differentiating we keep t
constant (i.e. it means partial differentiation, ∂/∂x). In several spatial dimensions, ∂/∂x
is replaced by the gradient operator, ∇. (And of course, an equation that involves d/dx
and d/dt implies that both are partial derivatives: ∂/∂x and ∂/∂t, respectively.)

4.1. Entropy Production

The change in the entropy of a system, dS, can be decomposed into two terms,

dS = deS + diS,

where deS is the entropy supplied to the system by its surroundings (e, external), and diS
is the entropy produced inside the system (i, internal). The second law states that diS = 0
for a reversible process and positive for irreversible transformations of the system, i.e.

diS ≥ 0.

This statement is true regardless of the nature of the system (provided that the e and i
contributions are correctly identified).

The term diS is called the entropy production, and describes the various irreversible phe-
nomena which may occur inside the system. It will be convenient to divide S by V to get
the specific entropy s, i.e. the entropy per unit volume. Division of ds by dt will be called
the rate of entropy production:

ṡ =
dis

dt
=

di
dt

S

V
.

Furthermore, we shall assume that the fundamental equation of thermodynamics (also
known as the Gibbs equation) holds at every point in space, and even away from equilib-
rium:

dU = TdS − PdV +
∑
i

µidni.

This equation was previously assumed to hold for a reversible process. Here, we assume
that it holds for an irreversible process as well. This assumption may be justified in a
volume element that is sufficiently small. We will write it in terms of specific quantities,
u = U/V , s = s/V , [Xi] = ni/V . For constant volume (dV = 0),

du = Tds+
∑
i

µid[Xi].

Dividing by dt, and solving for ds/dt, we get the rate of change in the entropy:

(4.1) ṡ ≡ ds

dt
=

1

T

du

dt
−
∑
i

µi
T

d[Xi]

dt
.
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The first term is the heat transfer (can be positive or negative). The second term, which
always non-negative1 (≥ 0), is entropy production, an irreversible process. Entropy produc-
tion describes the thermodynamic lost work. It quantifies irreversibility, and is therefore a

measure of inefficiency. d[Xi]
dt is discussed in the next section.

4.2. Chemical Reaction Away From Equilibrium

Suppose that we have a reversible first-order elementary chemical reaction

X
kXY
⇌

kY X

Y.

The reaction rate is:

(4.2) ξ̇ = −d[X]

dt
=

d[Y]

dt
= kXY [X]− kY X [Y].

Close to equilibrium, ξ̇ should be a linear function of A (lowest order term in a power series

in A). Indeed, according to Eq. (4.2), ξ̇ should be a function of A because it depends on
the differences in concentrations of X and Y . Close to equilibrium, where A is small, we
expect ξ̇ to depend linearly on A:

(4.3) ξ̇ = L

(
A
T

)
= L

(
µX − µY

T

)
,

where L is a coefficient to be determined.

At equilibrium, ξ̇ = 0, and we have kXY [X]eq = kY X [Y]eq, or kXY = kY X [Y]eq/[X]eq. In
the first term, let’s substitute this relationship for kXY ; in the second term, let’s multiply
it by 1 = [Y]eq/[Y]eq:

ξ̇ = kY X ·
[Y]eq
[X]eq︸ ︷︷ ︸

kXY

·[X]− kY X · [Y] ·
[Y]eq
[Y]eq︸ ︷︷ ︸

1

= kY X · [Y]eq

(
[X]

[X]eq
− [Y]

[Y]eq

)
.

On the other hand, consider the affinity, µX−µY , in the case where we have ideal solutions.
Choosing the reference conditions to be the chemical equilibrium concentrations:

µX = µ◦X +RT log
[X]

[X]eq
, µY = µ◦Y +RT log

[Y]

[Y]eq
.

Then,

µX − µY
T

= R

(
log

[X]

[X]eq
− log

[Y]

[Y]eq

)
,

1This term is also equal to ξ̇(−∆Grxn/T ). If a reaction proceeds from left to right, ∆Grxn < 0, and ξ̇ > 0. (And

conversely, if the reaction proceeds from right to left, ∆Grxn > 0, ξ̇ < 0.) At equilibrium, of course, ∆Grxn = 0.
Thus, the term can never be negative.
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Adding and subtracting the same quantity is like adding zero; a given term does not change.
Thus, we rewrite

[X]

[X]eq
=

([X]− [X]eq) + [X]eq
[X]eq

=
[X]− [X]eq

[X]eq
+ 1,

and similarly for Y . The term
[X]−[X]eq

[X]eq
now is a small parameter if we are close to equilib-

rium. Thus, the logs are now of the form log(1 + x), where x is small. Taylor expansion
for small x gives log(1 + x) ≈ x and

µX − µY
T

≈ R

(
[X]

[X]eq
− [Y]

[Y]eq

)
.

Thus,

ξ̇ = kY X · [Y]eq

(
[X]

[X]eq
− [Y]

[Y]eq

)
=
kY X · [Y]eq

R︸ ︷︷ ︸
L

·
(
µX − µY

T

)
︸ ︷︷ ︸

A/T

= L

(
A
T

)
.

This is an example of a flux-force term. L is the flux and A/T is the force. Therefore, we
have established the following equivalence close to equilbrium:

ξ̇ = −d[X]

dt
=

d[Y]

dt
= kXY [X]− kY X [Y] ≈

kY X · [Y]eq
R︸ ︷︷ ︸
L

·
(
µX − µY

T

)
︸ ︷︷ ︸

A/T

.

4.2.1. Entropy Production. For the previous reaction (consider the system to be iso-
lated), at constant u the Gibbs equation is

ṡ = −
∑
i

µi
T

d[Xi]

dt
= −µX

T

d[X]

dt
− µY

T

d[Y ]

dt
= −d[X]

dt

(µX
T

− µY
T

)
= ξ̇

(
A
T

)
,

where A is called the affinity. Recall that A = −∆Grxn, where ∆Grxn ≡
(
∂G
∂ξ

)
T,P

=∑
i νiµi, with the convention that νi is negative for reactants and positive for products.

Thus, differences in chemical potential drive entropy production. Since entropy production
describes the evolution of the reaction toward equilibrium, affinity is a driving force of the
chemical reaction.

4.2.2. Example with Three Components. Consider the reaction:

X + Y ⇌ Z.

Let’s check that the affinity is:

A
T

=
µX + µY − µZ

T
.
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The flow of reaction from left to right is:

ξ̇ = −d[X]

dt
= −d[Y ]

dt
= +

d[Z]

dt
so the equation for ṡ is

ṡ = −µX
T

d[X]

dt
− µY

T

d[Y ]

dt
− µZ

T

d[Z]

dt
= −d[X]

dt

(µX
T

+
µY
T

− µZ
T

)
= ξ̇

(
A
T

)
,

where A/T =
(µX
T + µY

T − µZ
T

)
.

4.3. External vs Internal Variables

As mentioned previously, the change in the entropy of a system, dS, can be decomposed
into two terms,

dS = deS + diS,

where deS is the entropy supplied to the system by its surroundings (e=external), and diS
is the entropy produced inside the system (i=internal). The second law states that diS = 0
for a reversible process and positive for irreversible transformations of the system, i.e.

diS ≥ 0.

The entropy supplied, deS, however, may be positive, zero or negative, depending on the
interaction of the system with its surroundings. Thus, for an adiabatically insulated system
(i.e. a system which can exchange neither heat nor matter with its surroundings), deS is
equal to zero, and it follows that

dS ≥ 0. (for an adiabatically insulated system)

For a so-called closed system, which may only exchange heat with its surroundings, we
have

deS =
δQ

T
, (Carnot’s theorem)

where δQ is the heat supplied to the system by its surroundings and T is the absolute
temperature at which heat is received by the system. It then follows that

dS = deS + diS =
δQ

T
+ diS︸︷︷︸

diS≥0

→ dS ≥ δQ

T
(for a closed system)

For open systems (heat+matter exchange allowed w/surroundings), deS contains also a
term connected with the transfer of matter. The theorem of Carnot-Clausius, deS =
δQ/T , does not apply to such systems (we will see later how to correct it). However,
dS = deS + diS and diS ≥ 0 remain valid.
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4.3.1. General Form of Entropy Production. Previously, we used the first law (fun-
damental equation for dS) to write down an equation for the time-derivative of the entropy:

ṡ ≡ ds

dt
=

1

T

du

dt
−
∑
i

µi
T

d[Xi]

dt
.

The first term, 1
T

du
dt , is associated with heat transfer (can be positive or negative). The last

term can be rewritten as ξ̇(A/T ) or ξ̇(−∆Grxn/T ), using ξ̇ =
1
νi

d[Xi]
dt , since A = −

∑
i µiνi

and A = −∆Grxn. This term is also equal to ξ̇(−∆Grxn/T ). If a reaction proceeds from

left to right, ∆Grxn < 0, and ξ̇ > 0. And conversely, if the reaction proceeds from right to
left, ∆Grxn > 0, ξ̇ < 0. At equilibrium, ∆Grxn = 0. Thus, the term can never be negative.
This nonnegative (≥ 0) term, is called entropy production, and describes an irreversible
process. We obtain a restatement of the Clausius theorem,

ṡ ≥ 1

T

du

dt
.

We have seen in the specific case of a reaction X ⇌ Y that the reaction term is equal to2

ξ̇(A/T ) = −d[X]

dt

(
µX − µY

T

)
.

We have also found that for that particular reaction (X ⇌ Y ),

ξ̇ =
kY X [Y ]eq

R

(
µX − µY

T

)
= L

(
A
T

)
where L = kY X [Y ]eq/R = kXY [X]eq/R. Thus, ṡ has the form

ṡ = L

(
A
T

)(
A
T

)
= LXX,

where X =
(A
T

)
is a force. LX is a flux. The flux, often denoted J = LX, is proportional

to the force (no forces, no fluxes).

This turns out to be a general principle. In the general case there may be several forces
(and fluxes) acting on the system. Then, ṡ will be of the form:

ṡ =
N∑
i=1

N∑
j=1

LijXiXj ,

where the Lij are called Onsager coefficients and the Xi’s are the thermodynamic forces.
The quantities

Jj = L1jX1 + L2jX2 + L3jX3 + · · ·+ LNjXN

2The form ξ̇(A/T ) of the chemical term is generally true for any reaction. A/T is a driving force for the chemical

reaction (i.e. differences in chemical potential lead to transformation, whereas equilibrium is reached when the

chemical potentials are equal). ξ̇ is a flux.
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are called fluxes. We can think of the fluxes as the leading terms of a Taylor expansion
of Jj as a power series in X1, X2, . . . , XN . Close to equilibrium, only the first order term
is needed. Also, there are no constant terms because the fluxes all vanish if all the forces
vanish. The Onsager coefficients are reciprocal, Lij = Lji.

Some examples of commonly encountered fluxes and forces can be found in Table 4.1.

Table 4.1. Fluxes and forces.

Flux, J Force, X

Heat Ju
d(1/T )

dx
= − 1

T 2

dT

dx

Matter Ji −T d(µi/T )

dx

Electric current density JI = I/A − 1

T

dϕ

dx
(voltage/T )

Chemical reaction ξ̇ A = −
∑

i νiµi

4.4. Particle Flux and Heat Flux

So far we have looked at chemical reactions localized in the same volume element. These
chemical reactions are driven by differences in the chemical potential. Now let’s look at
spatially dependent processes. For simplicity, we consider at processes that vary along a
single dimension (x). The system is subdivided into slices of thickness ∆x = x2 − x1, as
shown in Fig. 4.1.

Figure 4.1. Flux of heat (JU ) and particles (Jn).

∆x is small enough so that T, P, µ are constant over the volume element and so that local
thermodynamic equilibrium can be assumed.

Recall (see section 3.10.19) that in the case of two volume elements A and B adjacent to
each other (setting dV = 0), we found that

dS = (T−1
A − T−1

B )dUA −
(
µA
TA

− µB
TB

)
dnA,

where µA/B are in molar units. (This equation was obtained by applying the fundamental
equation of thermodynamics in the entropy representation.)
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Now take A and B to be thin slices centered around x1 and x2 in the above diagram.
Dividing by dt gives the equation for entropy production:

Ṡ =
dU1

dt

(
1

T1
− 1

T2

)
+

dn1
dt

(
µ2
T2

− µ1
T1

)
≥ 0.

which can be written in the form,

Ṡ = JUXU + JnXn,

where

JU =
dU1

dt
= −dU2

dt
, Jn =

dn1
dt

= −dn2
dt

, XU =
1

T1
− 1

T2
, Xn =

µ2
T2

− µ1
T1
.

XU is the thermal force and Xn is the chemical force.

Writing ∆(1/T ) = 1/T2 − 1/T1, ∆(µ/T ) = µ2/T2 − µ1/T1, and dividing by the volume
V = A∆x gives:

ṡ = − 1

A

dU1

dt

∆(1/T )

∆x
+

1

A

dn1
dt

∆(µ/T )

∆x
.

Taking the limit of small ∆x gives:

ṡ = − 1

A

dU1

dt

d(1/T )

dx
− 1

A

dn1
dt

d(−µ/T )
dx

,

which can be written as

(4.4) ṡ = JU
d(1/T )

dx
+ Jn

d(−µ/T )
dx

,

where the derivatives are called gradients of 1/T and −µ/T , respectively, and

JU = − 1

A

dU1

dt
, Jn = − 1

A

dn1
dt

are fluxes.

4.5. Conservation of Mass

In the case of diffusion and reaction taking place simultaneously, the flow of the reaction
from reactant to product is:

dtot[Xj ]

dt︸ ︷︷ ︸
total rate

= −dJj
dx︸ ︷︷ ︸

mass transport

+ νj ξ̇,︸︷︷︸
ξ̇=

1
νj

d[Xj ]
dt

j = 1, . . . , n

where [Xj ] = nj/V , Jj are the component fluxes (n: number of components), all directed

along the x axis, i.e. νj are the stoichiometric constants in a chemical reaction, and ξ̇ is
its rate in the volume element. This is merely the addition of two terms: the component
flux term −dJj/dx due to mass transport, plus the chemical reaction term which we know

from chemical kinetics, by writing down the rate law, ξ̇ = (1/νj)d[Xj ]/dt, for the reaction.
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Our convention was to take νj as negative for the reactants and positive for the products.

Since νj are dimensionless, ξ̇ has units of mol/m3/s.

This is the total rate of change, which is the sum of two terms. The second term (ξ̇) we
have seen already. But where does the first term come from?

Consider a volume V = A·dx of length dx and transport along the x direction. The volume
has cross-sectional area A and length beginning at x and ending at x+dx. The change
in the number of moles of a component, nj , in a small volume V , is due to the difference
between the flux of the components in and out of the volume. We have

dnj
dt

= −A [Jj(x+ dx)− Jj(x)]

where A is the cross sectional area of the volume orthogonal to the flux direction. Positive
fluxes Jj indicate particles flowing toward positive x. The flux −Jj(x + dx) denotes a
decrease in nj , as particles leave the volume dx at x+dx. +Jj(x) denotes particles entering
dx at x.

The fluxes have units of moles per area per unit time. The area is equal to the volume
divided by dx. In the limit of small dx, we therefore have

dnj
dt

= −V [Jj(x+ dx)− Jj(x)]

dx
= −V dJj(x)

dx
.

By dividing this equation left and right by the (constant) volume, one obtains the desired

result for ξ̇ = 0

d[Xj ]

dt
= −dJj(x)

dx

where [Xj ] = nj/V . This equation describes the conservation of moles (mass) within the
volume.

The total rate of change, dtot[Xj ]/dt, is then formed by adding this mass transport term,

−dJj
dx , to the chemical reaction term, νj ξ̇.

The mass transport term, −dJj
dx , is called a surface term because it describes particle flux

entering and leaving the volume element (by crossing its surface). The chemical reaction

term, νj ξ̇ is called a volume term because the chemical reaction takes place everywhere
inside the volume (with zero influence from the surroundings).

4.6. Conservation of Energy

Similarly, we have a conservation law

du

dt
= − d

dx
Ju.

Here u = U/V is the internal energy density, Ju is the energy flux (e.g. heat flow). Here,
there is no “volume term” because energy is not created within the volume unless a “heat
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source” is added. This equation expresses the fact that energy can only be transferred,
never created.

On the other hand, if there is a “heat source” is placed within the volume, then a volumetric
term is added:

du

dt
= − d

dx
Ju + q̇V ,

where q̇V is a volumetric heat source (units: W/m3).

4.7. Entropy Balance

The entropy balance equation is

dS

dt
= −A [Js(x+ dx)− Js(x)] + V σ

where σ is the entropy production per unit volume. Since A = V/dx, we have, in the limit
of small dx

dS

dt
= −V [Js(x+ dx)− Js(x)]

dx
+ V σ = −V dJs(x)

dx
+ V σ.

Dividing by volume V :

(4.5)
ds

dt
= −dJs(x)

dx
+ σ.

Substituting
d[Xj ]
dt = − d

dxJj + νj ξ̇ and du
dt = − d

dxJu into

ṡ ≡ ds

dt
=

1

T

du

dt
−
∑
i

µi
T

d[Xi]

dt
,

and comparison with Eq. (4.5) enables us to identify Js and σ:

ds

dt
=
1

T

du

dt
− 1

T

∑
j

µj
d[Xj ]

dt
=

1

T

(
−dJu

dx

)
− 1

T

∑
j

µj

(
− d

dx
Jj + νj ξ̇

)

=− d

dx

 1

T

Ju − n∑
j=1

µjJj


︸ ︷︷ ︸

entropy flux, Js

+ Ju
d

dx
(
1

T
) +

n∑
j=1

Jj
d

dx
(−µj

T
) + ξ̇

(
−∆Grxn

T

)
︸ ︷︷ ︸

entropy production rate, σ

where ∆Grxn =
∑

i νiµi, with the convention that νi is negative for reactants and positive
for products. In the second line we have twice used the product rule for differentiation:
d(fg)/dx=f ·dg/dx + g·df/dx.
The surface term, -dJs/dx, is given in terms of the entropy flux,

Js =

 1

T

Ju − n∑
j=1

µjJj

 .
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It describes two phenomena: the measurable heat flux (“reduced” heat flow Ju/T ) and the
enthalpy of matter transfer (heating due to flows of matter). The enthalpy flux is carried
by the component fluxes, Jj . The entropy flux term is a “surface term” which describes
changes in entropy of the system due to inputs from the surroundings.

The volume term, which is also called “entropy production”,

σ = Ju
d

dx
(
1

T
)︸ ︷︷ ︸

heat conduction

+
n∑
j=1

Jj
d

dx
(−µj

T
)︸ ︷︷ ︸

mass diffusion

+ ξ̇

(
−∆Grxn

T

)
︸ ︷︷ ︸

chemical reaction

has 3 contributions. The first term arises from heat conduction (temperature gradients),
since d(1/T )/dx=(-1/T 2)dT/dx. The second term is connected to diffusion, which is driven
by gradients in the chemical potential; here, (d/dx)(µj/T ). The third term is due to
chemical reactions.

The entropy flux term describes external contributions from the surroundings. It can
be positive, negative or zero. This is the deS term. The entropy production term is
non-negative, σ ≥ 0. Entropy production is the diS term.

4.8. Entropy Production vs External Entropy Flow

We recall that dS ≥ 0 for an isolated system S. If the system is not isolated, we have the
decomposition dS =deS+diS. Some books write dSexch in lieu of deS and dSprod =diS.
Thus, dS consists of two parts. One part is the entropy created in the system by any
spontaneous processes occurring within it, and the other part is the change in entropy
resulting from the exchange of energy as heat between the system and its surroundings.
We always have diS ≥ 0. deS can be positive, zero or negative. This quantity is given by
deS = δQ/T , where T is the temperature of the surroundings. If the exchange is carried
out reversibly, δQ = δQrev; if it is irreversible, δQ = δQirr. For any process (reversible or
irreversible),

dS = diS + deS = diS +
δQ

T
.

For a reversible process, diS=0 and δQ = δQrev, so that we have dS = (δQrev/T ). For an
irreversible process, di > 0 and δQ = δQirr, so that dS > (δQirr/T ). Combining these two
relations together we obtain the Clausius statement of the second law, dS ≥ (δQ/T ).

4.8.1. Fluxes Depend Linearly on Forces. Consider two systems, 1 and 2 in contact
with teach other. Particles and heat can be exchanged between them. The two combined
systems are isolated from their surroundings, thus explaining the term deS=0. We are left
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with the entropy production, diS, as the only contribution to the entropy:3

diS

dt
=

dU1

dt

(
1

T1
− 1

T2

)
+

dn1
dt

(
µ2
T2

− µ1
T1

)
= JUXU + JnXn ≥ 0.

where XU = 1/T1 − 1/T2, Xn = µ2/T2 − µ1/T1, JU = dU1/dt = −dU2/dt and Jn =
dn1/dt = −dn2/dt. The fluxes and forces are related to each other. Experimentally, the
relation is often linear. For example, Fourier’s law of heat conduction says that the flux of
energy as heat is directly proportional to the temperature difference,

JU ∝ T2 − T1.

But T2 − T1 ∝ (T2 − T1)/T1T2 = 1/T1 − 1/T2 = XU , so we write JU ∝ 1/T1 − 1/T2 =
XU . Similarly, Fick’s law of (isothermal) diffusion says that the flux of matter is directly
proportional to the concentration difference,

Jn ∝ c2 − c1

which can be expressed4 in the form Jn ∝ µ2 − µ1 (constant T ). Finally, we have Ohm’s
law, V = RI, which states that the electrical current, I, is proportional to the potential
difference, V = ϕ2 − ϕ2. Thus, in all cases, J ∝ Xi (fluxes linearly depend on the forces).

4.8.2. From Discrete to Continuous Case. In the continuum case, it is gradients of
thermodynamic quantities that determine the forces (not differences). We have seen that
diS
dt = dU1

dt

(
1
T1

− 1
T2

)
+ dn1

dt

(
µ2
T2

− µ1
T1

)
≥ 0. We take the continuum limit by dividing by

V = A ·∆x and taking the limit ∆x→ 0:

σ ≡ 1

V

diS

dt
=

(
− 1

A

dU1

dt

)
∆(1/T )

∆x
+

1

A

(
dn1
dt

)
∆(µ/T )

∆x
,

where ∆(1/T ) = 1/T2 − 1/T1, ∆(µ/T ) = µ2/T2 − µ1/T1. Thus,

σ = JU
d(1/T )

dx
+ Jn

d(−µ/T )
dx

≥ 0,

where JU = − 1
A

dU1
dt and Jn = − 1

A
dn1
dt .

4.8.3. Application to Isothermal Diffusion. As an example of the application to con-
tinuous systems, we will consider diffusion in an isothermal system (isothermal diffusion).
Let T be constant, so it can be factored out of each term. The entropy production is:

σ =
1

T

n∑
i=1

Ji

(
−dµi

dx

)
P,T

,

3The right hand side was explained previously. It is obtained from the fundamental equation in the entropy repre-

sentation.
4The proof is similar to our previous discussion. c1 and c2 are different concentrations of the same substance.

Write µ1 = µ◦ + RT log(c1/c◦) and µ2 = µ◦ + RT log(c2/c◦), so that µ2 − µ1 = RT (log c2/c◦ − log c1/c◦). Write

c2/c◦ = [(c2 − c◦) + c◦]/c◦ = (c2 − c◦)/c◦ + 1 and similarly for c1, and Taylor expand in the small parameter

(c2 − c◦)/c◦. Then, µ2 − µ1 ≈ RT
c◦ (c2 − c1).
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where n is the number of components in the system. The chemical potentials are not
all independent of each other because of the Gibbs-Duhem equation (

∑
i nidµi + SdT −

V dP = 0), which for constant T, P reads,
∑n

i=1 nidµi = 0. Dividing by V and dx gives,∑n
i=1 ci

(
−dµi

dx

)
= 0. Solving for dµ1/dx,

dµ1
dx

= − 1

c1

n∑
i=2

ci

(
dµi
dx

)
P,T

.

Then,

Tσ =J1

(
−dµ1

dx

)
+

n∑
i=2

Ji

(
−dµi

dx

)
=
J1
c1

n∑
i=2

ci

(
dµi
dx

)
+

n∑
i=2

Ji

(
−dµi

dx

)

=
n∑
i=2

(
Ji −

ci
c1
J1

)
︸ ︷︷ ︸

Jd
i

(
−dµi

dx

)
,

where Jdi =
(
Ji − ci

c1
J1

)
= ci

(
Ji
ci

− J1
c1

)
= c(vi−v1), since particle flux equals concentration

times velocity (Ji = civi). (If vi = v1, then entropy production is zero.) Thus, Jdi is the
flux of solute i relative to solvent (1).

4.8.4. Example of Binary Solution. Let’s consider a binary solution, such as sucrose
in water or sodium chloride in water. In such cases, there is only 1 independent flow:

Tσ = Jd2

(
−dµ2

dx

)
T,P

.

The force is X = dµ2
dx . There is just one flux force equation J = LX:

Jd2 = L22

(
−dµ2

dx

)
T,P

= −L22

(
−dµ2

dx

)
.

Using µ2 = µ◦2(T, P ) +RT log c2 (c2 in units of mol/L). Then,

dµ2
dx

=
dµ2
dc2

· dc2
dx

=
RT

c2

(
dc2
dx

)
. (chain rule)

So that

Jd2 = −L22
RT

c2

dc2
dx

.

We get Fick’s law of diffusion, which gives the concentration flux as Jc = −D dc
dx , where

D = L22RT/c.

From the conservation of mass,
dc

dt
= − d

dxJc,
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where Jc is the concentration flux (particle flux, Jn, divided by V ), substitution of Jc =
−D dc

dx gives the diffusion equation

dc

dt
= D

d2c

dx2
,

which we derived in Section ?? using Einstein’s method.

4.9. Diffusion Leads to Entropy Production

Diffusion is an irreversible process. This is obvious from experiments: releasing a gas in
the corner of the room leads to its spreading across the room until the concentration is
uniform. The gas will never return to its original position. This can be seen also from the
diffusion equation, which is not time-reversal invariant: the transformation t → −t leads
to a sign change. That diffusion leads to entropy production can be seen by computing the
flow of entropy.

Recall from Section ?? that the solution to the diffusion equation for initial conditions,
c(x, 0) = nδ(x), is:

c(x, t) =
n√
4πDt

e−x/4Dt.

4.9.1. Entropy Production and the Gibbs-Shannon Entropy. It can be shown
that Boltzmann entropy, S = kB log Ω is a special case of the more general Gibbs-Shannon
entropy: for a discrete probability distribution p on the countable set {x1, x2, . . . }, with
pi = p(xi), the Gibbs-Shannon entropy is defined as

S = −kB
∑
i≥1

pi log pi.

Indeed, taking pi = 1/Ω (the uniform distribution,
∑Ω

i=1
1
Ω = 1), we get:

S = kB

Ω∑
i=1

1

Ω
logΩ = kB log Ω.

For a continuous probability density function p(x), the Shannon entropy is

S = −kB
∫
R
p(x) log p(x)dx.

The entropy of the Gaussian density is seen to be:

S = −kB
∫
R

1√
2πσ2

e−x
2/2σ2

(
− log(

√
2πσ2)− x2

2σ2

)
dx =

kB
2
(1 + log(2πσ2))

where σ2 = 2Dt for the solution to the diffusion equation. Differentiation of S with respect
to t gives:

dS

dt
=

d

dt

kB
2
(1 + log(4πDt)) =

kB
2

1

4πDt
· 4πD =

kB
2t

> 0,



4.10. Heat Conduction Leads to Entropy Production 329

which is positive for all times t > 0, meaning that diffusion leads to entropy production.
Note that dS/dt decreases with time as the steady state is approached, eventually reaching
0 asymptotically.

Now, a slightly more general proof. We can still show that dS/dt > 0 without assuming
a Gaussian distribution, but instead only invoking the form of the diffusion equation (and
not its solution). Take the time derivative of S, then substitute the right hand side of the

diffusion equation, dρ
dt = D d2ρ

dx2
, for each instance of dρ/dt:

dS

dt
=− kB

∫ [
dρ

dt
log ρ(x) + ρ(x)

1

ρ(x)

dρ

dt

]
dx

=− kBD

∫ [
d2ρ

dx2
log ρ(x) +

d2ρ

dx2

]
dx.

Integration by parts eliminates the second term. Integration by parts of the first term leads
to:

dS

dt
= −kBD

∫
dρ

dx
(−1)

1

ρ

dρ

dx
dx,

which is a non-negative quantity:

dS

dt
= kBD

∫ (
dρ

dx

)2 1

ρ
dx ≥ 0,

because the integrand is the product of two positive quantities: (dρ/dx)2 ≥ 0 and ρ−1 > 0.

4.10. Heat Conduction Leads to Entropy Production

We have seen that the heat conduction term

σ = Ju
d

dx
(
1

T
) = −Ju ·

1

T 2

dT

dx

leads to entropy production. From this equation, we see that the force X = dT
dx . There is

a flux-force relation, J = LX, of the form:

Ju = −Lqq
dT

dx
.

where Lqq is a “constant” (Onsager coefficient; the subscript qq refers to heat), which we
will call α in a moment. Starting from the equation for energy conservation (with no heat
source term),

du

dt
= − d

dx
Ju.

Inserting the flux-force relation, invoking du = d(U/V ) = δQ/V (dV = 0, so no work,
change in internal energy is due to heat transfer) and (δQ/V ) = ρcV dT (ρ: density, cV :
specific heat capacity, C/ρV ), we obtain the famous Fourier’s heat conduction equation

(4.6)
dT

dt
= α

d2T

dx2
,
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where α = k/ρcV is the thermal diffusivity of the medium where heat flows and k is the
thermal conductivity (units: W/m.K). It is identical to the diffusion equation. Therefore,
heat conduction also leads to entropy production (as the diffusion equation does).

4.11. Summary: Onsager’s Formulation of the Second Law

The Second Law can be formulated in terms of the entropy production σ, namely, σ ≥ 0.
In Onsager’s formulation, the entropy production is given by the product sum of so-called
conjugate fluxes, Ji, and forces Xi, in the system. The second law becomes

(4.7) σ =
∑
i

JiXi ≥ 0

where σ is larger than or equal to zero. Each flux is taken to be a linear combination of
all forces,

(4.8) Ji =
∑
j

LijXj

and the reciprocal relations
Lij = Lji

apply. They are called Onsager’s reciprocal relations. In order to use the theory, one
first has to identify a complete set of extensive independent variables, αi. The resulting
conjugate fluxes and forces are

Ji =
dαi
dt

, and Xi =

(
∂S

∂αi

)
αj ̸=i

,

respectively. Here t is the time and S is the entropy of the system. The three equations
above contain then all the information on the behavior of the system. Accurate expressions
for the fluxes are required to model real systems. The simplest descriptions of heat, mass,
charge, and volume transport are the equations of Fourier, Fick, Ohm, Darcy and Newton.
Fourier’s law expresses the measurable heat flux in terms of the temperature gradient by:

J ′
q = −λdT

dx
where λ is the thermal conductivity, T is the absolute temperature, and x is the direction of
transport. Fick’s law gives the mass flux of one of the components in terms of the gradient
of its molar concentration c:

J = −D dc

dx
where D is the diffusion coefficient. Ohm’s law gives the electric current in terms of the
gradient of the electric potential:

JI = −κdϕ
dx

where κ is the electrical conductivity, and ϕ is the electric potential. Darcy’s law says
that the volume flow Jv in a tube is proportional to the pressure gradient dP/dx via the



4.12. Problems 331

coefficient Lp:

Jv = −Lp
dP

dx
.

The fluxes are all caused by a gradient, or driving force. Fick’s law, for instance, says that
there is no mass flux if there is no concentration gradient. We know from experiments
that a temperature gradient and an electric potential gradient also can give rise to a mass
flux. To neglect such effects can have severe consequences. In general situations, we must
take all driving forces into account. Equations (4.7) and (4.8) form the second law of
thermodynamics

(4.9) σ ≡ dS

dt
=
∑
i

JiXi =
∑
i

∑
j

LijXjXi ≥ 0.

In a stationary state there is no accumulation of internal energy, mass or charge. This
means that the heat, molar and electric fluxes are independent of position. The derivative
of the above equations with respect to x are then zero. For the first equation, we have:

− d

dx
J ′
a =

d

dx
λ
dT

dx
= 0.

Equations like these can be used to calculate the temperature, concentration, electric po-
tential and pressure as a function of the position, when their values on the boundaries of
the system and λ, D, κ, Lp and η are known.

4.12. Problems

Problem 127. Suppose that we have a metal rod whose two end points are held at different
temperatures. This is a non-equilibrium situation because thermodynamic equilibrium
would imply that the entire rod is at the same temperature. Instead, the temperature is
a function of position along the length of the rod. It is a steady state situation because
the temperature does not vary with time (i.e. each point along the rod is at a fixed
temperature). Use the concepts of non-equilibrium thermodynamics (namely, the heat
conduction equation) to calculate the temperature as a function of position between the two
end points of the rod. The rod is 10 cm long. The walls are kept at constant temperature,
4 and 25◦ C, respectively. Assume that the thermal conductivity is constant.

Solution. The heat conduction equation is Eq. 4.6. In the steady state, we have d2T/dx2 =
0. Thus, T is of the form, T (x) = a+ bx. The constants a and b follow from the boundary
conditions. We have T (0)=278 K and T (10)=298 K. It follows that T (x) = (278+2x/cm)
K. ■

Problem 128. Indoor ice rinks employ a cooling system placed underneath a concrete
slab (similar to radiant floor cooling systems, but lower temperatures). On top of the
concrete slab is the ice. Suppose that we place a temperature sensor d = 8 cm under the
concrete slab. Calculate the entropy production per surface area due to the heat transport
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through the concrete slab. The temperature sensor reads 243 K. This is the temperature
of the radiant cooling system. The concrete is in contact with ice (273 K). The thermal
conductivity of the pavement is 0.7 W/K.m (λ parameter in the Fourier’s law). Note: this
is a 1D problem with depth as the relevant spatial variable.

Solution. Fourier’s law for heat conduction is Ju = −λ(dT/dx), where x is the depth
coordinate. The entropy production per surface area is (let ∆T = Ttop − Tbelow):∣∣∣∣∫ d

0
σdx

∣∣∣∣ = ∣∣∣∣∫ d

0
Ju

d

dx
(
1

T
)dx

∣∣∣∣ = ∣∣∣∣λ∆Td
(

1

Ttop
− 1

Tbelow

)∣∣∣∣
=

∣∣∣∣0.7(30)0.08

(
1

273
− 1

243

)∣∣∣∣ = 0.12
W

K.m2
.

■

Problem 129. For the previous problem, calculate the lost work per surface area near the
top of the concrete slab (at the interface of ice and concrete). Lost work is the work lost
due to entropy production (a type of T∆S term, where ∆S is due to entropy production).

Solution. The lost work (A: area)

∆Wlost = Ttop ·A
∫ d

0
σdx

per surface area A is ∆Wlost/A=273 K · 0.12 W/K.m2=33 W/m2. It is typical for heat
conduction around room temperature that the entropy production is large. ■

Problem 130. Suppose that a closed 1D system (ideal gas in a pipe) does not undergo
any irreversible changes (σ = 0) and its temperature is spatially uniform [d(1/T )/dx = 0]
and equal to 300 K everywhere, but that there is an enthalpy flux driven by particle flow.
Moreover, the entropy of the system does not change ds/dt = 0 (isentropic process). There
is flow in the pipe which we measure to have an average local velocity of 10 m/s at x = 0
and 12 m/s at x = 1 m. (Such an acceleration is possible if the pipe diameter narrows
slightly; you can assume that the velocity increases uniformly from 10 to 12 m/s over
this distance.) The concentration of the substance in the pipe is 1 mol/m3 and uniform
everywhere. Then, because of the nature of this enthalpy flux, we expect the heat flux to
be spatially non-uniform. Calculate the gradient in the measurable heat flux, dJu/dx.

Solution. Since the particle flux J = cv, at x = 0 we have

J(0) = (1 mol/m3)(10 m/s)

and
J(1) = (1 mol/m3)(12 m/s).

This gives a gradient dJ/dx of (1 mol/m3)(2 m/s)/(1 m)=2 mol/m3/s. For ideal gas, the
chemical potential is µ = ∂U

∂n , where U = 3
2nRT . Thus, µ = 3

2RT , where T = 300 K. Then
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invoke:
ds

dt
= − d

dx

[
1

T
(Ju − µJj)

]
= 0

Thus, d
dxJu = µ d

dxJj , where µ = 3
2RT . Plug in the numbers. ■

Problem 131. If two systems A and B are in thermal contact, the assembly (A+B) being
isolated, exchange a heat quantity 1 kJ every second (i.e., 1 kW), calculate the entropy
production if TA = 200 K and TB = 300 K. Is the entropy production positive or negative
(explain)?

Solution. Heat flows from B to A (from hot body to the cold body), so δQ = δQB =
−δQA = −1 kJ.

σ =
δQ

dt

(
1

TB
− 1

TA

)
> 0 = −(1 kW)

(
1

300 K
− 1

200 K

)
=

5

3

kW

K
.

Entropy production is always positive. ■

Problem 132. Explain what is the driving force, X, of a chemical reaction. What is the
corresponding flux, J? What are the units of the flux and force?

Problem 133. Does a chemical reaction produce entropy? Why (or why not)?

Solution. Yes, spontaneous irreversible reactions produce entropy, the entropy production
is ξ̇(−∆Grxn/T ). ■





Chapter 5

Partition Functions

The concept of the partition function is fundamental to the field of statistical mechanics,
providing a crucial link between microscopic states and macroscopic properties. It serves
as a mathematical tool that encompasses all possible states of a system and assigns a
statistical weight to each, thereby allowing for the derivation of thermodynamic quantities.

5.1. Definition and Significance of the Partition Function

A partition function, denoted typically by Z, is defined for a canonical ensemble as the sum
over all states i of the exponential of the negative of the energy Ei of each state divided
by the product of the Boltzmann constant kB and the temperature T :

Z =
∑
i

e−Ei/(kBT ).

We can also express Z as a sum over energy levels E:

Z =
∑
E

W (E)e−E/(kBT ).

where W (E) is the degeneracy of the energy level E. The two concepts are entirely equiv-
alent. Notice the difference in notation used. I recommend you work out problems and
examples from Kittel’s book, especially the chapter on Fermi-Dirac and Bose-Einstein sta-
tistics. Kittel carefully explains the difference between sum over states and sum over energy
levels. The function Z is not merely a computational tool; it embodies the very essence
of equilibrium statistical mechanics. It allows us to calculate average values of physical
quantities, which correspond to what is actually measured in an experiment.

335
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5.1.1. Examples of Partition Functions. The generality of the partition function
makes it applicable to various systems, from simple ideal gases to complex molecular struc-
tures.

5.1.1.1. Ideal Gas. For an ideal gas, the partition function can be expressed as a product
of the molecular partition functions q, raised to the power of the number of molecules N ,
and divided by N ! to account for indistinguishability:

Zideal =
zN

N !
.

The molecular partition function z is further broken down into translational, rotational,
vibrational, and electronic components, each of which reflects the contributions of the
respective degrees of freedom to the total energy.

5.1.1.2. Quantum Harmonic Oscillator. A quantum harmonic oscillator is another instruc-
tive example, with a partition function derived from its quantized energy levels:

Zho =
∞∑
n=0

e−ℏω(n+ 1
2
)/(kBT ),

where ℏ is the reduced Planck constant, ω is the angular frequency of the oscillator, and n
is the quantum number.

5.1.1.3. Spin Systems. In magnetic systems, such as a lattice of spins, the partition function
takes into account the interaction of spins with each other and an external magnetic field
B, leading to the form:

Zspin =
∑
{σ}

e−β(−J
∑

⟨i,j⟩ σiσj−B
∑

i σi),

where J is the interaction strength, β is the inverse temperature (kBT )
−1, and σi represents

the spin at site i.

5.1.2. The Role of Partition Functions in Thermodynamics. The partition func-
tion is the key to unlocking the thermodynamic properties of a system. From it, one can
derive the Helmholtz free energy F by:

F = −kBT logZ,

which in turn allows for the calculation of other thermodynamic potentials and quantities
such as entropy, internal energy, and pressure. These quantities are essential for under-
standing the behavior of materials and the outcome of chemical reactions.

5.1.3. Importance. Partition functions unite the diverse phenomena of thermodynamics
and statistical mechanics. It is reflects the power of statistical methods in bridging the
microscopic world of atoms and molecules with the macroscopic realm that we observe. In
this chapter we explore a variety of systems that can be analyzed through the partition
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function, each example bringing us closer to a complete understanding of the statistical
nature of the physical world.

5.2. Equipartition Theorem

Some of the results below allude to the equipartition theorem. We start by discussing the
equipartition theorem. The equipartition theorem is a principle from classical statistical
mechanics which states that, at thermal equilibrium, the total energy of a system is equally
divided among its degrees of freedom. Mathematically, each degree of freedom that appears
as a quadratic term in the system’s Hamiltonian contributes an amount of 1

2kBT to the
average energy, where kB is the Boltzmann constant and T is the temperature in kelvin.

Theorem 5.1 (Equipartition). We consider a system of N particles within the frame-
work of classical physics. Let the microstate be given by x = (p1, . . . ,pN ,q1, . . . ,qN ). If
the Hamiltonian function H(x) satisfies H(x) → ∞ for a component |xi| → ∞ then the
following relation holds for an arbitrary polynomial function f(x):〈

f(x)
∂H
∂xi

〉
= kBT

〈
∂f(x)

∂xi

〉
.

Proof. This relation is an immediate consequence of the identity

0 =
1

n!h3NZ

∫
d3Np d3Nq

∂

∂xi

(
f(x)e−βH(x)

)
=

〈
∂f(x)

∂xi

〉
− β

〈
f(x)

∂H
∂xi

〉
.

(The 0 = part follows by integration by parts and the requirement that |H(x) → ∞ as
|xi| → ∞.) In particular for f(x) = xj we obtain

(5.1)

〈
xj
∂H
∂xi

〉
= δijkBT.

□

5.2.1. Application. The equipartition theorem allows us to predict the average energy
per molecule in a gas, the contribution of each type of motion to the specific heat, and to
understand the behavior of heat capacity at different temperature regimes. For example,
a diatomic molecule has three translational degrees of freedom, two rotational degrees of
freedom, and one vibrational degree of freedom (counting as two quadratic degrees: one
for potential energy and one for kinetic energy). According to the equipartition theorem,
at high enough temperatures where all modes are excited, each molecule would have an
average energy of 7

2kBT .

Let us work out the details. First, we consider H(p,q) = Hkin(p) + V (q) with

Hkin(p) =
N∑
i=1

p2
i

2m
=

3N∑
α=1

p2α
2m

,
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where we have denoted by pα, α = 1, . . . , 3N the 3N coordinates of the N momenta
(p1, . . . ,pN ).

Hence, we have for each α:

pα
∂H
∂pα

=
p2α
m

from which it follows that
3N∑
α=1

〈
pα
∂H
∂α

〉
≡ 2⟨Hkin⟩ = 2NkBT

or

⟨Hkin⟩ =
3

2
NkBT.

Second, when V (q) is of the form

V (q) =
N∑
i=1

aiq
2
i =

3N∑
α=1

ãαq
2
α,

one obtains
3N∑
α=1

〈
qα
∂H
∂qα

〉
= 2

3N∑
α=1

⟨ãαq2α⟩ ≡ 2⟨V ⟩,

and thus from (5.1),

⟨V ⟩ = 3

2
NkNT.

We note that every canonical variable which appears quadratically in the Hamiltonian
function contributes an amount of 1

2kBT to the average energy. Therefore we obtain,

e.g., ⟨H⟩ = 3
2NkBT for the classical ideal gas and we will get ⟨H⟩ = 3NkBT from the

contribution of the harmonic lattice vibrations to the internal energy of a solid.

To each variable entering quadratically in the Hamiltonian function, one attributes a ther-
modynamic degree of freedom. The number of degrees of freedom is therefore f = 3N for
the ideal gas, and f = 6N for the harmonic oscillator.

Hence, for a system with f degrees of freedom one obtains the so-called equipartition
theorem

⟨H⟩ = f
1

2
kBT.

For an ideal diatomic gas, taking into account the rotations, we find f = (3 + 2)N = 5N ,
and when the vibrations are also taken into account f = (3 + 2 + 2)N = 7N (see below).
The diatomic gas in the classical regime therefore has CV = 7

2NkB. However, a quantum-
mechanical treatment of the ideal diatomic gas reveals that in most cases the vibrational
excitations do not contribute to the specific heat at room temperature and therefore CV =
5
2NkB.
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Nonlinearities in the potential and quantum corrections will, of course, lead to deviations
from this equipartition theorem.

5.2.1.1. Hamiltonian of a Rigid Rotor Diatomic Molecule. The total classical Hamiltonian
H for a rigid rotor diatomic molecule, considering translational, vibrational, and rotational
motions, is composed of seven terms reflecting the seven degrees of freedom:

H = Tcm,x + Tcm,y + Tcm,z + Trel + Trot,θ + Trot,ϕ + Vvib + Vint,

whereas Vint represents additional degrees of freedom that may play a role when the mole-
cule is more complex. Here, the kinetic energy of the center of mass in each spatial direction
is given by:

Tcm,x =
P 2
x

2M
,

Tcm,y =
P 2
y

2M
,

Tcm,z =
P 2
z

2M
,

with Pi (where i = x, y, z) being the components of the linear momentum of the center of
mass and M = m1 +m2 the total mass of the molecule.

The kinetic energy associated with the relative vibrational motion of the two atoms is:

Trel =
p2r
2µ
,

where pr is the relative radial momentum and µ = m1m2
m1+m2

is the reduced mass.

The rotational kinetic energy components for the polar (θ) and azimuthal (ϕ) angles are
expressed as:

Trot,θ =
L2
θ

2I
,

Trot,ϕ =
L2
ϕ

2I sin2 θ
,

where Lθ and Lϕ are the components of the angular momentum, and I = µR2 is the
moment of inertia.

The potential energy for the vibrational motion is typically modeled as a harmonic oscil-
lator:

Vvib =
1

2
k(R−Re)

2,

where k is the force constant, R the instantaneous separation between the two atoms, and
Re the equilibrium bond length.
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Finally, the internal potential energy Vint accounts for the interactions between the atoms,
which can be more complex and depend on the specific molecule.

Vint = Vint(R, θ, ϕ).

Each term in this Hamiltonian represents a specific type of energy corresponding to one of
the degrees of freedom of the diatomic molecule.

5.2.2. Limitations. The equipartition theorem assumes that all degrees of freedom are
accessible and that energy levels are continuous. In quantum mechanics, this assump-
tion breaks down, especially at low temperatures where the energy levels become discrete,
and not all levels are thermally accessible. Thus, quantum corrections are necessary to
accurately describe the system’s behavior under such conditions.

In conclusion, while the equipartition theorem is a powerful tool in classical statistical
mechanics, its limitations must be recognized, and quantum statistical mechanics should
be employed for complete and accurate descriptions of microscopic systems.

5.3. The Ideal Monatomic Gas

5.3.1. Atomic Partition Function. The total partition function Z for a system of N
particles in an ideal gas is the product of the individual molecular partition functions z
for each particle, raised to the power of N and divided by N ! to account for the indistin-
guishability of the particles:

Z =
zN

N !
,

where the molecular partition function z is the product of translational (ztrans), electronic
(zelec), and nuclear (znucl) partition functions:

z = ztrans · zelec · znucl.
For a monatomic ideal gas, the electronic and nuclear partition functions are typically close
to unity under normal conditions due to the large energy gaps in electronic and nuclear
energy levels compared to thermal energy kBT . Therefore, z ≈ ztrans and the focus is
predominantly on the translational degrees of freedom.

5.3.2. Translational Partition Function. The translational partition function ztrans
for a single particle in a three-dimensional box (representing the volume V ) can be derived
by considering the energy levels of a particle in a box and summing over all possible states.
The kinetic energy Enx,ny ,nz of a particle in a three-dimensional box with quantum numbers
nx, ny, nz is given by:

Enx,ny ,nz =
h2

8m

(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
,

where h is Planck’s constant, m is the mass of the particle, and Lx, Ly, Lz are the lengths
of the box in the x, y, z directions, respectively.
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The translational partition function is then the sum over all states:

ztrans =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

e−βEnx,ny,nz ,

where β = 1/(kBT ).

Since the energy levels are closely spaced for a macroscopic system, we can approximate
the sum as an integral:

ztrans ≈
∫ ∞

0

∫ ∞

0

∫ ∞

0
e−β

h2

8m
(n2

x/L
2
x+n

2
y/L

2
y+n

2
z/L

2
z)dnxdnydnz.

The closed-form expression for ztrans is obtained by performing the Gaussian integrals:

ztrans =

(
V

λ3

)
,

where λ = h√
2πmkBT

is the thermal de Broglie wavelength and V = LxLyLz is the volume

of the box.

This translational partition function is a crucial quantity in statistical mechanics, as it
directly relates to the thermodynamic properties of the gas.

5.3.3. Thermodynamic Implications of the Translational Partition Function.
The translational partition function ztrans plays a pivotal role in determining the macro-
scopic thermodynamic properties of a gas. By leveraging the partition function, one can
derive expressions for pressure P , internal energy U , and entropy S, which are fundamental
in understanding the behavior of an ideal monatomic gas.

5.3.3.1. Pressure. The pressure of the gas can be found by applying the thermodynamic
relation P = −

(
∂F
∂V

)
T
, where F is the Helmholtz free energy. For an ideal gas, F =

−kBT logZ, and substituting the expression for the total partition function Z, we obtain:

P = −
(
∂(−kBT logZ)

∂V

)
T

= kBT
∂ logZ

∂V
.

Given that Z =
zNtrans
N ! and ztrans =

V
λ3
, it follows that:

P = kBT
∂ log( V N

λ3NN !
)

∂V
=
NkBT

V
,

which is the ideal gas law.

5.3.3.2. Internal Energy. The internal energy is derived from the partition function using
U = −∂ logZ

∂β . For an ideal monatomic gas, where the energy is purely kinetic, U is given

by:

U = −
∂ log( V N

λ3NN !
)

∂β
=

3

2
NkBT,
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which shows that the internal energy is directly proportional to the temperature and the
number of particles, independent of the volume.

5.3.3.3. Entropy. Entropy can be calculated using the relationship S = kB logZ + U
T .

Substituting the expressions for Z and U into this equation yields:

S = kB log

(
V N

λ3NN !

)
+

3

2
NkB.

Applying Stirling’s approximation logN ! ≈ N logN −N for large N , the entropy can be
expressed as:

S = NkB

[
log

(
V

Nλ3

)
+

5

2

]
.

This equation reflects the dependence of entropy on the volume and temperature of the
gas, as well as the number of particles.

Each of these derived quantities is rooted in the translational partition function, under-
scoring its significance in the statistical mechanical description of thermodynamic systems.
The simplicity of these expressions for an ideal gas serves as a cornerstone for more complex
systems where interactions between particles cannot be neglected.

5.4. Electronic Partition Function

5.4.1. Approximations for the Electronic Partition Function. The electronic par-
tition function, zelec, is critical for understanding the distribution of electronic energy levels
in atoms and molecules. In the case of an ideal monatomic gas, the electronic energy levels
are quantized and the energy required to excite an electron from the ground state to the
first excited state is typically on the order of electronvolts (eV).

For simplicity and without loss of generality, we set the ground state energy, E0, to zero.
This is a valid approach because the absolute values of energy are not physically observ-
able; only energy differences are. Given the large energy gap to the excited states, at
room temperature, the population of excited states is negligible. Therefore, the electronic
partition function can often be approximated as:

zelec =
∑
i

e−βEi

︸ ︷︷ ︸
sum over states

=
∑
E

W (E)e−βE︸ ︷︷ ︸
sum over levels

=W (E0) +W (E1)e
−βE1 + · · · ≈ 1 + e−βE1 ,

where E1 is the energy of the first excited state and β = 1
kT . (In the last step we assumed

non-degenerate levels, W (E0) = W (E1) = 1, but this assumption is not necessary.) How-
ever, for most conditions relevant to an ideal gas, the exponential term is very small and
can be neglected, simplifying zelec to unity.

5.4.2. Nuclear Partition Function.
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5.4.3. Approximations for the Nuclear Partition Function. Similarly, the nuclear
partition function, znuc, accounts for the distribution of nuclear energy levels. The energy
required to excite a nucleus to its first excited state is typically on the order of megaelec-
tronvolts (MeV), which is significantly larger than thermal energies at room temperature.

Again, setting the ground state energy to zero and considering the large energy gap to the
first excited state, the nuclear partition function for practical purposes reduces to:

znuc ≈ 1.

(More precisely, it is equal to the degeneracy of the ground nuclear state, W (E0).) This
approximation is valid since the Boltzmann factor for nuclear excitation, e−βEnuc , where
Enuc is the energy of the nuclear excited state, is exceedingly small for any temperature
relevant to chemical and most physical processes.

5.5. Combined Partition Function: Ideal Monatomic Gas

The total partition function for a system of N indistinguishable particles is the product
of the individual partition functions for translational, electronic, and nuclear degrees of
freedom. Considering the approximations for the electronic and nuclear partition functions,
the total partition function Z is given by:

Z =
(ztrans · zelec · znuc)N

N !
.

Given that zelec ≈ 1 and znuc ≈ 1, the expression simplifies to:

Z =
zNtrans
N !

.

This form of the partition function explicitly reflects the indistinguishability of particles by
the division by N !, a consequence of the quantum statistical nature of identical particles.

The assumptions leading to this simplified expression are well-founded for an ideal monatomic
gas, where interactions between particles are negligible, and the energy to excite internal
degrees of freedom (electronic and nuclear) is much greater than the thermal energy avail-
able in the system.

5.6. The Ideal Diatomic Gas

5.6.1. Rigid Rotor-Harmonic Oscillator Model. The description of the ideal di-
atomic gas often invokes the rigid rotor-harmonic oscillator approximation. Underpinning
this model is the Born-Oppenheimer approximation, which allows us to decouple the nu-
clear and electronic motions due to the vast difference in their masses. The nuclei are
assumed to move on a fixed potential energy surface defined by the electronic states.

The Hamiltonian for a diatomic molecule in this approximation is given by:

Ĥ = T̂trans + T̂rot + T̂vib + Ĥelec + Ĥnuc,
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where T̂trans, T̂rot, and T̂vib represent the kinetic energies corresponding to translational,
rotational, and vibrational motions, respectively. Ĥelec and Ĥnuc are the Hamiltonians for
the electronic and nuclear degrees of freedom.

The energy eigenvalues for the rotational and vibrational degrees of freedom are of partic-
ular interest:

• Rotational energy levels: Erot = BJ(J + 1),

• Vibrational energy levels: Evib = ℏω(v + 1
2),

where J is the rotational quantum number, B is the rotational constant, v is the vibrational
quantum number, and ω is the angular frequency of vibration.

The total partition function for the system is:

Ztotal =
(ztrans · zrot · zvib · zelec · znuc)N

N !
,

reflecting the contributions from all degrees of freedom.

5.7. Rotational Kinetic Energy

Consider the classical kinetic energy term for rotation in a rigid body, which is given by
the Hamiltonian:

H =
L2

2I
,

where L is the magnitude of the angular momentum and I is the moment of inertia. The

angular momentum L⃗ is defined as:

L = r× p,

where r⃗ is the position vector and p is the linear momentum vector. For a continuous mass
distribution, the moment of inertia is:

I =

∫
|r|2ρ(r)d3r,

where ρ(r) is the mass density. For a system of point particles, the moment of inertia is:

I =
∑
i

mir
2
i .

In quantum mechanics, the classical angular momentum operator L⃗2 is replaced by the
quantum mechanical operator L̂2, and the energy eigenvalue equation for this operator is:

L̂2Y m
l (θ, φ) = ℏ2l(l + 1)Y m

l (θ, φ),

where Y m
l (θ, φ) are the spherical harmonics which serve as the eigenfunctions of L̂2. In

bra-ket notation, the eigenvalue equation is written as:

L̂2 |l,mL⟩ = ℏ2l(l + 1) |l,mL⟩ .
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Switching to the rotational quantum number J , we have the eigenvalues:

L̂2 |J,mJ⟩ = ℏ2J(J + 1) |J,mJ⟩ .
The energy expression for the quantum mechanical rigid rotor, by substituting the moment
of inertia and the quantum mechanical angular momentum, becomes:

Erot =
ℏ2

2I
J(J + 1),

where B = ℏ2
2I is the rotational constant. Thus, the final expression for the energy levels of

a quantum mechanical rigid rotor is:

Erot = BJ(J + 1).

5.8. Quantum Harmonic Oscillator

The classical energy of a harmonic oscillator is described by the potential:

V (x) =
1

2
kx2,

where k is the force constant of the oscillator and x is the displacement from equilibrium. In
quantum mechanics, we replace the displacement x with the quantum operator x̂, leading
to the quantum Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
kx̂2,

where p̂ is the momentum operator andm is the mass of the oscillating particle. In the case
of a diatomic molecule, m is replaced by the reduced mass µ, which is given by µ = m1m2

m1+m2

for two atoms with masses m1 and m2.

To simplify the Hamiltonian, we introduce the creation â† and annihilation â operators:

â =

√
mω

2ℏ

(
x̂+

ip̂

mω

)
,

â† =

√
mω

2ℏ

(
x̂− ip̂

mω

)
,

where ω =
√

k
m is the fundamental frequency of the oscillator.

The Hamiltonian in terms of the number operator n̂ = â†â is derived as follows:

Ĥ = ω̄

(
n̂+

1

2

)
.

When this Hamiltonian acts on the number states |n⟩, which are eigenstates of the number
operator n̂, we obtain the energy eigenvalues:

Evib = ℏω
(
n+

1

2

)
,
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where n are the allowed quantum numbers (non-negative integers) representing the vibra-
tional quantum state of the molecule, and 1

2ℏω is the zero-point energy, which is the energy
of the ground state of the quantum oscillator (n = 0).

The reduced mass µ enters the expression for the fundamental frequency ω in the case of
diatomic molecules, whether homonuclear or heteronuclear. The moment of inertia I for a
diatomic molecule is related to the reduced mass by I = µr20, where r0 is the equilibrium
bond length. The force constant k from Hooke’s law is related to the vibrational frequency
by k = µω2.

5.9. Vibrational Partition Function

The vibrational partition function for a quantum harmonic oscillator can be derived by
considering the quantized energy levels. The energy of a harmonic oscillator in quantum
mechanics is given by:

En =

(
n+

1

2

)
hν,

where n is the quantum number of the vibrational state, h is Planck’s constant, and ν is
the frequency of the oscillator.

The partition function Zvib is the sum over all possible energy states weighted by the
Boltzmann factor e−βEn , where β = 1

kBT
with kB as the Boltzmann constant and T as the

temperature:

Zvib =
∞∑
n=0

e−βEn = e−
1
2
βhν

∞∑
n=0

(
e−βhν

)n
.

This sum is a geometric series with a common ratio r = e−βhν . The sum of a geometric
series

∑∞
n=0 r

n is 1
1−r , provided that |r| < 1, which is true for all physical temperatures (as

e−βhν < 1). Hence, we can write:

Zvib =
e−

1
2
βhν

1− e−βhν
.

5.9.1. Vibrational Partition Function: Computable Thermodynamic Quanti-
ties. This closed-form expression for Zvib allows us to compute various thermodynamic
quantities.

5.9.1.1. Energy. For example, the average energy ⟨Evib⟩ can be derived from Zvib as follows:

⟨Evib⟩ = −∂ logZvib

∂β
=
hν

2
+

hν

eβhν − 1
.

This equation shows that the average energy is the sum of the zero-point energy hν
2 and

the thermal excitation energy hν
eβhν−1

.
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Similarly, other thermodynamic quantities such as the entropy S and the specific heat
CV can be calculated, providing us with a comprehensive understanding of the role of the
vibrational partition function in statistical thermodynamics.

5.9.1.2. Heat Capacity. The average energy of a quantum harmonic oscillator, derived from
the vibrational partition function, is given by:

⟨Evib⟩ =
ℏω

eℏω/kBT − 1
+

1

2
ℏω,

where ℏ is the reduced Planck constant, ω is the angular frequency of the vibration, kB is
the Boltzmann constant, and T is the temperature.

The heat capacity at constant volume for vibrational modes is the temperature derivative
of the average energy:

CV,vib =

(
∂⟨Evib⟩
∂T

)
V

.

Using the chain rule, we compute the derivative as follows:

CV,vib =
∂

∂T

(
ℏω

eℏω/kBT − 1

)
=

ℏω
kBT 2

eℏω/kBT(
eℏω/kBT − 1

)2 .
This formula represents the heat capacity at constant volume for a single vibrational mode.
For a molecule with multiple vibrational modes, the total heat capacity is the sum of the
contributions from each individual mode.

5.9.1.3. Entropy. The entropy Svib is calculated from:

Svib = kB logZvib +
⟨Evib⟩
T

.

For a harmonic oscillator, the vibrational partition function can be simplified using the
geometric series formula, because the exponent in Zvib forms a geometric progression.
Therefore, we have:

Zvib =
e−

βℏω
2

1− e−βℏω
.

Using this, the average energy is:

⟨Evib⟩ = − ∂

∂β
log

(
e−

βℏω
2

1− e−βℏω

)

= ℏω
(
1

2
+

1

eβℏω − 1

)
.
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The heat capacity can be expressed in closed form by differentiating the average energy
with respect to temperature:

CV,vib =

(
∂

∂T
ℏω
(
1

2
+

1

eβℏω − 1

))
V

= kB

(
ℏω
kBT

)2 eβℏω

(eβℏω − 1)2
.

And the entropy is:

Svib = kB log

(
e−

βℏω
2

1− e−βℏω

)
+

ℏω
(
1
2 + 1

eβℏω−1

)
T

= kB

(
βℏω

eβℏω − 1
− log(1− e−βℏω)

)
.

In the context of a harmonic oscillator model, vibrational energy levels are quantized and
equally spaced. The vibrational quantum number v can take on any integer value starting
from zero, representing the ground state energy level. At low temperatures, most molecules
occupy the ground vibrational state, and the contribution to the heat capacity is negligible.
As temperature increases, higher vibrational levels become more populated, and the heat
capacity rises sharply due to the increased energy storage in vibrational modes.

The entropy reflects the number of accessible vibrational states at a given temperature.
At absolute zero, all molecules are in the ground state, resulting in zero entropy. As
temperature increases, the number of accessible states increases, leading to an increase in
entropy. This is indicative of the greater disorder in the system due to the distribution of
populations over more vibrational energy levels.

5.9.2. Rotational Partition Function. For a heteronuclear diatomic molecule, the ro-
tational partition function, zrot, is given by:

zrot =

∞∑
J=0

(2J + 1)e−βBJ(J+1),

where J is the rotational quantum number and B is the rotational constant.

In the high-temperature limit, the sum over J can be approximated by an integral:

zrot ≈
∫ ∞

0
(2J + 1)e−βBJ(J+1)dJ.

Evaluating this integral yields the rotational partition function in terms of temperature
and the rotational constant.

From zrot, we can derive the expressions for thermodynamic quantities such as the rota-
tional contribution to the internal energy, entropy, and heat capacity.
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This comprehensive analysis provides a foundation for understanding the behavior of an
ideal diatomic gas and calculating its thermodynamic properties using the partition func-
tions for its various degrees of freedom.

Zrot =
∞∑
J=0

(2J + 1)e−βBJ(J+1)

≈
∫ ∞

0
(2J + 1)e−βBJ(J+1)dJ

=

∫ ∞

0
e−βBxdx where x = J(J + 1) and dx = (2J + 1)dJ

=
1

βB
(in the high-temperature limit).

5.9.3. Rotational Partition Function: Computable Thermodynamic Quantities.
From the rotational partition function Zrot, several thermodynamic properties of a system
can be derived. The partition function for a rigid rotor, which models the rotational
behavior of a diatomic molecule, is given by:

Zrot =
∞∑
J=0

(2J + 1)e−
βℏ2
2I

J(J+1),

where J is the rotational quantum number, ℏ is the reduced Planck’s constant, I is the
moment of inertia of the molecule, and β = 1

kBT
.

5.9.3.1. Energy. Given the above rotational partition function, we can compute the average
energy ⟨Erot⟩ for rotation by differentiating the natural logarithm of the partition function
with respect to −β:

⟨Erot⟩ = −∂ logZrot

∂β

= − ∂

∂β
log

( ∞∑
J=0

(2J + 1)e−
βℏ2
2I

J(J+1)

)

=
ℏ2

2I

∞∑
J=0

(2J + 1)J(J + 1)e−
βℏ2
2I

J(J+1)

Zrot
.

This expression can then be used to calculate the heat capacity and entropy

An even simpler result can be derived if we start from the high-temperature approximation:

Zrot ≈
2IkBT

ℏ2
The average energy is then obtained by taking the temperature derivative:

⟨Erot⟩ = kBT
2 ∂

∂T

(
log

(
2IkBT

ℏ2

))
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Which simplifies to:
⟨Erot⟩ = kBT

This result is valid under the assumption that the rotational levels can be treated as
continuous, which is a good approximation at high temperatures.

The result ⟨Erot⟩ = kBT is a demonstration of the classical equipartition theorem, which
states that each quadratic degree of freedom contributes 1

2kBT to the average energy at
thermal equilibrium. For a diatomic molecule, there are two such degrees of freedom in
rotation (neglecting rotation about the bond axis due to negligible moment of inertia),
leading to the total contribution being kBT .

The implications of this result are several-fold:

(1) Equipartition of Energy: It confirms the equipartition principle, signifying
that energy is equally partitioned among each degree of freedom.

(2) Temperature Dependence: The average rotational energy is directly propor-
tional to the temperature, indicating an increase in energy with temperature.

(3) High-Temperature Behavior: The result holds in the high-temperature limit,
where the spacing between rotational energy levels is small enough to be consid-
ered continuous.

(4) Classical Limit: It corresponds with classical expectations and exemplifies how
quantum mechanical systems approach classical behavior at higher temperatures
or quantum numbers.

(5) Specific Heat: This linear relationship implies a constant contribution to the
specific heat from rotational degrees of freedom, seen as a plateau at higher tem-
peratures in the specific heat of gases at constant volume.

(6) Quantum Effects: At lower temperatures, quantum mechanical treatment is
necessary as the energy levels are not closely spaced and the average energy would
deviate from this linear relationship.

This classical treatment is a simplified model that is particularly accurate at high temper-
atures where quantum effects can be neglected, and it serves to illustrate the fundamental
principles of energy distribution in statistical mechanics.

5.9.3.2. Heat Capacity. The heat capacity at constant volume CV,rot can be determined by
differentiating the average energy with respect to temperature:

CV,rot =

(
∂⟨Erot⟩
∂T

)
V

.

5.9.3.3. Entropy. The entropy Srot is found by using the relationship:

Srot = kB logZrot +
⟨Erot⟩
T

.

These quantities are computed explicitly below.
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Comment. The rotational energy levels are quantized and widely spaced at low tempera-
tures, meaning that the contribution to the heat capacity from rotations is small at low
temperatures. As the temperature increases, more rotational levels become accessible, and
the heat capacity increases. The entropy calculation reflects the degree of disorder or ran-
domness in the rotational states of the molecules. At low temperatures, fewer rotational
states are populated, and the entropy is low. As the temperature increases, more states
become populated, and the entropy increases.

These quantities are fundamental for understanding molecular behavior and are particu-
larly important in the context of gases, where rotational motion contributes significantly
to the overall thermodynamic properties.

5.10. Rotational partition function: Average Rotational Energy and
Heat Capacity

The heat capacity at constant volume, CV , for an ideal gas can be derived from its molecular
partition function. For a diatomic molecule, which can be approximated as a rigid rotor,
the rotational partition function, Zrot, is particularly relevant. The rotational energy levels
of a diatomic molecule are quantized and given by:

EJ = BJ(J + 1),

where B is the rotational constant and J is the rotational quantum number, which can
take on any integer value from zero to infinity.

The rotational partition function is the sum over all possible rotational states, weighted
by the Boltzmann factor:

Zrot =
∞∑
J=0

(2J + 1)e
− EJ

kBT ,

where kB is the Boltzmann constant and T is the temperature. The factor (2J+1) accounts
for the degeneracy of each energy level, i.e., the number of distinct states with the same
energy.

In the high-temperature limit, where kBT is much greater than the spacing between adja-
cent energy levels, the sum can be approximated by an integral:

Zrot ≈
∫ ∞

0
(2J + 1)e

− EJ
kBT dJ.

Substituting EJ into the expression, the partition function becomes:

Zrot ≈
∫ ∞

0
(2J + 1)e

−BJ(J+1)
kBT dJ.

By changing variables to u = BJ(J + 1)/(kBT ) and performing the integral, we find:

Zrot ≈
kBT

B
,
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which indicates that the partition function is directly proportional to the temperature.

The internal energy U of a system in thermal equilibrium is given by the derivative of the
partition function with respect to the inverse temperature β = 1/(kBT ):

U = − ∂

∂β
log(Zrot).

Substituting Zrot into this expression and differentiating gives:

U = kBT
2 ∂

∂T

(
log

(
kBT

B

))
.

After carrying out the differentiation, we arrive at a simplified form for the internal energy:

U = kBT.

The heat capacity at constant volume CV is the temperature derivative of the internal
energy:

CV =

(
∂U

∂T

)
V

.

Thus, we find that the heat capacity at constant volume for a diatomic molecule treated
as a rigid rotor is:

CV = kB.

This result, derived under the assumption of high temperature, indicates that each degree
of rotational freedom contributes an amount kB to the heat capacity, which is consistent
with the equipartition theorem.

5.10.0.1. Entropy. The entropy S of a thermodynamic system in the canonical ensemble
can be derived from the partition function Z and the internal energy U . The relationship
between these quantities is given by the following equation:

S = kB

(
logZ +

U

kBT

)
Here, kB is the Boltzmann constant, T is the absolute temperature, and Z is the partition
function of the system. The internal energy U can be obtained from the partition function
by taking the derivative of logZ with respect to the inverse temperature β = 1

kBT
.

For a diatomic molecule, considering only its rotational degrees of freedom, the partition
function Zrot can be written as:

Zrot =
kBT

σhB
In this expression, σ represents the symmetry number of the molecule, h is Planck’s con-
stant, and B is the rotational constant. The internal energy Urot is the derivative of logZrot
with respect to β:

Urot = − ∂

∂β
log

(
β

σhB

)
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Carrying out the differentiation, we obtain:

Urot =
∂

∂β
log β =

1

β
= kBT

Substituting Urot back into the expression for entropy, we get:

S = kB

(
logZrot +

Urot
kBT

)
S = kB log

(
kBT

σhB

)
+ kB

This final expression gives us the entropy of a diatomic molecule considering only the
rotational degrees of freedom. It is important to note that in a complete description of the
molecule, contributions from vibrational, translational, and possibly electronic degrees of
freedom would also need to be considered to obtain the total entropy of the system.

The first term of S is the thermal contribution to the entropy. It is dependent on the
temperature T and reflects the increased disorder and number of accessible rotational states
at higher temperatures. This term increases logarithmically with temperature, capturing
the effect of temperature on the rotational state distribution.

The second term, kB, represents the zero-point entropy. This term arises due to the quan-
tum mechanical nature of the molecule and indicates that there is an inherent amount
of disorder present in the molecule’s rotational state even at the limit of zero temper-
ature. This term is significant because it suggests an intrinsic level of randomness in
the quantum state of the molecule, which is not accounted for in classical descriptions
of entropy. The presence of zero-point energy in quantum systems leads to this non-zero
entropy contribution at absolute zero, illustrating a departure from the classical third law
of thermodynamics.

5.10.0.2. Rotational, Vibrational and Rovibrational Degrees of Freedom. The Hamiltonian
Ĥ for a diatomic molecule that includes both rotational and vibrational energies, and their
coupling, is:

Ĥ = Ĥvib + Ĥrot + Ĥrovib,

where:

• Ĥvib is the vibrational Hamiltonian, which for a harmonic oscillator is given by:

Ĥvib =
p̂2

2µ
+

1

2
µω2q̂2,

where µ is the reduced mass of the diatomic molecule, ω is the angular frequency of
vibration, p̂ is the momentum operator, and q̂ is the displacement operator from the
equilibrium bond length.

• Ĥrot is the rotational Hamiltonian, represented by the rigid rotor model:

Ĥrot =
L̂2

2I
,
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where L̂ is the angular momentum operator, and I is the moment of inertia of the
molecule about the axis of rotation.

• Ĥrovib is the Hamiltonian representing the coupling between vibration and rotation,
which can be derived as follows:

Ĥrovib = − L̂2

2µ2r3
q̂,

where r is the internuclear distance. This term arises due to the change in the moment
of inertia as the molecule vibrates.

The derivation of the rovibrational coupling term, Ĥrovib, involves considering the changes
in the moment of inertia I as a function of the internuclear distance r, which itself is a
function of the vibrational motion. The moment of inertia is given by I = µr2, and when
the molecule vibrates, r changes, thus affecting I and subsequently the rotational energy
levels. The coupling term reflects how the rotational motion is affected by the vibrational
motion through this changing moment of inertia.

5.11. Couplings that Prevent Factorization of the Partition Function

So far we have only seen the case where the partition factors out because there is no
interaction between the different degrees of freedom. When interactions are present, the
partition function no longer factorizes into a product of partition functions corresponding
to the different degrees of freedom. In this section we discuss examples of interactions that
would typically be encountered in real-life situations.

5.11.1. Rovibrational Coupling in Diatomic Molecules. In the quantum mechanical
treatment of diatomic molecules, the Hamiltonian must account for both rotational and
vibrational energies. When these two motions are considered independently, the moment of
inertia is assumed to be fixed for rotational motion, and the internuclear distance remains
constant for vibrational motion. However, in a more accurate picture, these two types of
motion are coupled because the internuclear distance, and hence the moment of inertia,
changes with vibration.

The kinetic energy part of the molecular Hamiltonian without an external field is given by

T̂ =
P̂ 2
R

2µ
+

L̂2

2I(r)
,

where P̂R is the radial momentum operator, µ is the reduced mass of the molecule, L̂ is
the angular momentum operator, and I(r) is the moment of inertia as a function of the
internuclear distance r. The internuclear distance can be expanded about the equilibrium
bond length re:

r = re + q̂,
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with q̂ representing the displacement from equilibrium. Consequently, the moment of
inertia can be expressed as a Taylor series around re:

I(r) ≈ I(re) +

(
∂I

∂r

)
r=re

q̂ +
1

2

(
∂2I

∂r2

)
r=re

q̂2 + . . .

For small vibrational motions, higher-order terms can be neglected, leading to an approxi-
mation of the moment of inertia by its value at the equilibrium bond length, I(r) ≈ I(re).
This simplification, however, introduces a coupling between rotational and vibrational mo-
tions through the q̂ dependence of the rotational kinetic energy:

L̂2

2I(r)
≈ L̂2

2I(re)
− L̂2

2I(re)2

(
∂I

∂r

)
r=re

q̂.

The first term is the standard rotational kinetic energy, while the second term represents
the rovibrational coupling. Upon substituting

(
∂I
∂r

)
r=re

= 2µre, the rovibrational coupling

term in the Hamiltonian can be written as

Ĥrovib = − L̂2

2µ2r3e
q̂.

This term is added to the rotational and vibrational Hamiltonians to account for the
rovibrational coupling. It should be noted that this derivation assumes harmonic vibrations
and a rigid rotor for rotations. In a more rigorous treatment, anharmonicities and non-rigid
rotor effects would introduce additional terms into the Hamiltonian.

5.11.2. Different Types of Couplings in Diatomic Molecules. In diatomic molecules,
the internal motions such as rotation and vibration are not always independent. There are
several couplings between different mechanical modes of motion, which can influence the
energy levels and spectroscopic transitions. Here, we discuss the most significant couplings
and their contributions to the molecular Hamiltonian.

5.11.2.1. Rovibrational Coupling. Rovibrational coupling arises from the interaction be-
tween rotational and vibrational motions. The rotational-vibrational Hamiltonian can be
expressed as:

Ĥrovib = Ĥvib + Ĥrot + Ĥrovib-coupling,

where Ĥvib is the vibrational Hamiltonian, Ĥrot is the rotational Hamiltonian, and Ĥrovib-coupling

represents the rovibrational coupling term.

5.11.2.2. Spin-Orbit Coupling. Spin-orbit coupling occurs due to the interaction between
the spin of the electron and its orbital angular momentum, leading to fine structure in
electronic transitions. The Hamiltonian for spin-orbit coupling is:

Ĥspin-orbit = ζL̂ · Ŝ,

where ζ is the spin-orbit coupling constant, L̂ is the orbital angular momentum operator,
and Ŝ is the spin angular momentum operator.
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5.11.2.3. Spin-Rotation Coupling. Spin-rotation coupling is the interaction between the
rotational motion of the molecule and the spin of the electrons. Its Hamiltonian is given
by:

Ĥspin-rotation = γĴ · Ŝ,
where γ is the spin-rotation coupling constant and Ĵ is the total angular momentum oper-
ator excluding spin.

5.11.2.4. Spin-Spin Coupling. In molecules with multiple unpaired electrons, the spins can
interact with each other. The Hamiltonian for spin-spin coupling is:

Ĥspin-spin = λŜ1 · Ŝ2,

where λ is the spin-spin coupling constant, and Ŝ1, Ŝ2 are the spin angular momentum
operators for the two electrons.

5.11.2.5. Coriolis Coupling. Coriolis coupling is the result of the Coriolis force acting on
the nuclei in a rotating molecule, coupling the vibrational and rotational motions. The
Hamiltonian for Coriolis coupling is:

ĤCoriolis = −ξ(Ĵ · p̂),

where ξ is the Coriolis coupling coefficient, Ĵ is the rotational angular momentum operator,
and p̂ is the vibrational angular momentum operator.

5.11.2.6. Anharmonic Coupling. The anharmonic coupling accounts for the deviations from
the ideal harmonic oscillator model. The anharmonic terms in the vibrational Hamiltonian
are necessary to describe the real molecular vibrations more accurately. The anharmonic
Hamiltonian can be expanded as:

Ĥanharmonic = Ĥvib + xeQ̂
3 + yeQ̂

4 + . . . ,

where Q̂ is the vibrational coordinate, xe and ye are the anharmonic constants for the
cubic and quartic terms, respectively. These terms become significant for large amplitude
vibrations and are particularly important for understanding the vibrational spectra of
molecules at high energy levels.

5.11.2.7. Centrifugal Distortion. Centrifugal distortion occurs due to the stretching of the
molecular bond as the molecule rotates. Its Hamiltonian is:

Ĥcentrifugal = δJ2,

where δ is the centrifugal distortion constant and J is the rotational quantum number.

Each of these Hamiltonian contributions must be considered to accurately describe the
energy levels of diatomic molecules, particularly in high-resolution spectroscopic investiga-
tions.

5.11.3. Can These Couplings Lead to Breakdown of the Born-Oppenheimer
Approximation? The breakdown of the Born-Oppenheimer approximation is most di-
rectly related to non-adiabatic couplings. The Born-Oppenheimer approximation simplifies
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molecular Hamiltonians by assuming that the electronic motion and the nuclear motion
can be separated due to their large difference in mass. This leads to the treatment of
electronic states without considering the nuclear kinetic energy operator.

However, when there are close-lying electronic states or when the nuclei are moving rapidly
(which can happen at higher energies), the electronic and nuclear motions can no longer be
considered independent. This results in non-adiabatic couplings, where transitions between
different electronic states can occur due to the influence of nuclear motion.

In contrast, rovibrational coupling is still within the realm of the Born-Oppenheimer ap-
proximation but considers the interaction between rotational and vibrational motions of
the nuclei. Anharmonic coupling, similarly, involves higher-order corrections to the vi-
brational motion but doesn’t necessarily imply a breakdown of the Born-Oppenheimer
approximation.

Non-adiabatic coupling necessitates a more sophisticated treatment where both electronic
and nuclear degrees of freedom are solved simultaneously, or where corrections to the Born-
Oppenheimer approximation are included to account for the coupling between electronic
states induced by nuclear motion.

5.12. Spectral Decomposition in Quantum Mechanics

Quantum mechanics fundamentally relies on the mathematical framework of linear alge-
bra, particularly the properties of Hermitian operators. A key result in this context is
the spectral theorem, which provides a method for expressing Hermitian operators, repre-
senting observable quantities, as a sum of projection operators scaled by their eigenvalues.
This theorem has profound implications in quantum mechanics, especially in the analysis
of quantum states and the probabilistic interpretation of quantum measurements.

5.12.1. Spectral Theorem. Let Â be a Hermitian operator on a finite-dimensional
Hilbert space. The spectral theorem states that Â can be decomposed as:

(5.2) Â =
∑
i

λiP̂i

where λi are the eigenvalues of Â, and P̂i are the orthogonal projection operators onto
the eigenspaces associated with each λi. These projection operators satisfy P̂ 2

i = P̂i and

P̂ †
i = P̂i, with † denoting the Hermitian conjugate.

5.12.2. Decomposition of the Density Matrix. In the realm of quantum mechanics,
the density matrix ρ describes the state of a quantum system, accommodating both pure
and mixed states. Applying the spectral theorem to ρ, a Hermitian operator, yields:
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(5.3) ρ =
∑
i

pi|ψi⟩⟨ψi|

Here, |ψi⟩ are the orthonormal eigenstates of ρ, and pi are the corresponding eigenvalues,
representing the probabilities of the system being in each of these states. This form is
essential for various applications in quantum mechanics.

5.12.3. Trivial (Already in Diagonal Form) Example. Consider a quantum system
of a single spin-1/2 particle, where the density matrix ρ describes a mixed state. Assume
the system is in a superposition of spin-up and spin-down states along the z-axis. The
density matrix in this case can be represented as:

(5.4) ρ = p| ↑⟩⟨↑ |+ (1− p)| ↓⟩⟨↓ |

where | ↑⟩ and | ↓⟩ are the eigenstates of the spin operator Ŝz, and 0 ≤ p ≤ 1.

To find the spectral decomposition of ρ, we observe that the eigenvalues are directly p and
1 − p, with the corresponding eigenstates being | ↑⟩ and | ↓⟩ respectively. Therefore, the
spectral decomposition of ρ is already achieved in its given form.

This example illustrates the practical use of the spectral theorem in analyzing quantum
states, particularly in understanding mixed states in terms of probabilities associated with
different quantum states.

5.12.4. Less Trivial Example: Two-Level Quantum System (Qubit). Consider a
two-level quantum system represented by a spin-1/2 particle or qubit. The Hilbert space of
this system is two-dimensional, spanned by the basis vectors |ψ1⟩ and |ψ2⟩. Let’s consider
a density matrix ρ for this system, which is not diagonal in this basis:

(5.5) ρ =

(
a b
b∗ 1− a

)
where 0 ≤ a ≤ 1 and |b|2 ≤ a(1− a) for the matrix to be positive and have a trace of 1.

To perform the spectral decomposition of ρ, we first find its eigenvalues and eigenvectors.
The eigenvalues λ1,2 are found by solving the characteristic equation det(ρ − λI) = 0,
yielding:

(5.6) λ1,2 =
1±

√
(2a− 1)2 + 4|b|2

2

The corresponding eigenvectors, |v1⟩ and |v2⟩, can be found by solving (ρ−λ1,2I)|v1,2⟩ = 0.
The normalized eigenvectors will be:
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(5.7) |v1⟩ =
(
α
β

)
, |v2⟩ =

(
−β∗
α∗

)
where α and β are complex numbers determined by the above equations and normalization
conditions.

Finally, the spectral decomposition of ρ is given by:

(5.8) ρ = λ1|v1⟩⟨v1|+ λ2|v2⟩⟨v2|

This example demonstrates the process of spectral decomposition in a scenario where the
density matrix represents a mixed state in a two-level system. Such a decomposition is
fundamental in understanding the statistical properties of quantum systems, particularly
in contexts where the basis states are not immediately apparent.

5.13. Comparison of Canonical Density Matrix and Classical Probability
Density Measure

In statistical mechanics, understanding the distinctions and parallels between quantum
and classical systems is fundamental. The canonical density matrix in quantum mechanics
and the classical probability density measure in the context of the canonical ensemble are
pivotal concepts in this regard.

5.13.1. Canonical Density Matrix in Quantum Mechanics. The canonical density
matrix ρ in quantum mechanics describes the state of a quantum system in thermal equi-
librium with a heat bath at temperature T . It is given by:

(5.9) ρ =
exp(−βH)

Tr[exp(−βH)]

where H is the Hamiltonian operator of the system, β = 1
kBT

, and Tr denotes the trace.

This matrix encapsulates both the probabilistic nature of quantum states and the statistical
distribution over these states due to thermal fluctuations.

We note that the denominator is a sum over states:

Tr[exp(−βH)] =
∑
n

⟨n| exp(−βH)|n⟩ ,

where n is a set of quantum numbers that labels all possible microstates. The trace can be
computed using any1 basis. And if the wavefunctions are chosen to be energy eigenstates,
i.e.

H |ϕi⟩ = Ei |ϕi⟩ ,

1It is a theorem of linear algebra that change of basis does not change the value of the trace, i.e. take TrA =∑
n ⟨n|A|n⟩ and insert the unit matrix B†B = I as follows

∑
n ⟨n|AB†B|n⟩ =

∑
n ⟨n|BAB†|n⟩ =

∑
n ⟨ψn|A|ψn⟩,

where |ψn⟩ = B† |n⟩.
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the sum over states can be computed using the “good quantum numbers” that label this
stationary state:

Tr[exp(−βH)] =
∑
i

⟨ϕi| exp(−βH)|ϕi⟩ =
∑
i

exp(−βEi) =
∑
E

W (E) exp(−βE).

where the last expression is a sum over energy levels ϵ and the previous one is a sum over
states i. W (E) is the degeneracy of level E.

5.13.2. Classical Probability Density Measure. In classical statistical mechanics, the
probability density in phase space for a system in thermal equilibrium is described by:

(5.10) f(p, q) =
1

Z
exp(−βH(p, q))

Here, H(p, q) is the classical Hamiltonian as a function of momenta p and coordinates q,
and Z is the classical partition function. This function represents the probability density
of finding the system in a particular state in phase space.

5.13.3. Similarities. Both formulations serve to describe the statistical distribution of
states in thermal equilibrium. They both act as probability measures, where the numerator,
e−βEi vs e−βH(p,q), is a weight factor determined by the ratio of microstate energy, Ei vs
H(p,q), to the thermal energy, kBT . In classical mechanics the microstates are labeled by
(p,q) ∈ R6N . In quantum mechanics, i is a multi-index. For example, i = (n, l,ml,mS)
for the hydrogen atom. In both cases, the denominator Z is a sum over states, Z =∑

i e
−βEi vs

∫
Γ e

−βH(p,q) d3Np d3Nq. The canonical densities are derived from the principle
of maximizing entropy subject to the constraint of a fixed average energy, embodying the
Boltzmann factor exp(−βH). This factor plays a central role in both the quantum and
classical descriptions, dictating the likelihood of system states based on their energy.

5.13.4. Differences. The key differences arise from the underlying frameworks:

• State Representation: In quantum mechanics, states are represented by operators in
Hilbert space. We label them using a set of quantum numbers. For example, the spins
on a lattice (up, down) are labeled by microstates such as i = (s1, s2, . . . , sN ), where
sj = ±1. In classical mechanics, they are points in phase space.

• Statistical Interpretation: The quantum density matrix provides probabilities for
observing various states upon measurement, a concept absent in classical mechanics. This
is because of the inherently probabilistic nature of measurement in quantum mechanics.
In classical mechanics the trajectories are deterministic.

• Computation of Averages: In quantum mechanics, averages of observables are com-
puted using the trace operation with the density matrix, whereas in classical mechanics,
averages are computed as integrals over phase space. Of course, integrals are summations
(Riemannian sums). In quantum mechanics, the trace symbol stands for “‘summation”
over the discrete indices and “integration” over the continuous variables (e.g. x or p).
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5.13.5. Examples. Quantum Harmonic Oscillator: The canonical density matrix
for a quantum harmonic oscillator can be derived using its Hamiltonian, leading to a
description of the energy level populations at different temperatures.

Classical Ideal Gas: The classical probability density measure for an ideal gas can be
computed using the Hamiltonian of particles in a box, providing insights into the distribu-
tion of particle velocities and positions.

While the canonical density matrix and classical probability density measure both describe
systems in thermal equilibrium, they reflect the fundamental differences between quantum
and classical mechanics. Understanding these concepts is crucial in the study of statistical
mechanics, bridging the gap between microscopic and macroscopic phenomena.

5.14. Canonical Density Matrix of a Spin-1/2 Qubit in a Magnetic Field

The canonical density matrix is a fundamental concept in statistical mechanics, especially
in the quantum regime. It describes the statistical state of a quantum system in thermal
equilibrium with a heat bath at temperature T . For a spin-1/2 particle in a magnetic
field, the Hamiltonian typically includes the Zeeman interaction, leading to an interesting
exploration of quantum statistical mechanics.

5.14.1. Hamiltonian of the System. Consider a spin-1/2 particle in a magnetic field

B⃗. The Hamiltonian H of this system, considering only the Zeeman interaction, is given
by:

H = −γS⃗ · B⃗
where γ is the gyromagnetic ratio, and S⃗ is the spin operator. For simplicity, let’s assume

the magnetic field is oriented along the z-axis, B⃗ = Bẑ. Then, the Hamiltonian simplifies
to:

H = −γSzB.
Using the Pauli matrices, Sz can be expressed as ℏ

2σz, leading to:

H = −γℏB
2

σz.

5.14.2. Canonical Density Matrix. The canonical density matrix ρ for a quantum
system in thermal equilibrium is defined as:

ρ =
exp(−βH)

Tr[exp(−βH)]

where β = 1
kBT

, with kB being the Boltzmann constant and T the temperature. Given our

Hamiltonian H = −γℏB
2 σz, the exponential term in the density matrix becomes:

(5.11) exp(−βH) = exp

(
βγℏB

2
σz

)
=

(
e

βγℏB
2 0

0 e−
βγℏB

2

)
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This direct computation of the exponential of the Hamiltonian leverages the diagonal nature
of σz.

5.14.3. Exponential of the Hamiltonian. The exponential of the Hamiltonian, involv-
ing the Pauli σz matrix, can be simplified due to the diagonal nature of σz. The σz matrix
is given by:

(5.12) σz =

(
1 0
0 −1

)
Since σz is diagonal, exponentiating it is straightforward and involves exponentiating its
diagonal elements. Thus, the exponential of a scalar multiplied by σz is:

(5.13) exp

(
βγℏB

2
σz

)
= exp

(
βγℏB

2

(
1 0
0 −1

))
=

exp
(
βγℏB

2

)
0

0 exp
(
−βγℏB

2

)
This result is obtained simply by taking the exponential of each of the diagonal elements.
In matrix form, it appears as:

(5.14) exp

(
βγℏB

2
σz

)
=

(
e

βγℏB
2 0

0 e−
βγℏB

2

)
This matrix clearly demonstrates the simplicity of the operation due to the diagonal struc-
ture of σz. Exponentiating a diagonal matrix in this way is a powerful yet deceptively
simple method often used in quantum mechanics and statistical physics, particularly when
dealing with spin systems and their interactions with external fields.

5.14.4. Partition Function and Final Form of ρ. The partition function Z, which is
the denominator in the expression for ρ, is the trace of the exponential of the Hamiltonian.
It can be computed as:

(5.15) Z = Tr

[
exp

(
βγℏB

2
σz

)]
= Tr

(
e

βγℏB
2 0

0 e−
βγℏB

2

)
= e

βγℏB
2 + e−

βγℏB
2

This leads to Z = 2 cosh
(
βγℏB

2

)
, as cosh(x) = ex+e−x

2 .

Thus, the canonical density matrix ρ becomes:

(5.16) ρ =
1

2 cosh
(
βγℏB

2

) (eβγℏB
2 0

0 e−
βγℏB

2

)
This form of ρ clearly demonstrates the distribution of the spin states in thermal equilib-
rium, influenced by the external magnetic field. The simplicity of the result, derived from
the diagonal nature of the Hamiltonian, provides an elegant illustration of the interplay
between quantum mechanics and statistical mechanics in the study of quantum systems.
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The canonical density matrix for a quantum system, as demonstrated with the spin-1/2
particle in a magnetic field, elegantly connects the microscopic quantum properties with
macroscopic thermodynamic quantities. This approach is central to the understanding of
quantum statistical mechanics and provides a powerful tool for analyzing quantum systems
in equilibrium.

5.15. Third Law - Nernst Theorem

We first need to recast the entropy in the language of quantum mechanics. In thermal
equilibrium we have the canonical density matrix:

ρ =
e−βH

Tr[e−βH]
.

In general, we may have an arbitrary density matrix ρ. A density matrix is defined as
a matrix with unit trace that is positive semi-definite and Hermitian. In practice, we
check that it is Hermitian, we find the eigenvalues of the matrix and check if they are
non-negative and add up to 1. The unit trace requirement is identical to the requirement
that a probability mass function {pi} add up to 1,

∑
i pi = 1. Semi-positive definitiveness

requires pi ≥ 0.

In quantum mechanics the entropy S is defined by (von Neumann):

S = −kBTr[ρ log ρ] = −kB⟨log ρ⟩.
The second equality follows from the definition of average in quantum mechanics, ⟨A⟩ =
Tr[ρA]. You can easily check that it has the same form as the Gibbs-Shannon formula:

S = −kB
∑
i

pi log pi.

Indeed, take an arbitrary density matrix ρ. For an ensemble that is a mixture of states
|ψj⟩ each with probability pj , ρ is usually constructed from:

ρ =
∑
j

pj |ψj⟩ ⟨ψj | .

According to the spectral theorem for operators (see Section 5.12.1), such a density matrix
can be decomposed as a sum of projectors |ϕj⟩ ⟨ϕj |:

ρ =
∑
j

λj |ϕj⟩ ⟨ϕj | ,

where |ϕj⟩ are orthonormal vectors that are eigenvectors of ρ:

ρ |ϕj⟩ = λj |ϕj⟩
and λi ≥ 0,

∑
λi = 1. Then,

S = −kB⟨log ρ⟩ = −k −BTr[ρ log ρ] = −kB
∑
j

⟨ϕj |ρ log ρ|ϕj⟩ = −kB
∑
i

λi log λi.
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This definition implies that the von Neumann entropy of any pure state is zero.

Theorem 5.2. For the canonical ensemble, ρ = Z−1e−βH, and the entropy is

S = −kB⟨log ρ⟩ =
1

T
U + kB logZ

with U = ⟨H⟩.

Proof. The statement is obvious by inspection and requires no proof. However, a detailed
step-by-step explanation may be useful to some. Recall the definition of the canonical
partition function:

Z =
∑
n

e−En/kBT = Tre−H/kBT

Using the energy eigenstates:
H |n⟩ = En |n⟩ ,

and the Gibbs distribution

pn =
1

Z
e−En/kBT ,

we have:
ρ =

∑
m

|m⟩ ⟨m|Z−1e−H/kBT
∑
n

|n⟩ ⟨n| =
∑
n

pn |n⟩ ⟨n|

Using the definition of average, we then find:

S = −kB⟨log ρ⟩ = −kB
∑
m

⟨m|ρ log ρ|m⟩

whereas substitution of ρ = Z−1e−βH gives:

S =− kB
∑
m

⟨m|Z−1e−βH log(Z−1e−βH)|m⟩

=
kB
Z

∑
m

⟨m|e−βH(logZ + βH)|m⟩

=
kB
Z

∑
m

e−βEm(logZ + βEm)

=kB logZ +
1

T
U

where U = 1
Z

∑
m e

−βEmEm =
∑

m pmEm = ⟨H⟩. □

Definition 5.3 (Nernst Theorem). The determination of entropy as a function of temper-
ature, denoted as S(T ), involves measuring the specific heat CX(T ), where X ∈ {P, V }
represents either constant pressure (CP ) or constant volume (CV ). This measurement is
carried out over the temperature interval [T0, T ]. The entropy is then obtained by inte-
grating the relationship TdS = δQ with δQ = CXdT , leading to the expression:

(5.17) S(T ) = S0 +

∫ T

T0

CX(T
′)

T ′ dT ′,
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where S0 is the value of entropy at the initial temperature T0. This integration assumes
reversible thermodynamic processes.

Nernst’s theorem, often regarded as the Third Law of Thermodynamics, is formulated as:

(5.18) lim
T→0

S(T )

N
= 0,

where N denotes the number of particles or lattice sites. This theorem states that the
entropy per particle approaches zero as the temperature approaches absolute zero, under
ideal conditions such as a perfect crystal. In the context of statistical mechanics, this
theorem is supported by quantum mechanics, which provides a microscopic explanation
for the behavior of systems at very low temperatures, highlighting the role of quantum
effects and imperfections in real materials.

According to statistical mechanics, the value of the entropy at absolute zero, T = 0,
depends on the degeneracy of the ground state. We assume that the ground state energy
E0 is W (E0)-fold degenerate. Let P0 =

∑
i |0i⟩ ⟨0i| be the projection operator2 onto states

with E = E0. Here, |0i⟩ are the kets for which H |0i⟩ = E0 |0i⟩ and i is the index of
degeneracy. (There can be several wavefunctions associated with the ground state energy,
if that level is degenerate.) Then the density matrix of the canonical ensemble can be cast
in the form

ρ =
e−βH

Tr[e−βH]
=

∑
n e

−βEn |n⟩ ⟨n|∑
n e

−βEn
=

∑
i |0i⟩ ⟨0i|+

∑
n>0 e

−β(En−E0) |n⟩ ⟨n|
W (E0) +

∑
n>0 e

−β(En−E0)
,

where: 1) we have divided numerator and denominator by e−βE0 , 2) in the numerator and
denominator we used a sum over states (denoted as

∑
n).

Theorem 5.4. For T = 0, this leads to ρ(T = 0) = P0
W (E0)

, and thus for the entropy, to

S(T = 0) = −kB⟨log ρ⟩ = kB logW (E0).

2An operator P is a projection operator when P 2 = P .
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Proof. Substituting the definition, P0 =
∑

i |0i⟩ ⟨0i| into

S(T = 0) =− kB⟨log ρ⟩ = −kBTr[ρ log ρ] = −kB
∑
m

⟨m| P0

W (E0)
(logP0 − logW (E0))|m⟩

=− kB
W (E0)

∑
m

⟨m|
∑
i

|0i⟩ ⟨0i| (log
∑
k

|0k⟩ ⟨0k| − logW (E0))|m⟩

=− kB
W (E0)

∑
i

⟨0i|(log 1− logW (E0))|0i⟩

=
kB

W (E0)

∑
i

⟨0i| logW (E0)|0i⟩ =
kB

W (E0)
logW (E0)

∑
i

⟨0i|0i⟩︸ ︷︷ ︸
W (E0)

=
kB

����W (E0)
logW (E0) ·����W (E0) = kB logW (E0).

□

The general opinion in mathematical physics is that the ground state of interacting systems
should not be degenerate, or that the degree of degeneracy in any case should be consid-
erably less than the number of particles. If W (E0) = O(1) or even if W (E0) = O(N), we
find

lim
T→0

S(T = 0)

kBN
= 0,

i.e. for such degrees of degeneracy, Nernst’s theorem follows from quantum statistics.

Problem 134. Consider a non-interacting system of N spins, where the only interaction is
of the Zeeman type. The Hamiltonian isH = −B

∑N
i=1 σi, where σi = ±1. The microstates

are denoted by N -tuples (σ1, σ2, . . . , σN ). The macrostates are defined by the numbers of
particles in each state, N1 and N2. These two numbers are constrained by the condition,
N1+N2 = N . The number of microstates in one macrostate (that is, the number of different
microstates that belong to the same macrostate) is given by the binomial distribution

W (N1) =
N !

N1!(N −N1)!
=

(
N

N1

)
.

Show that the degeneracy of a macrostate when N is large is of order

S ∼ O(N).

Does this violate the Third Law?

Solution. Using the Stirling formula:

N ! ≈
√
2πN

(
N

e

)N
,
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and substituting

W (N1) =
N !

N1!(N −N1)!

≈
√
2πN(N/e)N

√
2πN1(N1/e)N1

√
2π(N −N1)((N −N1)/e)N−N1

The binomial coefficient
(
n
k

)
reaches a maximum when k = n/2. Therefore, we focus on

this particular macrostate:

W (N/2) ≈
√
2πN(N/e)N√

2π(N/2)((N/2)/e)N/2
√

2π(N/2)((N/2)/e)N/2

∼ 1√
N

2N

Thus,

S = −kB logW = −kB(N log 2− 1

2
logN).

This certainly appears to violate the law

lim
T→0

S(T = 0)

kBN
= 0.

However, the state k = N/2 is only found in the high-temperature limit. (At high temper-
atures, the thermal energy dominates, so that half the spins point up and half point down
along the axis of quantization.) In the limit T → 0, only the ground state (1, 1, 1, . . . , 1)
exists. You can “prove” this by writing down the density matrix in the zero and high-
temperature temperature limits. (A useful exercise, if you have never done it.) In the
ground state of the non-interacting spin system, the degeneracy is 1 (a finite number), and

in this case, limT→0
S(T=0)
kBN

= 0, is satisfied. ■

Problem 135. Derive the canonical density matrix ρ for a non-interacting spin system
in the high-temperature approximation and show that we get a maximally mixed state,
ρ(T → ∞) = 1

2N
I, where I is the 2N × 2N unit matrix. Conversely, obtain ρ in the zero

temperature limit and show that it is a projector ρ(T = 0) = |0⟩ ⟨0|, where |0⟩ is the ground
state wavefunction, i.e. |0⟩ ≡ |111 . . . 1⟩.

It is best to formulate the Third Law taking into account the possibility of a residual
entropy. This is in practice necessary for the following reasons: (i) there are model systems
with greater ground-state degeneracies (ice, non-interacting magnetic moments); (ii) a very
weak lifting of the degeneracy might make itself felt only at extremely low temperatures;
(iii) a disordered metastable state can be ‘frozen in’ by rapid cooling and retains a finite
residual entropy.
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5.16. Planck’s Law of Radiation

Planck’s law of radiation describes the spectral density of electromagnetic radiation at a
specific frequency for a black body in thermal equilibrium. A black body is an idealized
physical body that absorbs all incident electromagnetic radiation, regardless of frequency or
angle of incidence. In thermodynamics and quantum mechanics, a black body is a perfect
emitter and absorber of radiation. Planck’s law of radiation, derived from the quantization
of energy and the statistical distribution of photons, provides a fundamental understanding
of the electromagnetic radiation emitted by a black body. This law explains the spectral
distribution of radiation and is crucial in fields like astrophysics, climate science, and the
study of thermal radiation in various materials.

Energy States of Photons: Consider a black body at temperature T . The energy of a
photon in the black body is given by ϵ = ℏω, where ℏ is the reduced Planck constant and
ω is the angular frequency of the photon.

Bose-Einstein Distribution: The average number of photons ⟨nω⟩ in a state with energy
ϵ is given by the Bose-Einstein distribution:

⟨nω⟩ =
1

e
ℏω

kBT − 1

where kB is the Boltzmann constant.

Spectral Energy Density: The spectral energy density u(ω, T ) in units of J/m3/rad
is the energy per unit volume per unit frequency. It can be obtained by multiplying the
average number of photons (dimensionless) by the energy of each photon (ℏω, in units of
J) and the density of states g(ω) in units of states/m3/rad:

u(ω, T ) = ⟨nω⟩ · ℏω · g(ω)
where g(ω) is the density of states function.

Density of States: The density of states for photons in three dimensions is given by:

g(ω) =
ω2V

π2c3

where ω is the angular frequency in rad/s, V is the volume of the black body in m3, and c is
the speed of light in m/s. The resulting density of states g(ω) has units of states/m3/rad.

Planck’s Radiation Formula: Substituting the Bose-Einstein distribution and the den-
sity of states into the expression for spectral energy density, we obtain Planck’s radiation
formula:

u(ω, T ) =
ℏω3V

π2c3
1

e
ℏω

kBT − 1
where ℏ (reduced Planck’s constant) has units of J· s, ω (angular frequency) is in rad/s, V
(volume) is in m3, c (speed of light) is in m/s, kB (Boltzmann’s constant) is in J/K, and T
(temperature) is in Kelvin (K). The spectral energy density u(ω, T ) is given in J/m3/rad.
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Bose-Einstein Distribution from the Partition Function: Starting with the canon-
ical partition function, which recognize to be a geometric series:

Z =

∞∑
n=0

e−βℏωkn =
1

1− e−βℏωk

Differentiating both sides with respect to β to introduce a factor of n:

Left-hand side:
d

dβ

( ∞∑
n=0

e−βℏωkn

)
=

∞∑
n=0

(−ℏωkn)e−βℏωkn.

Right-hand side:
d

dβ

(
1

1− e−βℏωk

)
=

ℏωke−βℏωk

(1− e−βℏωk)2

Equating these, we find:
∞∑
n=0

(−ℏωkn)e−βℏωkn =
ℏωke−βℏωk

(1− e−βℏωk)2
.

Simplifying, we obtain:
∞∑
n=0

ne−βℏωkn =
e−βℏωk

(1− e−βℏωk)2
.

Substituting this result back into the expression for ⟨nk,λ⟩ yields the Planck distribution:

⟨nk,λ⟩ =
1

eβℏωk − 1
.

5.17. Stefan-Boltzmann Law

The Stefan-Boltzmann law describes the power radiated from a black body in terms of its
temperature. To derive this law, we start with Planck’s law for black-body radiation and
integrate over all frequencies and solid angles. Planck’s law gives the energy density of
electromagnetic radiation at a specific frequency ω and temperature T :

u(ω, T ) =
ℏω3

π2c3
1

e
ℏω

kBT − 1

where ℏ is the reduced Planck constant, c is the speed of light, kB is the Boltzmann con-
stant, and T is the temperature. The total energy density U(T ) is obtained by integrating
u(ω, T ) over all frequencies:

U(T ) =

∫ ∞

0
u(ω, T ) dω =

∫ ∞

0

ℏω3

π2c3
1

e
ℏω

kBT − 1
dω
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Introduce a dimensionless variable x = ℏω
kBT

to simplify the integral. The integral becomes:

U(T ) =

∫ ∞

0

(kBT )
4

π2c3ℏ3
x3

ex − 1
dx

The integral of x3

ex−1 over x from 0 to ∞ is a standard integral in statistical mechanics,

equal to π4

15 . Substituting the integral value, we find:

U(T ) =
(kBT )

4

π2c3ℏ3
· π

4

15
=

π2k4B
15c3ℏ3

T 4

The power radiated per unit area P is given by P = cU(T ), leading to:

P = σT 4

where σ is the Stefan-Boltzmann constant, given by σ =
π2k4B
60c2ℏ3 . The Stefan-Boltzmann

law states that the total power radiated per unit area by a black body is proportional to
the fourth power of its absolute temperature. It is useful in astronomy, where measure-
ment of the power radiated (light intensity) from a celestial body can be used to infer its
temperature.

5.18. Quantum Mechanical Derivation of Planck Distribution

The Hamiltonian for the radiation field in the second quantized form is typically expressed
as a sum over all modes of the field. Each mode is characterized by a wave vector k and a
polarization index λ. The Hamiltonian is

Ĥ =
∑
k,λ

ℏωk

(
â†k,λâk,λ +

1

2

)
.

Here â†k,λ and âk,λ are the creation and annihilation operators for a photon in the mode

(k, λ), and ωk is the angular frequency of that mode. These operators obey the commuta-
tion relations of bosonic particles. The term 1

2ℏωk represents the zero-point energy of each
mode.

In this formulation, the number operator n̂k,λ = â†k,λâk,λ measures the number of photons

in the mode (k, λ). The Hamiltonian can thus be interpreted as a sum over the energies of
all the photons in the field, with each mode contributing its energy quantized in units of
ℏωk.

The term 1
2ℏωk in the Hamiltonian represents the zero-point energy of each mode of the

field. This is the energy that each mode possesses even in its ground state, due to the
Heisenberg uncertainty principle. In many physical situations, especially when dealing
with phenomena like the interaction of light with matter, only differences in energy are
physically observable, not the absolute energy values. Therefore, the zero-point energy,
being a constant for each mode, can often be omitted without affecting the physics of such
phenomena.
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The Hamiltonian without the zero-point energy term is given by:

Ĥ =
∑
k,λ

ℏωkâ
†
k,λâk,λ.

In this form, the Hamiltonian simply sums the energies of all the photons present in the
field, and it’s particularly convenient in contexts where zero-point energies are not relevant,
such as in many calculations involving light-matter interactions or in situations where
relative energies are the main focus.

The canonical partition function Z at temperature T for the radiation field is defined as
the trace over the Fock space of the Boltzmann exponential:

Z = Tr
(
e−βĤ

)
,

where β = 1
kBT

.

The Fock space for the radiation field is spanned by the states. |{nk,λ}⟩, where {nk,λ}
denotes a set of occupation numbers for all modes (k, λ). This set is usually infinite,
because in general there are an infinite number of modes. The partition function can be
separated into a sum over the total occupation number N and a sum over the microstates
for each value of N :

Z =

∞∑
N=0

∑
{nk,λ}→N

⟨{nk,λ}|e−βĤ |{nk,λ}⟩ .

Since photons are bosons, the occupation number nk,λ for each mode can range from 0 to
∞. The Hamiltonian acts diagonally in this basis, giving

Z =

∞∑
N=0

∑
{nk,λ}→N

e−βℏωkn̂k,λ .

Simplifying further, since each mode is independent, the partition function can be written
as a product of partition functions for each mode:

Z =
∏
k,λ

∞∑
nk,λ=0

e−βℏωkn̂k,λ .

This is a geometric series for each mode, which sums to:

Z =
∏
k,λ

1

1− e−βℏωk
.

This final form of the partition function shows the contribution of each mode of the radi-
ation field, with the product running over all possible modes characterized by wave vector
k and polarization λ. Each term in the product is a geometric series representing the sum
over the occupation number for that particular model.
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To compute the average occupation number ⟨n̂k,λ⟩ for a given mode (k, λ) in the radiation
field, we use the definition:

⟨n̂k,λ⟩ = Tr[ρ̂ n̂k,λ] =
Tr[e−βĤn̂k,λ]

Z
,

where ρ̂ = Z−1e−βĤ is the canonical density matrix and n̂k,λ = â†k,λâk,λ is the number

operator for mode (k, λ).

Given that the Hamiltonian Ĥ =
∑

k,λ ℏωkâ
†
k,λâk,λ is the sum over all modes and acts diag-

onally in the Fock space, the trace operation can be decomposed over the states |{nk′,λ′}⟩:

⟨n̂k,λ⟩ =
1

Z

∑
{nk′,λ′}

⟨{nk′,λ′}|e−βĤn̂k,λ|{nk′,λ′}⟩ .

The expression e−βĤ commutes with n̂k,λ because they are diagonal in the same basis.
Therefore, we can rewrite the expression as

⟨n̂k,λ⟩ =
1

Z

∑
{nk′,λ′}

e−β
∑

k′,λ′ ℏωk′nk′,λ′nk,λ.

Alternative Expression of Summation Over {nk′,λ′}. In the formula

⟨n̂k,λ⟩ =
1

Z

∑
{nk′,λ′}

e−β
∑

k′,λ′ ℏωk′nk′,λ′nk,λ

we can express the summation over all configurations more explicitly. The formula
becomes:

⟨n̂k,λ⟩ =
1

Z

∏
(k′′,λ′′ )̸=(k,λ)

 ∞∑
nk′′,λ′′=0

 e−β(ℏωknk,λ+
∑

k′′,λ′′ ℏωk′′nk′′,λ′′)nk,λ

Here, each summation
∑∞

nk′′,λ′′=0 runs over all possible occupation numbers for

modes other than (k, λ), and the product
∏

(k′′,λ′′ )̸=(k,λ) combines these for all other

modes. The term ℏωknk,λ is separated to specifically account for the mode (k, λ).

Transformation of the Average Occupation Number Expression

We provide a detailed proof of transforming the expression for the average occupation
number in Fock space from its original form to a product over modes. The starting point
is the expression:

⟨n̂k,λ⟩ =
1

Z

∑
{nk′,λ′}

e−β
∑

k′,λ′ ℏωk′nk′,λ′nk,λ
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The exponential of a summation can be decomposed:

e−β
∑

k′,λ′ ℏωk′nk′,λ′ =
∏
k′,λ′

e−βℏωk′nk′,λ′

Rewriting to isolate the mode (k, λ):∏
k′,λ′

e−βℏωk′nk′,λ′ = e−βℏωknk,λ
∏

(k′′,λ′′) ̸=(k,λ)

e−βℏωk′′nk′′,λ′′

Substituting back into the original expression and expressing the summation as a product:

⟨n̂k,λ⟩ =
1

Z

 ∞∑
nk,λ=0

nk,λe
−βℏωknk,λ

∏
(k′′,λ′′ )̸=(k,λ)

 ∞∑
nk′′,λ′′=0

e−βℏωk′′nk′′,λ′′


Remark 5.5. If you are seeing this type of expression for the first time, you should
think about the use of summation indices in this formula. Outer Summation. The
outer summation in the formula

⟨n̂k,λ⟩ =
1

Z

∑
{nk′,λ′}

⟨{nk′,λ′}|e−βĤn̂k,λ|{nk′,λ′}⟩

runs over all possible sets of occupation numbers {nk′,λ′} for each mode (k′, λ′) in
the system. It represents a summation over all possible states in Fock space.

Inner Summation. The inner summation within the exponential, e−β
∑

k′,λ′ ℏωk′nk′,λ′ ,
is over the energy contribution of each individual mode (k′, λ′) to the total Hamil-
tonian. For each state in the outer sum, this inner sum calculates the total energy
of that state by summing up the energy contributions of each occupied mode.
The indices nk′,λ′ are consistently used in both sums because we are summing over
the same set of quantum numbers (modes). In each term of the outer sum, the inner
sum calculates the total energy for that specific set of occupation numbers. The
occupation number nk,λ outside the exponential is the specific occupation number
for which the average is being calculated.

Since nk,λ is just a number, the occupation number for the state |{nk′,λ′}⟩, it can be taken
out of the summation over other modes. The expression simplifies to:

⟨n̂k,λ⟩ =
1

Z

∞∑
nk,λ=0

nk,λe
−βℏωknk,λ

∏
(k′,λ′ )̸=(k,λ)

∞∑
nk′,λ′=0

e−βℏωk′nk′,λ′ .
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Remark 5.6. Let’s take a look at why the summation
∑∞

nk,λ=0 nk,λe
−βℏωknk,λ arises

in this context.
Decomposition in Fock Space. Initially, we sum over all possible sets of occupation
numbers for all modes in the entire Fock space, covering all possible quantum states.
Isolating a Single Mode. Focusing on a specific mode (k, λ), we isolate the contri-
bution of this mode from the entire set of occupation numbers.
Summing Over nk,λ. For the mode (k, λ), the occupation number nk,λ can take
any non-negative integer value. Therefore, we sum over all these possible values to
account for every possible state of this mode:

∞∑
nk,λ=0

nk,λe
−βℏωknk,λ

Product Over Other Modes. The product term accounts for the contribution of all
other modes, summing over their possible occupation numbers separately.
This summation represents the statistical behavior of the mode (k, λ), considering
all possible ways it can be populated under the given temperature conditions. It is
a key principle in statistical mechanics to consider the contributions of all possible
configurations to a statistical average.

5.19. Explicit Representation of Summation in Fock Space

The summation
∑

{nk,λ} over all states in Fock space can be explicitly represented as an

infinite series of nested summations over occupation numbers for each mode.

5.19.1. Case 1: Bosonic Fock Space. The summation is represented as:∑
{nk,λ}

=
∞∑

nk1,λ1
=0

∞∑
nk2,λ2

=0

· · ·
∞∑

nkj ,λj
=0

· · · =
∏
(k,λ)

 ∞∑
nk,λ=0


where each summation is over the occupation number nki,λi for a specific mode (ki, λi),
running from 0 to ∞. The dots ”...” indicate the continuation of this pattern for all modes
in the system.

Each term in the overall summation corresponds to a specific configuration of particles
across all modes, encompassing all possible states in the Fock space.

5.19.2. Case 2: Fermionic Fock Space. For fermionic systems, the Pauli exclusion
principle restricts each mode in Fock space to be occupied by at most one fermion. There-
fore, the summation over Fock space states for fermions is different from that for bosons.
For a fermionic mode characterized by a wavevector k and a polarization λ, the occupation
number nk,λ can only take the values 0 or 1. The summation for each fermionic mode is
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thus
∑1

nk,λ=0. The overall summation over fermionic Fock space is the product of these

individual summations for each mode:∏
(k,λ)

 1∑
nk,λ=0


This represents all possible configurations of fermions in the system.

5.19.3. Derivation of the Gibbs Distribution: Classical Case. We derive the Gibbs
distribution by maximizing the Gibbs-Shannon entropy under the constraint of fixed total
energy. The Gibbs-Shannon entropy is given by:

S = −kB
∑
i

pi log pi

We have two constraints: 1) normalization:
∑

i pi = 1. 2) fixed total energy:
∑

i piEi =
⟨E⟩. Introducing Lagrange multipliers α and β, the function to maximize is:

L = −kB
∑
i

pi log pi − α

(∑
i

pi − 1

)
− β

(∑
i

piEi − ⟨E⟩

)
.

Setting the derivative to zero yields:

−kB(1 + log pi)− α− βEi = 0.

Solving for pi we find pi = e
−(1+ α

kB
)
e
−βEi

kB . We may absorb kB into the definition of β. The

factor e
−(1+ α

kB
)
ends up being 1/Z due to normalization. Using normalization, we find:

pi =
e−βEi∑
j e

−βEj
.

5.19.4. Derivation of the Gibbs Distribution: Quantum Case. We derive the quan-
tum Gibbs distribution by maximizing the von Neumann entropy in quantum statistical
mechanics, S = −kBTr(ρ̂ log ρ̂) subjected to two constraints: 1) normalization: Tr(ρ̂) = 1.

2) Fixed average energy: Tr(ρ̂Ĥ) = ⟨E⟩. To deal with constraints we introduce Lagrange
multipliers α and β. The function to maximize is then:

L = −kBTr(ρ̂ log ρ̂)− α (Tr(ρ̂)− 1)− β
(
Tr(ρ̂Ĥ)− ⟨E⟩

)
Maximizing with respect to ρ̂ yields −kB(log ρ̂ + I) − αI − βĤ = 0. Solving for ρ̂ gives

ρ̂ = e
−(1+ α

kB
)I
e
−βĤ

kB . We may absorb kB into the definition of β. Also, the term e
−(1+ α

kB
)

ends up being Z due to the requirement for normalization Tr[ρ̂] = 1. Using normalization,
we find:

ρ̂ =
e−βĤ

Tr(e−βĤ)
.

β is related to the temperature T : β = 1
kBT

.
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5.19.5. Derivation of the Grand Canonical Distribution: Quantum Case. Sta-
tistical operators such as

(5.19) ρ̂ =
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
,

are required when our knowledge of the state of the system is incomplete. Here β = 1
kBT

.

The trace is performed in Fock space, i.e.

Tr[. . . ] =
∑

n1,...,n∞

⟨n1, . . . , n∞| . . . |n1, . . . , n∞⟩ .

The statistical operator can be derived from the principle of maximum entropy, which
states that the entropy

S = −kBTr[ρ̂ log ρ̂]
should reach a maximum for the true statistical operator, provided that the average energy
and particle number are determined by

(5.20) E = Tr[ρ̂Ĥ], N = Tr[ρ̂N̂ ].

This is obviously true if we minimize the thermodynamic potential

(5.21) Ω = Tr

[
ρ̂

(
1

β
log ρ̂+ Ĥ − µN̂

)]
.

where the constraints (5.20) are taken into account by means of Lagrange multipliers, i.e.,
β and the chemical potential µ. Their meaning becomes clear when we rewrite (5.21) in
the familiar form

Ω = E − µN − TS.

One can easily check that (5.19) minimizes the thermodynamic potential,

∂Ω

∂ρ̂
=

∂

∂ρ̂
Tr

[
ρ̂

(
1

β
log ρ̂+ Ĥ − µN̂

)]
= β−1(log ρ̂+ I) + Ĥ − µN̂ = 0,

→ ρ̂ = e−I−βĤ+βµN̂ → ρ̂ =
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
,
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which is obtained as

Ω =Tr

[
ρ̂

(
1

β
log ρ̂+ Ĥ − µN̂

)]
=Tr

[
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]

(
1

β
log

e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
+ Ĥ − µN̂

)]

=Tr

[
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]

(
1

β
(−β(Ĥ − µN̂)− log Tr[e−β(Ĥ−µN̂)]) + Ĥ − µN̂

)]

=Tr

[
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]

(
− 1

β
log Tr[e−β(Ĥ−µN̂)]

)]

=

(
− 1

β
log Tr[e−β(Ĥ−µN̂)]

)
Tr

[
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]

]
=− β−1 logZ

where the grand partition function is

Z = Tr
[
e−β(Ĥ−µN̂)

]
.





Chapter 6

Quantum Statistics

Quantum statistics is an important framework for comprehending systems where quantum
effects are non-negligible. Quantum effects typically manifest themselves at very low tem-
peratures. Classical statistical mechanics, with its roots in the Boltzmann distribution,
serves well for a wide range of macroscopic systems where quantum effects are marginal.
However, at the microscopic level, particularly for systems at low temperatures or high
densities, quantum effects become significant, necessitating a quantum statistical approach.
This approach accounts for the intrinsic quantum nature of particles, encapsulated in the
principles of indistinguishability and quantum state occupation.

The foundational distributions in quantum statistics are the Bose-Einstein (BE) and Fermi-
Dirac (FD) distributions. They emerge from considering the quantum characteristics of
bosons and fermions, respectively. Bosons, governed by BE statistics, are particles that
do not obey the Pauli exclusion principle, allowing multiple particles to occupy the same
quantum state. In contrast, fermions, described by FD statistics, are subject to the Pauli
exclusion principle, which prohibits more than one particle from occupying the same quan-
tum state. The profound implications of these quantum statistical distributions are evident
in a range of phenomena, from the behavior of electrons in metals and semiconductors to
the properties of photons in blackbody radiation.

The transition from quantum to classical statistics is not merely a theoretical curiosity but
a bridge connecting quantum behavior with classical observations. In the high-temperature
or low-density limit, both BE and FD statistics smoothly converge to the classical Boltz-
mann distribution, underscoring the universality and interconnectedness of statistical me-
chanical principles across scales and regimes.

379
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6.1. Bose-Einstein, Fermi-Dirac and Boltzmann Distributions

The derivation of the BE and FD distributions enables us to understand the difference
between different types of quantum particles, as well as the transition to classical mechanics.
This derivation begins with the grand canonical partition function, a tool that allows for
the consideration of systems in thermal equilibrium with a reservoir, where both energy
and particle number can fluctuate. The grand canonical partition function encapsulates
the probabilistic nature of the system’s state and is a powerful framework for exploring
quantum statistics.

The grand canonical ensemble (GCE), represented by its partition function, serves as a
comprehensive framework in statistical mechanics, particularly advantageous for analyz-
ing systems in thermal and particle exchange equilibrium with a reservoir. This partition
function not only encapsulates the probabilistic distribution of system states but also ac-
commodates variations in particle number and energy levels, a feature crucial for studying
quantum gases and condensed matter systems. Its formulation allows for the precise cal-
culation of thermodynamic properties, such as pressure and chemical potential, and offers
a robust approach for deriving quantum statistical distributions like the Bose-Einstein and
Fermi-Dirac distributions. The GCE is particularly effective in situations where particle
number fluctuations are significant, providing insights into phase transitions and critical
phenomena, which are essential in understanding many-body quantum systems.

From this starting point, we compute the average occupation numbers. The average oc-
cupation number represents the expected number of particles in a given quantum state,
and its determination is fundamental for understanding the statistical behavior of quantum
systems. By taking the derivative of the grand canonical partition function with respect
to the chemical potential, we extract these average occupation numbers. This process un-
veils the distinct statistical behaviors of bosons and fermions, leading to the BE and FD
distributions, respectively.

These distributions are not just mathematical constructs; they are the key to unlocking a
deeper understanding of the quantum world. They explain a myriad of physical phenomena,
from the unique characteristics of superconductors and superfluids to the distribution of
electrons in atoms and the characteristics of blackbody radiation. The derivation of these
distributions is more than a theoretical exercise; it’s a journey through the heart of quantum
mechanics, revealing how fundamental quantum principles manifest in the macroscopic
properties of materials and phenomena we observe.
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6.1.1. Derivation.

Z(V, T, µ) =
∞∑
N=0

eβµNZ(N,V, T )

=
∑
N

λn
∗∑

{nk}

e−β
∑

i ϵini

=
∑
N

∗∑
{nk}

λ
∑

i nie−β
∑

i ϵini

=
∑
N

∗∑
{nk}

∏
k

(
λe−βϵk

)nk

=

n1(max)∑
n1=0

n2(max)∑
n2=0

· · ·
∏
k

(
λe−βϵk

)nk

=
∏
k

nk(max)∑
nk=0

(
λe−βϵk

)nk

Fermions

ZFD =
∏
k

(1 + λe−βϵk)

Bosons

ZBE =
∏
k

∞∑
nk=0

(λe−βϵk)nk =
∏
k

(1− λe−βϵk)−1

Combining the two results:

ZFD
BE

=
∏
k

(1± λe−βϵk)±1.

From this we compute the average number of particles:

⟨N⟩ =
∑
k

nk = kBT

(
∂

∂µ
logZ

)
V, T = λ

(
∂

∂λ
logZ

)
V,T

=
∑
k

λe−βϵk

1± λe−βϵk

so that

⟨nk⟩ =
λe−βϵk

1± λe−βϵk
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Average energy:

⟨E⟩ = N⟨ϵ⟩ =
∑
k

⟨nk⟩ϵk =
∑
k

λϵke
−βϵk

1± λe−βϵk

Equation of state:

PV = kBT logZ(V, T, µ) = ±kBT
∑
k

log
(
1± λe−βϵk

)
The positive (+) sign indicates Fermi-Dirac statistics. The negative (-) sign indicates
Bose-Einstein statistics.

The Boltzmann (classical) limit is obtained at high temperatures, where the occupation
number is vanishingly small. To accomplish this (small occupation number) we take the
limit λ→ 0 and obtain

⟨nk⟩ = λe−βϵk

6.2. Fermi-Dirac Distribution

The advantage of introducing the statistical operator by means of a variational principle
is that it allows one to construct upper bounds for the thermodynamic potential. Let us
apply this method to derive the Hartree-Fock equation for finite temperature and obtain
an effective one-particle equation. We start with trial form of the statistical operator

ρ̂ =
e−βĤtr

Tr[e−βĤtr ]

and associated Hamiltonian containing only one-body operators:

Ĥtr =
∑
j

(Ej − µ)n̂j ,

where the Ej may be unknowns (variational parameters). Using

log ρ̂ = −βĤtr − log Tr[e−βĤtr ],

we have, according to

Ω = Tr

[
ρ̂

(
1

β
log ρ̂+ Ĥ − µN̂

)]
to minimize

(6.1) Ω = − 1

β
log Tr(e−βĤtr) +

Tr
(
e−βĤtr(Ĥ − Ĥtr)

)
Tr[e−βĤtr ]

.
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Using the Fock space representation of the trace, the traces of one-particle operators can
easily be evaluated. First we consider the trace of the trial statistical operator

Tr[e−βĤtr ] =
∑

n1,...,n∞

⟨n1, . . . , n∞|e−β
∑

j(Ej−µ)n̂j |n1, . . . , n∞⟩

=
∞∏
j=1

∑
nj=0,1

e−β(Ej−µ)nj =
∞∏
j=1

(1 + e−β(Ej−µ)).

Correspondingly, we obtain, for the trace containing the trial Hamiltonian,

Tr[e−βĤtrĤtr] =
∑

n1,...,n∞

⟨n1, . . . , n∞|
∑
i

(Ei − µ)n̂ie
−β

∑
j(Ej−µ)n̂j |n1, . . . , n∞⟩

=
∑
i,ni

(Ei − µ)nie
−β(Ei−µ)ni

∞∏
j ̸=i

∑
nj=0,1

e−β(Ej−µ)nj

=
∑
i,ni

(Ei − µ)nie
−β(Ei−µ)ni

∞∏
j ̸=i

(1 + e−β(Ej−µ))

=
∑
i

(Ei − µ)e−β(Ei−µ)

1 + e−β(Ei−µ)

∞∏
j=1

(1 + e−β(Ej−µ)).

Combining the last two results we obtain

Tr[e−βĤtrĤtr]

Tr[e−βĤtr ]
=
∑
i

(Ei − µ)fi,

where

fi =
1

1 + eβ(Ei−µ)
.

Thus, the statistical average in Fock space is reduced to a trace of one-particle energies,
weighted with the one-particle distribution function, i.e. the Fermi-Dirac distribution func-
tion, fi. This also follows directly from the general definition of the one-particle distribution
function

fi = Tr[ρ̂n̂i],

if the statistical operator is approximated by ρ̂ = e−βĤtr

Tr[e−βĤtr ]
. We now proceed to evaluate

(6.1) and calculate the contribution of the many-particle Hamiltonian. As before, the trace
in Fock space of the one-particle contribution yields a trace in one-particle Hilbert space,
i.e.

Tr
(∑

i ⟨i|ĥ|i⟩ n̂ie−βĤtr

)
Tr[e−βĤtr ]

=
∑
i

⟨i|ĥ|i⟩ fi =
∑
i

hifi.
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The trace over the interaction contribution is obtained by applying the Hartree-Fock fac-
torization (|Φ0⟩ is a single Slater determinant)

⟨Φ0|c†jc
†
j′ck′ck|Φ0⟩ =δjkδj′k′ ⟨Φ0|c†jck|Φ0⟩ ⟨Φ0|c†j′ck′ |Φ0⟩

− δjk′δj′k ⟨Φ0|c†jck′ |Φ0⟩ ⟨Φ0|c†j′ck|Φ0⟩
=(δjkδj′k′ − δjk′δj′k)nknk′(6.2)

as follows:

Tr

∑
ij

vijn̂in̂je
−βĤtr

 =
∑

n1,...,n∞

⟨n1, . . . , n∞|
∑
ij

vijn̂in̂je
−β

∑
k(Ek−µ)n̂k |n1, . . . , n∞⟩

=
∑
ij

vij
∏
k ̸=i,j

(1 + e−β(Ek−µ)) =
∑
ij

vijfifjTr[e
−βĤtr ],

where we have used the abbreviation

vij = ⟨ij|v|ij⟩ − ⟨ij|v|ji⟩ .
Thus the statistical average of the Hamiltonian (invoking 6.2):

Ĥ =
∑
j

⟨j|h|j⟩ c†jcj +
e2

2

∑
jklm

⟨jk|v|lm⟩ c†jc
†
kcmcl

=
∑
j

⟨j|h|j⟩ n̂j +
e2

2

∑
jklm

(⟨jj′|v|jj′⟩ − ⟨jj′|v|j′j⟩)n̂jn̂j′

takes the form
Tr
(
e−βĤtrĤ

)
Tr[e−βĤtr ]

=
∑
i

hifi +
e2

2

∑
ij

vijfifj .

Lumping these results together, we see that the thermodynamic potential is given by

Ω = − 1

β

∑
i

log
(
1 + e−β(Ei−µ)

)
+
∑
i

(hi − Ei)fi +
e2

2

∑
ij

(⟨ij|v|ij⟩ − ⟨ij|v|ji⟩)fifj .

Evaluating the derivative with respect to the variational parameter Ei, we obtain, as a
condition for the stationarity of the thermodynamic potential,

hi + e2
∑
j

(⟨ij|v|ij⟩ − ⟨ij|v|ji⟩)fj = Ei,

which shows that we have solved the problem if the one-particle energies are determined
from a Hartree-Fock equation similar to (q = {r, s})

h(r)φn(r)+e
2
∑
j

∫
d3q′ (v(r− r′)φ∗

j (q
′)φj(q

′)φn(q)− v(r− r′)φ∗
j (q

′)φn(q
′)φj(q)

)
= Enφn(q)
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in which, however, the occupation numbers have been replaced by Fermi functions. The
resulting equation constitutes a rather complicated problem of self-consistency, which we
shall now rewrite in a more compact form:

[h(r) + ϕeff (r)]φi(r) +

∫
d3r′Σ(r, r′)φi(r

′) = Eiφi(r),

where φi are occupied one-particle states, ϕeff is the Hartree potential

ϕeff (r) = e2
∑
i

∫
d3r′v(r− r′)|φi(r′)|2, ρ(r) = −e

∑
i

|φi(r)|2,

and we have introduced the so-called exchange self-energy

Σ(r, r′) = e2
∑
j

v(r− r′)φ∗
j (r)φj(r

′)fj .

6.3. Electron Gas Model

The electron gas model is a theoretical framework used to understand the behavior of
electrons in a solid, particularly metals. It simplifies the complex interactions in a solid by
considering the electrons as a gas of non-interacting particles confined within a potential
well, typically a box-like potential.

In this model, the key quantum mechanical property is the Pauli exclusion principle, which
states that no two electrons can occupy the same quantum state. This leads to the filling of
energy levels up to a certain point, known as the Fermi level, at absolute zero temperature.
The distribution of electrons across energy states at higher temperatures is described by
the Fermi-Dirac distribution.

This electron gas model is fundamental in solid-state physics and helps explain various prop-
erties of materials, such as electrical conductivity, heat capacity, and magnetic behavior.
It serves as the starting point for more complex models that incorporate electron-electron
and electron-lattice interactions.

In this section, we shall give a brief overview of the electron gas model in metals and
discuss its importance in solid-state physics and quantum statistical mechanics. The key
assumptions for the electron gas model are that: electrons are non-interacting electrons,
and placed in an infinite potential well. From this, we easily obtain the quantum states of
electrons in a box (three-dimensional well). This differs from the gas of classical particles
in that we must apply the Pauli exclusion principle. We will assume that the reader is
already familiar with the derivation of energy Levels, which are obtained from a quantum
mechanical treatment using the Schrödinger equation for particles in a box. Quantization

of momentum leads to: p = ℏk. The energy levels are: E = p2

2m = ℏ2k2
2m .

6.3.1. Density of States Derivation. Consider a three-dimensional box with length L
in each dimension, containing electrons that behave as a free electron gas. First, we rec-
ognize that the wavevectors of the electrons are quantized due to the boundary conditions
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of the box. The wavevector components are given by:

(6.3) kx =
nxπ

L
, ky =

nyπ

L
, kz =

nzπ

L

where nx, ny, nz are integers. In k-space, each quantum state occupies a volume of
(
2π
L

)3
.

The number of states within a spherical shell of radius k and thickness dk in k-space is:

(6.4) dn = 2× 4πk2dk(
2π
L

)3 =
V

2π2
k2dk

The factor of 2 accounts for the two possible spin states of each electron.

The energy of an electron in a free electron gas is given by E = ℏ2k2
2m . Rearranging this, we

get k =
√

2mE
ℏ2 . Substituting this into our expression for dn, we get:

(6.5) dn =
V

2π2

(√
2mE

ℏ2

)2

d

(√
2mE

ℏ2

)
The density of states g(E) is then given by the number of states per unit energy interval,
which is dn

dE :

(6.6) g(E) =
dn

dE
=

V

2π2

(
2m

ℏ2

)3/2√
E

This is the density of states for a three-dimensional electron gas. It shows that the density
of states increases as the square root of the energy.

6.3.2. Density of States Derivation. Starting from the equation for the number of
states dn in a differential volume of energy space:

(6.7) dn =
V

2π2

(√
2mE

ℏ2

)2

d

(√
2mE

ℏ2

)
we proceed to find the density of states dn

dE . First, simplify the expression inside the square
brackets:

(6.8)

(√
2mE

ℏ2

)2

=
2mE

ℏ2

Thus, the equation becomes:

(6.9) dn =
V

2π2
2mE

ℏ2
d

(√
2mE

ℏ2

)
Next, differentiate the square root term:

(6.10) d

(√
2mE

ℏ2

)
=

1

2
√

2mE
ℏ2

dE =
ℏ

2
√
2mE

dE
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Substituting this back into the equation for dn gives:

(6.11) dn =
V

2π2
2mE

ℏ2
· ℏ
2
√
2mE

dE

Simplifying this expression, we obtain:

(6.12) dn =
V

2π2
m

ℏ
√
2mE

EdE

Finally, computing dn
dE gives the density of states g(E):

(6.13)
dn

dE
=

V

2π2
m

ℏ
√
2mE

· 3
2
=

3V

4π2

(
2m

ℏ2

)3/2

E1/2

This is the density of states for a three-dimensional electron gas.

6.3.3. Fermi Energy and Fermi-Dirac Distribution. The Fermi energy EF is defined
as the highest occupied energy level at absolute zero temperature. For an electron gas, the
total number of electrons N is given by integrating the density of states g(E) up to the
Fermi energy:

(6.14) N =

∫ EF

0
g(E)dE

Substituting the expression for g(E) in a three-dimensional electron gas:

(6.15) N =

∫ EF

0

V

2π2

(
2m

ℏ2

)3/2√
EdE

Solving this integral, we find:

(6.16) EF =
ℏ2

2m

(
3π2N

V

)2/3

The Fermi-Dirac distribution function f(E) describes the probability that an energy state
at energy E is occupied by an electron at finite temperature T :

(6.17) f(E) =
1

e(E−µ)/kBT + 1

Here, µ is the chemical potential, which approaches EF at absolute zero. At T = 0K,
this distribution becomes a step function, with all states below EF filled and those above
empty. At temperatures above absolute zero, the occupation of energy levels near EF
starts to spread out due to thermal excitation:

• For E < EF , f(E) decreases from 1.

• For E > EF , f(E) increases from 0.

This thermal smearing effect is crucial for understanding the behavior of electrons in metals
and semiconductors at finite temperatures.
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6.3.4. Thermodynamic Properties.

6.3.4.1. Internal Energy. The internal energy U of the electron gas can be calculated by
summing the energies of all electrons, each weighted by the probability of being in a given
energy state, provided by the Fermi-Dirac distribution:

(6.18) U =

∫ ∞

0
E · g(E) · f(E) dE

Substituting the expressions for g(E) and f(E):

(6.19) U =

∫ ∞

0
E · V

2π2

(
2m

ℏ2

)3/2√
E · 1

e(E−µ)/kBT + 1
dE

This integral does not have a simple analytical solution and is typically evaluated numer-
ically, especially at finite temperatures. This expression for U represents the total energy
of the electron gas, taking into account the quantum mechanical nature of the electrons
and the statistical distribution of their energies at a given temperature.

6.3.4.2. Specific Heat. The specific heat at constant volume CV can be derived from the
temperature derivative of the internal energy:

(6.20) CV =

(
∂U

∂T

)
V

Evaluating this derivative involves differentiating under the integral, which is complex but
can be approximated under certain conditions (e.g., low temperatures). The resulting
expression provides insight into the temperature dependence of the specific heat.

At temperatures much lower than the Fermi temperature (T ≪ TF ), the specific heat of
the electron gas is linear in T :

(6.21) CV ≈ γT

where γ is a constant that depends on the electron density and the effective mass of
electrons. This linear behavior is a characteristic feature of metals and is in contrast to
the T 3 dependence observed for lattice vibrations (phonons).

6.3.5. Heat Capacity of Electron Gas at Low Temperatures. Starting from the
expression for the internal energy U of the electron gas:

(6.22) U =

∫ ∞

0
E · g(E) · f(E) dE

where g(E) is the density of states and f(E) is the Fermi-Dirac distribution.

6.3.5.1. Density of States and Fermi-Dirac Distribution. For a three-dimensional electron
gas, the density of states is given by:

(6.23) g(E) =
3V

4π2

(
2m

ℏ2

)3/2

E1/2
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The Fermi-Dirac distribution at low temperatures (T ≪ TF ) can be approximated as:

(6.24) f(E) ≈ θ(EF − E)

where θ is the Heaviside step function, and EF is the Fermi energy.

6.3.5.2. Internal Energy at Low Temperatures. At low temperatures, the internal energy
simplifies to:

(6.25) U ≈
∫ EF

0
E · g(E) dE

Substituting g(E) and integrating gives:

(6.26) U ≈ 3V

4π2

(
2m

ℏ2

)3/2 ∫ EF

0
E3/2 dE

Evaluating the integral results in:

(6.27) U ≈ 3V

4π2

(
2m

ℏ2

)3/2

· 2
5
E

5/2
F

6.3.5.3. Heat Capacity. The heat capacity at constant volume CV is the temperature de-
rivative of the internal energy:

(6.28) CV =

(
∂U

∂T

)
V

Since EF is a function of temperature, we differentiate U with respect to T :

(6.29) CV ≈ ∂

∂T

[
3V

4π2

(
2m

ℏ2

)3/2

· 2
5
E

5/2
F

]
At low temperatures, it can be shown that:

(6.30) CV ∝ T

Therefore, at low temperatures, the heat capacity of the electron gas is linearly dependent
on the temperature, which is a characteristic feature of metals.

6.3.5.4. Electronic Contribution to Heat Capacity. In a metal, the total heat capacity has
contributions from both the electron gas and the lattice (phonons). However, at low tem-
peratures, the electronic contribution (linear in T ) dominates over the lattice contribution
(T 3 dependence).

6.3.5.5. High-Temperature Limit. At high temperatures (T ≫ TF ), the specific heat ap-
proaches the classical limit set by the Dulong-Petit law, indicating a saturation in the
contribution of electrons to the heat capacity.

6.3.6. High-Temperature Limit: Dulong-Petit Law.
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6.3.6.1. Classical Model of Lattice Vibrations. In a solid, atoms vibrate about their equi-
librium positions. At high temperatures, where kBT ≫ ℏω (with ω being the vibrational
frequency of the atoms), these vibrations can be treated classically.

6.3.6.2. Equipartition Theorem. The equipartition theorem states that each degree of free-
dom contributes 1

2kBT to the internal energy per particle. In a solid, each atom has 3
degrees of freedom for kinetic energy and 3 for potential energy, totaling 6 degrees of
freedom.

6.3.6.3. Internal Energy. The internal energy U per mole of a solid is then given by:

(6.31) U = 3NAkBT

where NA is Avogadro’s number, representing the number of atoms per mole.

6.3.6.4. Heat Capacity at Constant Volume. The molar heat capacity at constant volume
CV is the derivative of the internal energy with respect to temperature:

(6.32) CV =

(
∂U

∂T

)
V

=

(
∂

∂T

)
V

(3NAkBT ) = 3NAkB

Since R = NAkB (where R is the gas constant), this simplifies to:

(6.33) CV = 3R

The Dulong-Petit law, CV = 3R, is thus derived, predicting the molar heat capacity at
constant volume for solid elements at high temperatures. This law is a result of classi-
cal considerations of lattice vibrations and does not directly apply to the electronic heat
capacity of an electron gas.

6.3.7. Electrical and Thermal Conductivities.

6.3.7.1. Electrical Conductivity. The electrical conductivity (σ) in metals can be under-
stood through the Drude model, extended by quantum considerations of the electron gas.
The conductivity is given by:

(6.34) σ = neµ

where n is the electron density, e is the elementary charge, and µ is the electron mobility.

6.3.7.2. Drude Model Revisited. In the quantum context, the electron mobility can be
expressed as:

(6.35) µ =
eτ

m
where τ is the mean free time between collisions, and m is the electron mass.

6.3.7.3. Mean Free Path. The mean free path (λ) of electrons, which is the average distance
traveled between collisions, can be linked to the conductivity:

(6.36) λ = vF τ

where vF is the Fermi velocity.
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6.3.7.4. Thermal Conductivity. The Wiedemann-Franz law relates the thermal conductiv-
ity (k) to the electrical conductivity:

(6.37) k = LσT

where L is the Lorenz number and T is the absolute temperature.

6.3.7.5. Lorenz Number. The Lorenz number is a key constant in the Wiedemann-Franz
law, which relates the thermal conductivity (k) to the electrical conductivity (σ) of a
material. The Lorenz number is given by:

(6.38) L =
π2

3

(
kB
e

)2

where kB is the Boltzmann constant and e is the elementary charge. This relation is a con-
sequence of the fact that the same free electrons contribute to both electrical and thermal
conduction. The Lorenz number, approximately 2.44 × 10−8WΩK−2, indicates a funda-
mental relationship between electrical and thermal conductivities in metals, suggesting a
profound connection between these properties and the electronic structure of the material.

6.3.7.6. Temperature Dependence. Both electrical and thermal conductivities are temperature-
dependent. The resistivity (inverse of conductivity) in metals typically increases with tem-
perature due to increased scattering of electrons.

6.3.7.7. Quantum Corrections. In more advanced treatments, quantum corrections to the
Drude model are considered, taking into account the Fermi-Dirac statistics and the Pauli
exclusion principle. These corrections lead to a more accurate description of conductivities
in metals, especially at low temperatures.

6.4. Bose-Einstein Condensation

Bose-Einstein Condensation (BEC), a concept initially proposed in the early 1920s by
Satyendra Nath Bose and further developed by Albert Einstein, represents a unique state
of matter where bosons occupy the same quantum state at extremely low temperatures.
However, the experimental realization of BEC was a challenge for many decades due to the
requirement of ultra-low temperatures.

The breakthrough came in the 1990s with the advent of innovative cooling techniques,
including laser cooling and evaporative cooling. In 1995, independent experiments by Eric
A. Cornell, Carl E. Wieman, and Wolfgang Ketterle successfully observed BEC in dilute
gases of alkali atoms like Rubidium-87 and Sodium-23, marking a significant advancement
in quantum physics and leading to the 2001 Nobel Prize in Physics.

The phenomenon of BEC is distinct from Fermi-Dirac statistics, which govern the behavior
of fermions (particles with half-integer spin), such as electrons and protons. Bosons, in-
cluding photons and helium-4 atoms, adhere to Bose-Einstein statistics, allowing multiple
particles to occupy the same quantum state. This fundamental distinction underpins vari-
ous quantum phenomena, including superfluidity, superconductivity, and laser properties.
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The realization of BEC has profound implications for both fundamental physics and prac-
tical applications. It provides an experimental platform to explore quantum macroscopic
phenomena and serves as a testing ground for quantum theories. BECs are crucial in un-
derstanding quantum phenomena on a macroscopic scale, such as superfluidity, quantized
vortices, and Josephson junctions.

In terms of applications, BECs offer potential in quantum computing, where their coher-
ence properties make them suitable for developing quantum bits. They are also ideal for
precision measurements, enhancing the accuracy of devices like atomic clocks and gravita-
tional wave detectors. Furthermore, BECs are instrumental in condensed matter physics
research and have potential applications in optics and photonics.

6.4.1. Wavefunction of Bose-Einstein Condensates. In the context of Bose-Einstein
Condensates (BECs), the treatment of the wavefunction as a simple product of single-
particle wavefunctions, rather than a symmetrized permanent, merits explanation. Under
normal circumstances, for a system of bosons, the many-body wavefunction should be
symmetric under the exchange of any two particles, necessitating the use of a permanent.
The permanent of a matrix is similar to the determinant but without alternating signs:

(6.39) Permanent(A) =
∑
σ∈SN

N∏
i=1

ai,σ(i),

where SN is the set of all permutations of N elements, and ai,σ(i) are the elements of matrix
A. This is in contrast to the Slater determinant used for fermions, which incorporates
alternating signs to ensure antisymmetry:

(6.40) Determinant(A) =
∑
σ∈SN

sgn(σ)

N∏
i=1

ai,σ(i),

where sgn(σ) denotes the sign of the permutation σ. In BECs, however, the many-body
wavefunction simplifies due to the macroscopic occupation of the same quantum state by
bosons. The wavefunction can be expressed as:

(6.41) Ψ(r1, r2, . . . , rN ) =

N∏
i=1

ψ(ri).

This simplification from a symmetrized permanent to a product form in BECs is justified
by the following:

• Indistinguishability and Identical State: In a BEC, all particles are in the same
quantum state, making any exchange of two particles redundant as it returns the same
state.

• Simplification in the Mean-Field Approximation: The product form of the wave-
function provides a practical and accurate description of the BEC state, especially under
the mean-field approximation.
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• Macroscopic Quantum State: The overlapping and indistinguishable nature of the
wavefunction of each particle in a BEC validates the use of the product form.

In conclusion, while the permanent is essential for ensuring symmetry in a general bosonic
system, the unique properties of BECs allow for the simplification to a product form of the
wavefunction, effectively capturing the essential physics of BECs without the computational
complexity of a fully symmetrized wavefunction.

6.4.2. Important Facts About Bose-Einstein Condensation. Bose-Einstein Con-
densation (BEC), along with superconductivity and superfluidity, marks a significant chap-
ter in the study of quantum phenomena manifesting at macroscopic scales. Unlike many
quantum effects that are confined to atomic or subatomic scales, these phenomena demon-
strate the influence of quantum mechanics on the bulk properties of matter, representing
a bridge between the microscopic and macroscopic worlds.

The concept of BEC, theorized in the 1920s, was only experimentally confirmed in the
mid-1990s, marking a pivotal moment in quantum physics. This delay highlights the chal-
lenges associated with creating conditions necessary for BEC, notably the extremely low
temperatures required for its observation. The successful realization of BEC in the labo-
ratory was not just a triumph in cooling techniques but also a testament to the persistent
efforts of the scientific community in exploring the frontiers of quantum mechanics.

Research in this domain continues to evolve rapidly, with significant strides being made
in both atomic BEC systems and high-temperature superconductors. Atomic BEC sys-
tems are now being studied at nano-Kelvin temperatures, pushing the boundaries of low-
temperature physics. Meanwhile, the field of high-temperature superconductors has wit-
nessed substantial advancements, with materials like HgBa2Ca2Cu3O8+δ exhibiting super-
conducting transition temperatures (Tc) as high as 133 K under room pressure. Under
high-pressure conditions (approximately 30 GPa), these temperatures can be further in-
creased, reaching up to 164 K. These developments not only expand our understanding of
quantum phenomena but also hold promise for future technological applications, driving
research towards the elusive goal of a room-temperature superconductor.

6.4.2.1. Bose-Einstein Statistics. In 1924, the Indian physicist S.N. Bose proposed a novel
approach to derive the Planck black-body radiation formula, marking a significant develop-
ment in quantum theory. During this period, Albert Einstein, renowned for his contribu-
tions to quantum mechanics and the recipient of the Nobel Prize for his explanation of the
photoelectric effect, was a towering figure in the world of physics. Bose, then a relatively
unknown scientist based in Dacca (now in Bangladesh), had faced challenges in gaining
recognition for his work, with previous correspondence to European journals going unno-
ticed. However, Einstein recognized the innovative aspect of Bose’s approach and played
a pivotal role in facilitating the publication of Bose’s results.

Bose’s breakthrough idea was to treat the electromagnetic waves in black-body radiation
as a gas of indistinguishable particles. This approach provided a novel perspective on the
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nature of ’light quanta’, a concept introduced by Max Planck in 1900 and employed by
Einstein in 1905 for his photoelectric effect theory. For the first time, it suggested that
these quanta could be considered actual particles of light, now known as photons. Einstein
extended Bose’s method to ideal gases composed of particles with mass, leading to the first
quantum mechanical generalization of the classical ideal gas theory developed by Boltz-
mann, Maxwell, and Gibbs. This foundation paved the way for the distinction between
two types of quantum ideal gases, defined by Bose-Einstein and Fermi-Dirac statistics.

At the heart of Bose-Einstein statistics is the principle that identical quantum particles
can be enumerated using combinatorial methods. If there are Ns indistinguishable Bose
particles distributed across Ms quantum states, the number of possible distributions is
given by:

(6.42) Ws =
(Ns +Ms − 1)!

Ns!(Ms − 1)!
,

This formula arises from envisioning each quantum state as a ’box’ capable of containing
any number of identical ’balls’, representing the particles. Such a representation simplifies
the understanding of quantum state distribution for bosonic particles, such as photons or
4He atoms.

Ns boson particles in Ms available quantum states. We can count the number of possible
configurations by considering that the Ns identical particles and the Ms− 1 walls between
boxes and can be arranged along a line in any order. For bosons each box can hold any
number of particles, 0, 1, 2 . . . .

We can determine the number of possible arrangements by considering both the Ns parti-
cles (balls) and the Ms − 1 partitions (walls between boxes). Conceptually, this involves
arranging Ns +Ms − 1 objects in a sequence, where Ns objects represent particles and
Ms − 1 objects represent partitions. If each of these Ns +Ms − 1 objects were distinct,
they could be arranged in (Ns +Ms − 1)! ways. However, since the Ns particles and the
Ms − 1 partitions are indistinguishable within their groups, this count must be adjusted.
The indistinguishability of the particles and partitions reduces the number of unique ar-
rangements, leading to the division by Ns!(Ms − 1)!, thereby yielding the total number of
configurations as given in the previous equation.

In applying this combinatorial principle to the thermodynamics of an ideal gas consisting
of N boson particles within a volume V , we consider each atom to be in a plane-wave
quantum state represented by

ψ(r) =
1√
V
e−ik·r,
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where the permissible wave vectors are defined as

k =

(
2πnx
Lx

,
2πny
Ly

,
2πnz
Lz

)
,

with Lx, Ly, and Lz denoting the dimensions of the volume in each respective direction.
The total volume V = LxLyLz implies that an infinitesimally small volume element d3k =
dkxdkydkz in k-space encompasses

V

(2π)3
d3k

quantum states.

The energy associated with each of these single-particle quantum states is given by

ϵk =
ℏ2k2

2m
,

where m is the mass of the particle. Consequently, we can categorize the available single-
particle quantum states into a series of thin spherical shells of states, as illustrated below:

A thin shell of states of wave vector between ks and ks+δks. The shell has volume 4πk2sδks
and so there are 4πk2sδksV/(2π)

3 quantum states in the shell.

A shell of radius ks, and thickness δks contains

Ms = 4πk2sδks
V

(2π)3

single particle states. The number of available states between energy ϵs and ϵs + δϵs is
therefore

Ms =
V m3/2ϵ1/2√

2π2ℏ3
δϵs = V g(ϵs)δϵs, where g(ϵ) =

m3/2

√
2π2ℏ3

ϵ1/2

is the density of states per unit volume, shown below:
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The single particle density of states g(ϵ), of a three dimensional gas of particles.

The fundamental tenets of statistical mechanics assert that the total entropy of a gas is
given by S = kB logW , where kB represents Boltzmann’s constant and W signifies the
number of microstates corresponding to a given total energy E. To ascertain W , it is
essential to analyze the distribution of the N atoms in the gas among the various k-space
shells, each characterized by distinct energy levels. Suppose a specific shell s contains Ns

atoms. Given that this shell encompasses Ms quantum states, we can employ Eq. (6.42)
to calculate the total number of feasible quantum states for this shell. Consequently, the
overall number of microstates for the entire gas is the product of the number of available
states in each k-space shell:

W =
∏
s

Ws =
∏
s

(Ns +Ms − 1)!

Ns!(Ms − 1)!
.

By applying Stirling’s approximation, logN ! ≈ N logN − N , and under the assumption
that both Ns and Ms are considerably large, we derive the entropy as

(6.43) S = kB logW = kB
∑
s

[(Ns +Ms) log(Ns +Ms)−Ns logNs −Ms logMs].

In a state of thermal equilibrium, particles rearrange themselves such that the numbers Ns

in each energy shell are optimized to maximize the total entropy. This optimization occurs
while maintaining constant the total number of particles and the total internal energy of
the gas:

N =
∑
s

Ns, U =
∑
s

ϵsNs.

Maximizing entropy under these constraints, via the method of Lagrange multipliers, leads
to the condition:

(6.44)
∂S

∂Ns
− kBβ

∂U

∂Ns
+ kBβµ

∂N

∂Ns
= 0,

where we define the Lagrange multiplier constants as kBβ and −kBβµ. The differentiation
process yields:

log(Ns +Ms)− logNs − βϵs + βµ = 0.

Rearranging, we arrive at the Bose-Einstein formula for Ns:

(6.45) Ns =
1

eβ(ϵs−µ) − 1
Ms.
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Hence, the average occupation number of a single quantum state with energy ϵk is described
by the Bose-Einstein distribution:

fBE(ϵ) =
1

eβ(ϵ−µ) − 1
.

The constants β and µ, initially introduced as Lagrange multipliers, can be interpreted via
the first law of thermodynamics for a gas of N particles:

dU = TdS − PdV + µdN,

where T is the temperature, P is the pressure, and µ is the chemical potential. Rearranging,
we get:

(6.46) dS =
1

T
(dU + PdV − µdN).

From Eq. (6.44), we deduce:

dS = kBβ
∑
s

(
∂U

∂Ns
− µ

∂N

∂Ns

)
dNs = kBβ(dU − µdN).

Comparing with Eq. (6.46), we affirm that:

β =
1

kBT
,

and thus, the constant µ introduced is indeed the chemical potential of the gas.

The derivation of the Bose-Einstein distribution formula above utilizes the thermodynamics
of a gas with a fixed total number of particles, N , and fixed total energy, U . This approach
corresponds to the microcanonical ensemble, which is well-suited for systems with a con-
stant number of particles, such as a gas confined within a magnetic trap. However, for
many practical situations, particularly those involving an effectively infinite number of
atoms, a different approach is warranted. In such cases, we consider the thermodynamic
limit, V → ∞, while keeping the atom density, n = N/V , constant. Here, the grand
canonical ensemble becomes a more expedient framework, allowing for fluctuations in both
total energy and particle number. The system is assumed to be in equilibrium with an ex-
ternal heat bath, ensuring a constant temperature T , and a particle reservoir, maintaining
a constant chemical potential µ.

In the grand canonical ensemble, the probability of each N -body quantum state, with

energy E
(N)
i for i = 1, 2, . . . , is given by:

(6.47) P (N)(i) =
1

Z
exp

[
−β(E(N)

i − µN)
]
,

where Z, the grand partition function, is defined as:

Z =
∑
N,i

exp
[
−β(E(N)

i − µN)
]
.
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The grand potential, which is a pivotal thermodynamic quantity, is calculated from Z:

Ω(T, V, µ) = −kBT logZ,
and is related to other thermodynamic variables via the differential relation:

dΩ = −SdT − PdV −Ndµ.

Employing this grand canonical framework, rather than the microcanonical ensemble used
previously, simplifies the derivation of the Bose-Einstein distribution. The grand canonical
approach is particularly advantageous for systems with a large number of particles, where
fluctuations in particle number and energy are significant.

6.4.2.2. Condensation. The Bose-Einstein ideal gas exhibits a unique thermodynamic phase
transition, known as BEC, which distinguishes it from both the classical ideal gas and the
Fermi-Dirac gas. Remarkably, this phase transition occurs in a system of non-interacting
particles and is driven solely by particle statistics rather than interparticle interactions. At
the phase transition, thermodynamic observables undergo a distinct and abrupt change in
behavior, defining the critical temperature, Tc.

The term “condensation” in this context is analogous to the liquid-gas phase transition
observed in the van der Waals theory of gases, where liquid droplets condense from the
gas, forming a saturated vapor. Similarly, in the BEC, below the critical temperature
Tc, particles in the “normal gas” phase coexist in equilibrium with ”condensed” particles.
However, this condensation differs significantly from the classical liquid-gas transition. In
BEC, the “condensed” particles are not spatially segregated from the “normal” particles.
Instead, they are differentiated in momentum space. Below Tc, the condensed particles
occupy a single quantum state with zero momentum, while the normal particles possess
finite momentum.

Using the Bose-Einstein distribution (6.47), the total number of particles in the box is

(6.48) N =
∑
k

1

eβ(ϵk) − 1
.

In the thermodynamic limit, V → ∞, the possible k values become a continuum and so
we should normally expect to be able to replace the summation in Eq. (6.48) with an
integration ∑

k

→
∫

V

(2π)3
d3k.

If this is valid, then Eq. (6.48) becomes

N =
V

(2π)3

∫
1

eβ(ϵk−µ) − 1
d3k,

and so the particle density is

n =
1

(2π)3

∫
1

eβ(ϵk−µ) − 1
d3k,
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or, in terms of the density of states per unit volume g(ϵ) from Eq. (2.9),

(6.49) n =

∫ ∞

0

1

eβ(ϵk−µ) − 1
g(ϵ)dϵ.

This equation defines the particle density n(Tµ) as a function of the temperature and
chemical potential. But, of course, usually we have a known particle density, n, and
wish to find the corresponding chemical potential µ. Therefore we must view Eq. (6.49)
as an equation which implicitly determines the chemical potential, µ(T, n), a function of
temperature and the particle density n.

Rewriting Eq. (6.49) in terms of the dimensionless variables z = eβµ (called the fugacity),
and x = βϵ gives

(6.50) n =
(mkBT )

3/2

√
2π2ℏ3

∫ ∞

0

ze−x

1− ze−x
x1/2dx.

To calculate this integral we can expand

ze−x

1− ze−x
= ze−x

(
1 + ze−x + z2e−2x + . . .

)
=

∞∑
p=1

zpe−px.

This expansion is clearly convergent provided that z is smaller than 1. Inserting this into
Eq. (6.50) we can now carry out the integral over x using∫ ∞

0
e−pxx1/2dx =

1

p3/2

∫ ∞

0
e−yy1/2dy =

1

p3/2

√
π

2
,

where the dimensionless integral is a special case of the Gamma function,

Γ(t) =

∫ ∞

0
yt−1e−ydy

with the value Γ(3/2) =
√
π/2. Combining the numerical constants, the particle density is

therefore given as a function of the fugacity, z, by

(6.51) n =

(
mkBT

2πℏ2

)3/2

g3/2(z),

where the function g3/2(z) is defined by the series

(6.52) g3/2(z) =

∞∑
p=1

zp

p3/2
.

In order to evaluate the particle density in Eq. (6.51), we must consider the shape of the
function g3/2(z). Using the ratio test for convergence, one can easily show that the series
Eq. 6.52 converges when |z| < 1, but diverges if |z| > 1. At z = 1 the series is just
convergent,

g3/2(1) =

∞∑
p=1

1

p3/2
= ζ

(
3

2

)
= 2.612,
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Figure 6.1. The function g3/2(z) as defined in Eq. (6.52). At z = 1 the function is finite
but its derivative is infinite.

where

ζ(s) =
∞∑
p=1

1

ps

is the Riemann zeta function. On the other hand, the function has infinite derivative at
z = 1, since

dg3/2(z)

dz
=

1

z

∞∑
p=1

zp

p1/2
,

which diverges at z = 1. With these limiting values we can make a sketch of the function
g3/2(z) between z = 0 and z = 1, as shown in Fig. 6.1.

Equation (6.51) gives the density, n in terms of g3/2(z). Turning it around, we can say
that the value of z, and hence the chemical potential µ, is determined by

g3/2(e
βµ) =

(
2πℏ2

mkBT

)3/2

n.

If we are at high temperature T or low density n, then the right-hand side of this equation
is small, and we can use the small z expansion g3/2(z) ≈ z + . . . to obtain,

µ ≈ −3

2
kBT log

(
mkBT

2πℏ2n2/3

)
.

This gives a negative chemical potential, as sketched below:

Chemical potential µ, of a Bose gas as a function of temperature, T . At T = 0 all the par-
ticles are in the condensate and n0 = n. On the other hand, above the critical temperature
Tc all the particles are in the normal component, and n0 = 0.
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As the gas is cooled to lower temperatures, the fugacity, z, gradually increases until it
reaches unity. At this juncture, the chemical potential, µ, becomes zero. The temperature
at which this occurs, for a fixed density n, defines the critical temperature Tc,

(6.53) Tc =
2πℏ2

kBm

( n

2.612

)2/3
,

where g3/2(z) attains its maximum finite value of 2.612. This Tc is the characteristic
temperature of BEC.

Below Tc, an intriguing phenomenon occurs, as Einstein first realized: the number of parti-
cles in the lowest energy quantum state (with ϵk = 0) becomes macroscopically significant.
Specifically, out of N total particles in the gas, a macroscopic number N0 occupy this
ground state. Here, “macroscopic number” implies that N0 is proportional to the system
volume, such that a finite fraction, N0/N , of all particles occupy this single quantum state.
This is particularly relevant in the thermodynamic limit, V → ∞. The Bose-Einstein
distribution predicts the occupation of the ϵk = 0 state as

(6.54) N0 =
1

e−βµ − 1
.

Rewriting Eq. (6.54), we have

µ = −kBT log

(
1 +

1

N0

)
≈ −kBT

1

N0
.

If a finite fraction of the particles reside in the ground state, then as V → ∞, N0 → ∞ and
consequently, µ → 0. Therefore, below the BEC temperature Tc, the chemical potential
effectively becomes zero.

Below Tc, the k = 0 state must be considered separately, leading to the modification of
Eq. (6.48) to

N = N0 +
∑
k ̸=0

1

eβϵk−1
,

with the chemical potential µ being zero. Replacing the summation over k with an integral
(excluding the k = 0 point), the particle density can be expressed as

n = n0 +
(mkBT )

3/2

√
2π2ℏ3

∫ ∞

0

e−x

1− e−x
x1/2dx,

where the integral evaluates to Γ(3/2)ζ(3/2). For T < Tc, we obtain

n = n0 + 2.612

(
mkBT

2πℏ2

)3/2

.

Thus, the particle density n is composed of a condensate density n0 and a normal density
nn,

n = n0 + nn.
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The proportion of particles in the condensate is succinctly described by

n0
n

= 1−
(
T

Tc

)3/2

,

as depicted below:

BEC density, n0, as a function of temperature T .

It is evident from this formulation that at T = 0, all particles reside in the ground state,
implying n0 = n. However, as the temperature increases, n0 gradually decreases. It reaches
zero at the critical temperature Tc, and remains zero for temperatures above Tc.

Utilizing these insights, other thermodynamic properties of the Bose gas can be precisely
calculated. For instance, the total internal energy of the gas is given by:

U = V

∫ ∞

0

ϵ

eβ(ϵ−µ) − 1
g(ϵ)dϵ = V (kBT )

5/2 m3/2

√
2π2ℏ3

∫ ∞

0

ze−x

1− ze−x
x3/2dx.

The average energy per particle, for temperatures above Tc, is determined by dividing the
total internal energy by the particle number:

u =
U

N
=

3

2
kBT

g5/2(z)

g3/2(z)

Below Tc, this average energy per particle is:

u =
3

2
kB
T 5/2

T
3/2
c

g5/2(1)

g3/2(1)
,

where g5/2(z) is defined as:

g5/2(z) =
∞∑
p=1

zp

p5/2
,

and the numerical constant g5/2(1) equals ζ(5/2) = 1.342.

In the high-temperature limit, significantly above Tc, the gas behaves as a normal Bose
gas, with

u ∼ 3

2
kBT
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(since both g5/2(z) ≈ z and g3/2(z) ≈ z for small z). This result coincides with the
energy per particle in a classical monatomic ideal gas, indicating that at high temperatures
(T ≫ Tc), the Bose-Einstein statistics of the particles become negligible.

The examination of the gas’s heat capacity reveals that Tc represents a bona fide ther-
modynamic phase transition. The heat capacity at constant volume, CV , per particle, is
obtained by differentiating the internal energy with respect to temperature while main-
taining a constant density n:

CV =
∂u

∂T
For temperatures well above Tc, we find CV ∼ 3

2kB, mirroring the behavior of a classical
ideal gas. Below Tc, however, CV is given by:

CV =
15

4

g5/2(1)

g3/2(1)

(
T

Tc

)3/2

kB.

This relationship is illustrated below:

Heat capacity of a Bose-Einstein ideal gas as a function of temperature T . The cusp at Tc
implies that BEC is a thermodynamic phase transition.

At the critical temperature Tc, the heat capacity exhibits a distinctive cusp, characterized
by a discontinuity in its slope. This behavior indicates that the free energy of the system
is non-analytic at Tc, affirming that BEC indeed constitutes a thermodynamic phase tran-
sition. Other thermodynamic quantities, such as entropy or pressure, can also be derived
using similar considerations.

Further reflection on the origin of BEC reveals additional insights. Initially, the summation
over the discrete k-space plane wave states was replaced by a continuum integral. However,
the realization that the k = 0 state requires special treatment prompted a more nuanced
approach, treating this state distinctly while approximating the remaining states as a
continuum. Why is this approximation justified? Let us consider the occupation number
of the first states with a finite wave vector k. In a cubic box with side length L, the lowest
energy states correspond to k ≈ 2π/L, leading to an energy ϵk ≈ h2/mL2 = V −2/3h2/m.
The occupation number of these states is given by:

N1 =
1

eβ(ϵk) − 1
≈ 1

eβV
−2/3h2/m − 1

= O(V 2/3),
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where the notation O(n) signifies “of order n” in the limit V → ∞. Although the occu-
pation numbers of finite k states increase with V , they do so at a rate significantly slower
than that of N0. In fact, the ratio N1/N0 is O(V −1/3) and tends to zero as V → ∞.
Consequently, in the limit of an infinitely large system, the occupations of any individual
single-particle plane wave state with k ̸= 0 are negligible compared to the occupation of the
unique state at k = 0. Thus, in the thermodynamic limit, the continuum approximation
for all k states, except for k = 0, is indeed accurate and introduces no significant error.

6.4.2.3. BEC in ultra-cold atomic gases. In the late 1930s, shortly after Einstein’s theoret-
ical prediction of BEC, it was observed that liquid 4He transitions into a superfluid state
below the lambda point, at approximately 2.2 K. Considering the composition of a 4He
atom—two electrons, two protons, and two neutrons—it effectively behaves as a boson,
characterized by a total spin of zero. This prompted the hypothesis of a connection be-
tween BEC and the superfluidity observed in 4He. An interesting observation arises when
calculating the critical temperature Tc for BEC in 4He, using its density (ρ ≈ 145 kg.m−3)
and atomic mass (m ≈ 4mp), which yields a value of approximately 3.1 K using Eq. (6.53).
This is notably close to the superfluid transition temperature of 4He.

However, the BEC theory primarily concerns an ideal gas and neglects particle interactions,
which are significant in liquid helium due to its high particle density. As a result, liquid
helium is not an ideal test case for validating BEC theory. Indeed, there are notable
differences between the properties of superfluid 4He and the predictions for an ideal Bose
gas.

It was not until 1995 that BEC was experimentally realized in dilute gases of alkali metal
atoms, rather than in helium. Advances in the techniques for trapping and cooling atoms
in magnetic and laser traps over the previous two decades made this possible. Despite the
seemingly unfavorable conditions—extremely low atomic densities in the traps (approxi-
mately 1011 − 1015 cm−3, far less than the atomic density of 4He) and the larger atomic
masses of alkalis compared to 4He—BEC was achieved. Employing Eq. (6.53) suggests
critical temperatures (Tc) for alkali atoms would be significantly lower than for 4He, in the
range of 10 nK to 1 K. The ability to reach such low temperatures in laboratory settings is
a remarkable feat of modern atomic physics. A detailed explanation of these cooling and
trapping techniques is beyond the scope of this text, but a brief overview of the fundamental
principles is provided.

A key question is how large atoms, such as rubidium, can be classified as bosons. In
quantum mechanics, particles with integer spins are bosons. Alkali metal atoms, with a
single valence electron in their outermost s-orbital, have their other electrons in completely
filled shells, resulting in zero net orbital angular momentum and spin. The nucleus’s spin
then determines the atom’s overall spin. Isotopes like 7Li, 23Na, and 87Rb, with S = 3/2
nuclei, combined with the valence electron’s spin (S = 1/2), result in total spin states of
either S = 2 or S = 1. In quantum mechanics, the sum of two spins S1 and S2 leads to total
spin values ranging from |S1 − S2| to S1 + S2. If a gas is prepared such that only atoms in
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one of these spin states are present, it behaves as a Bose gas. However, if both S = 1 and
S = 2 states coexist, the gas effectively becomes a mixture of two distinguishable boson
species.

To understand how these atoms can be magnetically trapped, one must consider the atom’s
energy levels and their response to a magnetic field. Assuming an alkali atom with an
S = 3/2 nucleus, the explicit spin wave functions for different quantum states can be
deduced. The maximum total spin states (S = 2) comprise five states, with z-components
of total spin given by quantum numbers Ms = 2, 1, 0,−1,−2. The state with Ms = 2
is represented as |S = 2,Ms = 2⟩ = |32 ,

1
2⟩, using the notation |ms1 ,ms2⟩ for the nuclear

state ms1 and the electron state ms2 . The other Ms quantum states with total spin

S = 2 are generated using the spin lowering operator Ŝ− = Ŝ−
1 + Ŝ−

2 and the identity

Ŝ− |k⟩ =
√
s(s+ 1)−m(m− 1) |m− 1⟩ to obtain the states Ms = 2, 1, 0,−1,−2:

|S = 2,Ms = 2⟩ = |3
2
,
1

2
⟩ ,

|S = 2,Ms = 1⟩ =1

2

(√
3 |1

2
,
1

2
⟩+ |3

2
,−1

2
⟩
)
,

|S = 2,Ms = 0⟩ = 1√
2

(
|1
2
,−1

2
⟩+ |1

2
,
1

2
⟩
)
,

|S = 2,Ms = −1⟩ =1

2

(√
3 |−1

2
,−1

2
⟩+ |−3

2
,
1

2
⟩
)
,

|S = 2,Ms = −2⟩ = |−3

2
,−1

2
⟩ .

The three states with total spin S = 1 and Ms = 1, 0,−1 must be orthogonal to the
corresponding S = 2 states, and this requirement determines them uniquely to be

|S = 1,Ms = 1⟩ =1

2

(
|1
2
,
1

2
⟩ −

√
3 |3

2
,−1

2
⟩
)
,

|S = 1,Ms = 0⟩ = 1√
2

(
|1
2
,−1

2
⟩ − |−1

2
,
1

2
⟩
)
,

|S = 1,Ms = −1⟩ =1

2

(
|−1

2
,−1

2
⟩ −

√
3 |−3

2
,
1

2
⟩
)
.

The effective potential energy of the trap, as depicted in Fig. 6.2, facilitates a natural mech-
anism for cooling the trapped gas. Atoms with higher kinetic energies are likely to escape
the trap, taking their energy with them. This process, akin to cooling by evaporation,
results in a reduction of the average kinetic energy of the remaining atoms. By carefully
controlling the barrier height, one can regulate the rate of cooling and, consequently, the
final temperature of the system. Employing this method, temperatures below 1 pK can be
attained.
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Figure 6.2. A magnetic trap provides a local minimum in energy. Atoms which are too
energetic can escape, while atoms with lower kinetic energy are trapped. Also atoms in a
quantum state Ms whose energy decreases with IBI will see a local maximum in potential
energy, not a minimum, and so will be expelled from the trap.

In contrast to the ideal Bose gas discussed earlier in this chapter, the alkali atoms in a
magnetic trap do interact with each other. These interactions can be quite pronounced,
particularly due to strong repulsion at short distances and van der Waals attraction at
larger distances. Without these interactions, atoms in the trap would likely form tightly
bound clusters. However, the rate of such clustering is considerably slow. The primary
reason is that collisions in the trap are predominantly two-body elastic collisions, which
do not lead to binding. The formation of bound states would require three-body collisions,
where a pair of atoms could form a bound state while the excess kinetic energy is carried
away by the third atom. Given the low density of atoms in the trap (typically around
n ∼ 1011 − 1015 cm−3), corresponding to interatomic spacings of rs ∼ 50− 600 nm (where
rs is defined by n = 1/(4πr3s/3)), the likelihood of simultaneous three-body collisions is
minimal. Therefore, the atoms can be maintained in the trap for extended periods (seconds
or even minutes), allowing sufficient time for experimental observations.

Nevertheless, two-body collisions between particles in the trap are not entirely inconse-
quential. First, it is essential to recognize that these collisions do not induce transitions
between different hyperfine quantum states, as shown in Fig. 6.1. This holds true for atoms
in low field-seeking states like S = 2, Ms = 2 or S = 1, Ms = −1. Consequently, atoms
prepared in one of these states will remain in that state. Second, inter-particle interactions
contribute significantly to the overall potential energy within the trap and must be con-
sidered. Pairwise interactions are also crucial for establishing thermal equilibrium within
the experimental timeframe. These collisions lead to an energy redistribution, a necessary
condition for the system to reach thermal equilibrium. An approximate treatment of the
interatomic pair interactions involves considering the interaction to act over a very short
range compared to the typical inter-particle separation. Consequently, we can model the
pair interaction as a Dirac delta-function.

(6.55) V (r1 − r2) ≈ gδ(r1 − r2).
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The interaction can therefore be characterized by a single constant, g. Using scattering
theory this can also be expressed as a two-body s-wave scattering length, as, defined by

g =
4πasℏ2

m
.

Usually g and as, are positive, corresponding to a net repulsive interaction. On average
the effects of this interactions can be represented as an additional potential felt by each
particle, resulting from the average interaction with the other particles. This mean-field
contribution to the potential can be written

(6.56) Veff (r) = gn(r),

where n(r) is the density of atoms at point r in the trap. In this approximation the atoms
in the magnetic trap obey an effective Schödinger equation

(6.57)

(
− ℏ2

2m
∇2 + Vtrap(r) + Veff (r)

)
ψi(r) = ϵiψi(r),

where Vtrap(r) is the effective potential of the magnetic trap, as in Fig. 6.2, including both
the magnetic field energy and gravity. Equation 6.57 is effectively a nonlinear Schrödinger
equation, since the potential depends on the particle density which in turn depends on the
wave functions via the Bose-Einstein distribution

(6.58) n(r) =
∑
i

1

eβ(ϵi−µ) − 1
|ψi(r)|2.

As usual, the chemical potential µ, is determined from the constraint of the constant total
number of atoms in the trap, N ,

(6.59) N =

∫
n(r)d3r =

∑
i

1

eβ(ϵi−µ) − 1

These equations (Eqs 6.56-6.59) are a closed set, which must be solved self-consistently.
At zero temperature all of the particles are in the condensate, and

n(r) = N |ψ0(r)|2,
where ψ0(r) is the ground state wave function. These coupled equations must be solved
self-consistently to find the wavefunctions, density n(r) and the effective potential Veff (r).
They are known as the Gross-Pitaevskii equations.

Solving the coupled set of nonlinear equations inherent in this context necessitates numer-
ical methods. Despite this complexity, the solution once again reveals a form of BEC. If
the lowest energy state in the potential well is denoted as ϵ0, a critical temperature Tc
can be identified where the occupation number of this state, N0, transitions abruptly from
a small value (of the order of 1) to a large value (comparable to N). According to the
principles of statistical mechanics, this phenomenon, strictly speaking, cannot be classified
as a thermodynamic phase transition due to the finite number of particles involved, pre-
cluding a thermodynamic limit. However, in practical terms, the atom numbers in traps
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are often large (ranging from 104 to 106), making the critical temperature Tc quite distinct
and well-defined.

The first observation of BEC in trapped ultra-cold gases occurred in 1995, leading to
the awarding of the 2001 Nobel Prize in Physics to Cornell, Ketterle, and Wieman for this
breakthrough. This discovery was the culmination of decades of work by numerous research
groups dedicated to developing and refining the technology of trapping and cooling atoms
using magnetic and laser traps. In 1995, three separate research teams achieved BEC using
different alkali atoms: 87Rb, 23Na, and 7Li. The experimental setups incorporated both
magnetic and laser trapping methods, although the specifics of laser trapping and cooling
are beyond the scope of this discussion. The temperatures at which BEC was observed
varied depending on the alkali atom and the achieved atomic density in the trap, typically
in the range of 0.5-2 pK.

Following the successful realization of BEC in atomic gases, a wide array of experiments
has been conducted. The system presents an ideal experimental platform due to the con-
trollability of all physical parameters and the versatility in manipulating the BEC. Similar
experiments have been conducted with Fermi-Dirac atoms, although they do not exhibit
BEC. It has been found that the interatomic interactions, as described in Eq. 6.55, play a
crucial role in the behavior of atomic BEC, meaning the system represents weakly interact-
ing bosons rather than an ideal Bose gas. These weak but significant two-body interactions
are pivotal. For instance, an ideal BEC, in the absence of interactions, does not exhibit
superfluidity, as the critical velocity for superfluid flow is zero.

However, when interactions are present, even if minimal, they enable the sustenance of a
genuine superfluid state. This encompasses phenomena such as zero-viscosity flow or the
maintenance of persistent currents impervious to external disturbances. In experimentally
obtained atomic BECs, the small yet finite residual interactions mean these systems effec-
tively function as superfluids, with observed phenomena including persistent currents and
superfluid vortices.

Finally, experiments have also addressed the implications of macroscopic quantum coher-
ence in BECs. These studies have demonstrated quantum superpositions and interfer-
ence effects in systems with macroscopically large numbers of particles (on the order of
105 to 106). Such macroscopic superposition states serve as a physical embodiment of
the Schrödinger cat paradox in quantum measurement theory. Analogous to placing the
Schrödinger cat in a quantum superposition of “dead” and “alive” states, BECs can be
manipulated into superpositions of two quantum states, each differing macroscopically in
particle coordinates.



Chapter 7

Liquids

In statistical mechanics, the liquid state presents a uniquely challenging and fascinating
subject. Liquids, occupying the intermediate phase between the ordered solidity of crystals
and the disordered gaseous state, exhibit a complex balance of order and randomness.
Understanding this phase from the perspective of statistical mechanics involves delving into
the interplay of molecular interactions and thermal motion. Unlike gases, where particles
are widely separated and interact weakly, or solids, where particles occupy fixed positions
in a lattice, liquids are characterized by short-range order and mobility of particles within
a fluid structure.

Central to the statistical mechanical treatment of liquids is the concept of the radial dis-
tribution function (RDF), which provides a measure of the probability of finding a pair
of particles separated by a certain distance. This function is pivotal in characterizing the
microscopic structure of liquids, revealing the balance between thermal motion and inter-
molecular forces. The RDF in liquids shows peaks corresponding to the preferred distances
between particles, indicative of short-range order, but lacks the long-range periodicity seen
in solids.

Another cornerstone in the study of liquids is the Mayer expansion, a series expansion of
the partition function in terms of the so-called Mayer f-functions. These functions quan-
tify the effect of particle interactions and are instrumental in translating the microscopic
interactions into macroscopic thermodynamic properties. The Virial expansion, derived
from the Mayer series, expresses the equation of state in terms of the powers of density,
providing insights into the behavior of liquids under various conditions.

Additionally, integral equations like the Percus-Yevick equation offer a route to calculate
the RDF. These equations, derived from the Ornstein-Zernike relation, incorporate approx-
imations for handling the complex many-body interactions in liquids. The Percus-Yevick
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approximation, for instance, has been remarkably successful in describing simple liquids,
offering a balance between analytical tractability and physical realism.

In summary, the statistical mechanics of liquids involves an intricate blend of theoretical
constructs and approximations, each contributing to our understanding of the liquid state.
By exploring the microscopic details through these tools, we gain a deeper appreciation
of the unique properties of liquids – their structure, dynamics, and the subtle balance
of forces that govern their behavior. This understanding is not just theoretical; it has
practical implications in fields ranging from material science to biology, where the liquid
state plays a crucial role.

7.1. Radial Distribution Function

We first introduce the local density of particles as a random variable

N(r) =

N∑
i=1

δ(r−Qi).

Here Qi are random variables whose realizations correspond to the positions of the indi-
vidual molecules. That the quantity N(r) really is something like a local particle density
can easily be seen when we calculate the number of particles in a volume element dV . In
this case one finds for the number n(r) of a realization of N(r):∫

dV
d3rn(r) =

N∑
i=1

∫
dV
d3r δ(r− qi) =

N∑
i=1

Iqi∈dV ,

where Iqi∈dV = 1 if qi is in dV , and is otherwise zero. So all particles in dV are counted.

For a canonical system one has

(7.1) ⟨N(r) =
1

n!h3NZ
N

∫
d3Np

∫
d3Nq δ(r− q1)e

−βH(p,q) = Nρ1(r)

with the marginal density

(7.2) ρ1(r) =
1

N !h3NZ

∫
d3Np

∫
d3q2 . . . d

3qN e−βH(p,q)
∣∣∣
q1=r

.

In a spatially homogeneous system the particle density is independent of position. It is
therefore a constant across space. Normalization (integration over all space) requires that
it takes the value

ρ1(r) =
1

V
and therefore one finds for the local density of particles

⟨N(r) =
N

V
≡ n.
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Next we consider the second moment

⟨N(r)N(r′)⟩ =
N∑

i,j=1

⟨δ(r−Qi)δ(r
′ −Qj)⟩

=

N∑
i=1

⟨δ(r−Qi)δ(r
′ −Qi)⟩+

N∑
i ̸=j

⟨δ(r−Qi)δ(r
′ −Qj)⟩.

For the first term one obtains immediately

N∑
i=1

⟨δ(r−Qi)δ(r
′ −Qi)⟩ =δ(r− r′)

N∑
i=1

⟨δ(r−Qi)⟩

=δ(r− r′)⟨N(r)⟩

=
N

V
δ(r− r′) = nδ(r− r′)

and for the second term
N∑
i ̸=j

⟨δ(r−Qi)δ(r
′ −Qj)⟩ =

N(N − 1)

N !h3NZ

∫
d3Npd3Nq δ(r− q1)δ(r

′ − q2)e
−βH(p,q)

=N(N − 1)ρ2(r, r
′)

with the marginal density

ρ2(r, r
′) =

1

N !h3NZ

∫
d3Npd3q3 . . . d

3qN e−βH(p,q)
∣∣∣
q1=r,q2=r

.

Hence, for the second moments of the local density of particles we find

⟨N(rN(r′)⟩ = N

V
δ(r− r′) +N(N − 1)ρ2(r, r

′).

For a spatially homogeneous system the second moment function ⟨N(rN(r′)⟩ can depend
only on r− r′. If in addition the system is isotropic, ⟨N(rN(r′)⟩ can depend only on
|r− r′|.
For large distances |r− r′| the dependence between the two local densities should vanish
such that

⟨N(rN(r′)⟩ → ⟨N(r⟩⟨N(r′)⟩ = n2 for |r− r′| → ∞.
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This suggests that, in addition to the second moment function, one also introduces a radial
distribution function given by

g2(r, r
′) =

⟨N(r)N(r′)⟩ − nδ(r− r′)

⟨N(r)⟩⟨N(r′)⟩

=
N(N − 1)

n2
ρ2(r, r

′)

=
(N − 1)V

n
ρ2(r, r

′).(7.3)

This function satisfies g2(r, r
′) → 1 for |r− r′| → ∞.

From their definition, the second moment function and the radial distribution function are
closely related to the interactions between the particles. We clarify this point below.

For an ideal gas we get immediately from (7.2)

ρ2(r, r
′) =

1

V 2

and therefore

⟨N(r)N(r′)⟩ = N

V
δ(r− r′) +

N(N − 1)

V 2
.

For the radial distribution function this leads to g2(r, r
′) = N−1

N ≈ 1.

Note that one always has ∫
d3r d3r′ ⟨N(r)N(r′)⟩ = N2.

Furthermore, we find

ng2(r, r
′) = (N − 1)

ρ2(r, r
′)

ρ1(r)
= (N − 1)ρ2(r|r′),

where ρ2(r
′|r)d3r′ is the probability of finding a particle in a region around r′ under the

condition that a particle is at r. In particular, if g2(r, r
′) only depends on |r− r′|, one gets∫

d3r′ n g2(|r− r′|) =
∫
dr r2 4π ng2(r) = (N − 1)

and therefore
n g2(r)4πr

2dr

is the average number of molecules in a spherical shell (r, r + dr) around a given molecule
in the gas.
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In a spatially homogeneous system the origin may be placed at the center of any particle
picked at random. Obviously for r → 0 we must have g2(r) → 0, as the molecules cannot
overlap. g2(r) assumes its maxima at values which correspond to those distances from
the reference particle where other particles are most likely to be found. Consequently, for
a crystal g2(r) not only depends on |r|, but it displays sharp maxima for those vectors
that are lattice vectors. In a liquid one would not expect such a sharp structure, but one
will find rotational symmetry and a few peaks whose sharpness, however, decreases with
increasing distance:

We will now show how certain many-particle quantities can be reduced to two-particle
quantities using the radial distribution function.

1) Suppose that the interaction potential V (q1, . . . ,qN ) can be represented as a sum of
two-particle potentials

V (q1, . . . ,qN ) =
1

2

N∑
i ̸=j

V2(qi − qj);
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then ⟨V (q1, . . . ,qN )⟩ is determined by the radial distribution function. Indeed,

⟨V (q1, . . . ,qN )⟩ =
1

2

N∑
i ̸=j

⟨V2(qi − qj)⟩

=
1

2

N(N − 1)

N !h3NZ

∫
d3Np

∫
d3NqV2(qi − qj)e

−βH(p,q)

=
1

2
N(N − 1)

∫
d3Nq1

∫
d3q2V2(q1 − q2)ρ2(q1,q2)

=
1

2

N2

V

∫
d3q g2(q)V2(q),

where we have used (N − 1)V ρ2(q) = ng2(q). Therefore, taking into account

⟨Hkin⟩ =
3

2
NkBT,

one obtains for ⟨H⟩:

⟨H⟩ = 3

2
NkBT +

N2

2V

∫
d3q g2(q)V2(q).

In classical mechanics the virial is the time average of the quantity

3N∑
α=1

qα
∂V (q1, . . . ,qN )

∂qα
,

and a virial theorem holds in the form

2Hkin =
3N∑
α=1

qα
∂V (q1, . . . ,qN )

∂qα
,

where A denotes the time average of some quantity A.

2) In statistical mechanics the expectation value

V =

〈
3N∑
α=1

qα
∂V (q1, . . . ,qN )

∂qα

〉
is called the virial of the potential V (q1, . . . ,qN ). If the potential can be written as a sum
of two-particle potentials, then

(7.4) V =

〈
N∑
k=1

qk · ∇kV

〉
=

1

2

∑
i ̸=j

⟨(qi − qj) · ∇V2(qi − qj)⟩.



7.1. Radial Distribution Function 415

All N(N − 1) terms in the sum in (7.4) now lead to the same contribution, thus

V =N(N − 1)
1

2

∫
d3q1

∫
d3q2(q1 − q2) · ∇V2(q1 − q2)ρ2(q1,q2)

=
1

2

N2

V

∫
d3q g2(q)q · ∇V2(q),

where we have again used

(7.5) (N − 1)V ρ2(q) = ng2(q) =
N

V
g2(q).

Hence, the radial distribution function also determines the virial of the total many-particle
potential.

To obtain a virial theorem in statistical mechanics we consider the state density of the
canonical system. We consider the identity

Z(T, t3V,N) =

∫
d3Nqd33Np exp

(
−β

(
3N∑
α=1

p2α
2mt2

+ V (tq1, . . . , tq3N )

))
.

That this equation holds can easily be seen by the coordinate transformation p′α = 1
t pα,

q′α = tqα, which leaves the measure d3Nqd3Np invariant but stretches each length by a
factor t.

Taking the derivative with respect to t and then setting t = 1 leads to

3V
∂Z(T, V,N)

∂V
=

(
2β⟨Hkin⟩ − β

〈
3N∑
α=1

qα
∂V

∂qα

〉)
Z,

or, with 1
Z
∂Z
∂V = ∂

∂V (−βF ) = βP (F : Helmholtz free energy)

PV =
2

3
⟨Hkin⟩ −

1

3

〈
3N∑
α=1

qα
∂V

∂qα

〉
.

Using (7.5) and

⟨Hkin⟩ =
3

2
NkBT

and within the framework of statistical mechanics one obtains from the virial theorem the
general equation of state in the form

(7.6) PV = NkBT − 1

6

N2

N

∫
d3qg2(q)q · ∇V2(q).

Hence, the radial distribution function plays a key role for the equations of state of real
gases. It is even accessible by experiment.
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7.2. Elastic Scattering

The radial distribution function in a spatially homogeneous system may also be written as

n g2(r) =
N∑
j=2

⟨δ(r−Q1 +Qj)⟩ ≡ (N − 1)⟨δ(r−Q1 +Q2)⟩.

This is easy to see: since ρ2(q1,q2) can only depend on (q1 − q2), we get

(N − 1)⟨δ(r−Q1 +Q2)⟩ = (N − 1)

∫
d3q1 d

3q2 δ(r− q1 + q2)ρ2(q1,q2) = (N − 1)V ρ2(r)

and a comparison with (7.3) leads to the statement.

Now the Fourier transform of

1

n
⟨N(0)N(r)⟩ = δ(r) + n g2(r) = δ(r) +

N∑
j=2

⟨δ(r−Q1 +Qj)⟩ =
N∑
j=1

⟨δ(r−Q1 +Qj)⟩

is easily calculated and we obtain

I(κ) =
1

2π

∫
d3r eiκ·r

N∑
j=1

⟨δ(r−Q1+Qj)⟩ =
1

2π

N∑
j=1

⟨eiκ·Q1e−iκ·Qj ⟩ = 1

2π

1

N

N∑
i,j=1

⟨eiκ·Qie−iκ·Qj ⟩.

I(κ) is called the elastic structure function. It can be measured experimentally in the
quasi-elastic scattering of neutrons or X-rays at a momentum transfer of ℏκ. Thus the
Fourier transform of the radial distribution function is a measurable quantity.

Remark 7.1. The static structure function follows from the dynamical structure function
S(κ, ω) for general inelastic scattering with momentum transfer ℏκ and energy transfer ℏω
by

(7.7) I(κ) = ℏ
∫
dωS(κ, ω).

This dynamical structure function S(κ, ω) is proportional to the cross section for the
inelastic scattering of a particle (neutron or photon) with momentum ℏκ and energy E
into the state ℏκ′, E′:

d2σ

dΩdE′ ∝ S(κ, ω), κ = k− k′, E′ − E = ℏω.

A scattering process is called quasi-elastic if the energy transfer satisfies |E′−E| ≪ E; for a
given scattering angle κ is then independent of E′. If, then, for a given momentum transfer
all photons or neutrons are registered regardless of their energies E′, this corresponds to
the integration of the cross section over ω in (7.7) and therefore

I(|κ|) ∝ dσ

dΩ
≡
∫
dE′ d2σ

dΩdE′ .
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7.3. Approximation Methods

In the previous section we have met a central quantity in the description of nonideal gases,
namely the radial distribution function, and we have derived some general statements about
the form of the equations of state in terms of this distribution function.

Now we will examine how systematic approximations allow us to calculate the radial dis-
tribution function or to obtain the equations of state directly. This is the subject of the
statistical theory of fluids. A further approximation method, the mean field approximation,
is normally introduced in the context of spin systems.

7.3.1. The Virial Expansion. For the ideal gas it was a straightforward matter to derive
the equation of state. We found that the pressure is linear in the particle density n = N/V ,
explicitly P = kBTn. Here for nonideal gases an expansion with respect to powers of the
particle density n in the form

P

nkBT
=

PV

NkBT
= 1 + b(T )n+ c(T )n2 + . . .

will be derived. We proceed from the partition function of the grand canonical system

Z =
∞∑
N=0

zNZ(T, V,N).

Here z = eβµ, also called fugacity, and Z(T, V,N) is the partition function of the N -particle
system. One obtains

logZ = −βΩ =
PV

kBT
= log(1 + zZ(T, V, 1) + z2Z(T, V, 2) + . . . ).

Expanding the logarithm

log(1 + x) =
∞∑
k=1

(−1)k−1

k
xk = x− x2

2
+
x3

3
− · · · ,

valid for |x| ≤ 1 and x ̸= −1, one finds

(7.8) logZ =
PV

kBT
= zZ1 + z2Z2 + z3Z3 + . . .

with

Z1 = Z(T, V, 1), Z2 = Z(T, V, 2)− 1

2
Z2(T, V, 1), etc.

Equation (7.8) would have the form of an equation of state if the fugacity z were written
as a function of T, V,N . In order to achieve this, we note that the determination of N

N =− ∂Ω

∂µ
= kBT

∂ log Ω

∂µ
= kBT

∂z

∂µ

∂ log Ω

∂z
= z

∂ log Ω

∂z

=zZ1 + 2z2Z2 + 3z3Z3 + . . .(7.9)
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also leads to a series expansion in z. We now make the ansatz

(7.10) z =
N

Z1
+ αN2 + βN3 + . . .

for z as a function of T, V,N . Inserting this into the expansion (7.9) we can determine
the coefficients α, β, . . . by comparing the coefficients of powers of N . In general this is a
complicated procedure for which a systematic strategy should be developed. For the first
two virial coefficients, however, we will go through this procedure explicitly:

The coefficients α and β are determined from

N =

(
N

Z1
+ αN2 + βN3 + . . .

)
Z1 + 2

(
N

Z1
+ αN2 + βN3 + . . .

)2

Z2

+ 3

(
N

Z1
+ αN2 + βN3 + . . .

)3

Z3 + . . .

The requirement that terms of order N2 have to vanish on the right-hand size implies

αZ1 + 2
Z2

Z2
1

= 0,

and a similar requirement for the terms of order N3 leads to

βZ1 + 4α
Z2

Z1
+ 3

Z3

Z3
1

= 0.

Thus we find

α = −2
Z2

Z3
1

, β = −3
Z3

Z4
1

+ 8
Z2
2

Z5
1

.

With these coefficients we may insert z, as given by (7.10) into (7.8), yielding

PV

kBT
=

(
N

Z1
+ αN2 + βN3 + . . .

)
Z1 +

(
N

Z1
+ αN2 + βN3 + . . .

)2

Z2

+

(
N

Z1
+ αN2 + βN3 + . . .

)3

Z3 + . . .

=N +N2

(
−NZ2

Z2
1

+
Z2

Z2
1

)
+N3

(
−3Z3

Z3
1

+ 8
Z2
2

Z4
1

− 4Z2
2

Z4
1

+
Z3

Z3
1

)
,

i.e., we obtain the equation of state in the form:

(7.11) P = nkBT (1 + b(T )n+ c(T )n2 + . . . )

with

b(T ) = −Z2V

Z2
1

, c(T ) = −2
Z3V

2

Z3
1

+ 4
Z2
2V

2

Z4
1

.

This is the virial expansion. b(T ) is called the second and c(T ) the third virial coefficient.
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Let us discuss some of these coefficients. First, we have

Z1 = Z(T, V, 1) =
V

λ2t
,

where λt is the thermal de Broglie wavelength,

λt =

√
h2

2mπkBT
,

already introduced previously. The existence of a potential does not have any effect in this
expression. Next, we have

Z(T, V, 2) =
1

2h6

∫
d6p d6q exp

(
−β
[
p2
1

2m
+

p2
2

2m
+ V2(q1 − q2)

])
=
1

2
λ−6
t

∫
d3q1d

3q2e
−βV2(q1−q2)

=
1

2
λ−6
t V

∫
d3qe−βV2(q)

and therefore

b(T ) = −
(Z(T, V, 2)− 1

2Z
2(T, V, 1))V

Z2(T, V, 1)
= −1

2

∫
d3q f(q)

with
f(q) = e−βV2(q) − 1.

For c(T ) one obtains in the same manner

c(T ) = − 1

3V

∫
d3q1d

3q2d
3q3f(q1 − q2)f(q1 − q3)f(q2 − q3).

Similarly one can express all higher virial coefficients in terms of the function f(q). We
will now calculate the virial coefficients for two potentials explicitly.

7.3.2. Hard core potential. We think of atoms as hard cores of radius σ/2, i.e., for
q ≤ σ we have V2(q) = ∞, f(q) = −1. For q > σ we take βV2(q) = βV2(q) ≪ 1 such that
f(q) = −βV2(q) is a good approximation for f(q). Under these conditions we get

b(T ) = −1

2

∫
d3q f(q) =

1

2

∫ σ

0
dq 4πq2+

1

2
β

∫ ∞

σ
dq 4πq2V2(q) = 2π

σ3

3
+

2π

kBT

∫ ∞

σ
dq q2V2(q),

i.e.,

(7.12) b(T ) = b0 −
a

kBT
,

with

b0 = 4
4π

3

(σ
2

)3
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being four times the volume of one particle, and

a = −2π

∫ ∞

σ
dq q2V2(q).

For an attractive potential (V2(q) < 0 for q ≥ σ) a is positive.

7.3.3. Lennard-Jones potential. A frequently employed model for the interaction be-
tween atoms is the Lennard-Jones potential

V2(q) = 4ϵ

((
σ

q

)12

−
(
σ

q

)6
)
.

Setting x ≡ q
σ and T ∗ = kBT/ϵ we obtain for this potential

(7.13) b(T ) = −1

2

∫
d3q

(
e−βV2(q) − 1

)
= b0b

∗(T ∗).

Equations (7.12) and (7.13) describe approximately the experimental dependence of the
second virial coefficient b(T ) on temperature, T : for decreasing temperature b(T ) becomes
negative:

Only if we compare the results for a very large range of temperature, do we find that
different potentials lead to different predictions for b(T ). Thus a discrimination between
different potentials on the basis of a comparison between theoretical and experimental
results is difficult.

In a similar way one can study c(T ) and one finds

c(T ) = b20c
∗(T ∗),

where c∗(T ∗) is again a universal function (i.e., independent of the parameters of the
Lennard-Jones potential).
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Remark 7.2. The higher virial coefficients are obtained systematically by the cluster
expansion of Ursell and Mayer (Ursell 1927, Mayer 1941, see also [Römer and Filk 1994]).
One writes

Z(T, V,N) =
1

N !λ3Nt

∫
d3q1 . . . d

3qN exp

−β
∑
i>j

V2(qi − qj)


=

1

N !λ3Nt

∫
d3q1 . . . d

3qN
∏
i>j

(1 + fij)

=
1

N !λ3Nt

∫
d3q1 . . . d

3qN

1 +
∑
i>j

fij +
∑

i>j,k>l

fijfkl + . . .


with

fij = e−βV2(qi−qj) − 1.

Keeping control of the large number of contributions is greatly facilitated when they are
represented graphically. Z(T, V,N), for instance, leads to contributions which for N = 2
and N = 3 may be represented as follows:

Each circle represents a particle, each line stands for a factor fij . One can show that the
contributions to the virial coefficients may also be represented by such objects; in fact the
only graphs that occur are those where each pair of points can be connected by at least
two independent, nonintersecting paths.

Remark 7.3. For β → 0 all virial coefficients vanish, because e−βV2(q) − 1 → 0 for β → 0
(except in cases, where we assume that V2(q) = ∞ somewhere). In this limit all fluids
behave like ideal gases. It may happen that the second virial coefficient also vanishes at
a certain finite temperature. In this case the equation of state corresponds, apart from
higher order corrections, to that of an ideal gas. This temperature is also called θ-point.

Remark 7.4. The virial expansion is only useful when n = N/V is sufficiently small that
only a few virial coefficients are needed, since the determination of the higher coefficients
becomes more and more difficult. One would thus like to know whether the equation
of state obtained by taking into account only the first four to six virial coefficients also
describes the liquid phase of a substance adequately. Essentially, liquids and gases differ
only in their densities (whereas the solid state often shows crystalline structures). One
might therefore expect that it is possible to determine an equation of state which is valid
for fluids in general.
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For the hard core gas, studies have shown how far one can get using the method of virial
expansion. On the one hand, the virial expansion has been examined by taking into account
the first five or six virial coefficients, and this expansion has then been extrapolated using
a Padé approximation (Press et al. 2007). In a Padé approximation a polynomal series

f(x) = a0 + a1x+ · · ·+ anx
n +O(xn+1)

is replaced by a rational function

fN,M (x) =
c0 + c1x+ · · ·+ CNx

N

1 + d1x+ · · ·+ dMxM
,

such that the expansion of this function at x = 0 coincides with f(x) up to order xN+M

(see e.g. Bender and Orszag 1978; Press et al. 2007). For N =M = 1 one obtains, e.g.,

c0 = a0, c1 − c0d1 = a1, −d1c1 + d21c0 = a2.

On the other hand, some points of the equation of state have been determined by a molec-
ular dynamics calculation. In molecular dynamics calculations (see, e.g., Rahman 1964;
Verlet 1968) one solves the equations of motion for some hundred particles numerically
and regards the macroscopic state variables as the time average determined from the cor-
responding microscopic quantities. In the Figure below

the results of such an investigation are compared with those of a virial expansion including
a Padé approximation. Basically we may conclude that the extrapolation to all virial
coefficients by Padé approximation yields a qualitatively satisfactory equation of state.
Quantitative agreement, however, is not to be expected.
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Remark 7.5. In (7.6) we gave an equation of state for fluids which we now will write in
the form

P = nkBT

(
1− n

6kBT

∫
dq q24πg2(q)V

′(q)

)
.

Expanding g2(q) in powers of n,

g2(q) = g20(q) + ng21(q) +O(n2),

and comparing with (7.11) yields

b(T ) = − 1

6kBT

∫
dq q24πg20(q)qV

′(q).

This result then has to be compared with

b(T ) = −1

2

∫
dq q24π

(
e−βV2(q) − 1

)
,

which by partial integration yields

b(T ) =− 1

2

∫ ∞

0
dq4π

(
d

dq

q3

3

)(
e−βV2(q) − 1

)
=
1

6

∫
dq4πq2q (−βV2(q)) e−βV2(q)

=− 1

6kBT

∫
dq q24πV ′

2(q)e
−βV2(q).

So we obtain g20(q) = e−βV2(q). Thus, to first order in n, we can set g2(q) = e−βV2(q), which
is consistent with g2(q) ≡ 1 for ideal gases.

7.3.4. Integral Equations for the Radial Distribution Function. In the literature
one can find various integrodifferential equations for the radial distribution function. The
solutions of these equations reproduce the experimental results more or less satisfactory.
We will briefly sketch the derivation of such integrodifferential equations, but otherwise
refer to the literature (McQuarrie 1976; Balescu 1975).

We consider ρ1(r) from (7.1), i.e.,

(7.14) ρ1(r) =
1

N !h3NA

∫
d3Np

∫
d3q2 . . . d

3qN e−βH(p,q)
∣∣∣
q1=r

for the Hamiltonian function

H(p,q) =

N∑
i=1

p2
i

2m
+
∑
i>j

V2(qi − qj) +

N∑
i=1

V1(qi).
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Since an external potential V1(q) is now also present, ρ1(r) is no longer independent of the
position r. Taking the derivative of ρ1(r) in (7.14) with respect to r we get

∇rρ1(r) =− β∇rV1(r)ρ1(r)− β
1

h3NN !Z

∫
d3Np

∫
d3q2

×
∫ ∫

d3qN∇r

N∑
j=2

V2(r− qj) e
−βH(p,q)

∣∣∣
q1=r

=− β∇rV1(r)ρ1(r)− β(N − 1)

∫
d3q2∇rV2(r− q2)ρ2(r,q2).

Using
Nρ1(r) = n1(r)

and
N(N − 1)ρ2(r, r

′) = n2(r, r
′) = n1(r)n1(r

′)g2(r, r
′)

one obtains

∇rn1(r) = −β∇rV1(r)n1(r)− β

∫
d3q2∇rV2(r− q2)n2(r,q2).

This equation for n1(r) is therefore not closed: on the right hand side there appears for
the unknown quantity n2(r,q2). If one analogously derives a differential equation for this
quantity, the next higher term moment n3(r, r

′, r′′) appears, etc. Hence, we never get a
closed system of equations, but only an infinite hierarchy.

A closed system can obviously only be obtained if at some stage the moment of highest
order is approximated by an expression containing only lower moments. Setting, e.g.,

n2(r, r
′) = n1(r)n1(r

′),

leads to the integrodifferential equation for n1(r):

∇rn1(r) =

(
−β∇rV1(r)− β

∫
d3q2∇rV2(r− q2)n1(q2)

)
n1(r)

or
n1(r) = e−β(V1(r)−

∫
d3q2V (r−q2)n1(q2)).

A similar factorizing ansatz leading to an equation for n2(r, r
′) is

n3(r, r
′, r′′) =

n2(r, r
′)n2(r

′, r′′)n2(r
′′, r)

n1(r)n1(r′)n1(r′′)
.

Equations which may be derived by this or similar assumptions are, e.g.,

The Born-Green-Yvon (BGY) equation:

−kBT∇1 log g2(r12) = ∇1V2(r12) + n

∫
d3r3∇!V2(r13)g2(r13)g2(r23),
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The Percus-Yevick equation for y(r) = eβV2(r)g2(r):

y(r12) = 1 + n

∫
d3r3

(
e−βV2(r13) − 1

)
y(r13)

(
e−βV2(r23)y(r23)− 1

)
,

The “hypernetted-chain equation” (HNC)

log y(r12) = n

∫
d3r3h(r23) (h(r13)− log g2(r13)− V2(r13)/kBT ) ,

with h(r) = g2(r) − 1. In the last two equations g2(r) represents the radial distribution
function of a grand canonical system. From these equations one obtains to lowest order in
n:

y ≡ 1, etc. g2(r) = e−βV2(r).

The form of the curve g2(r) as a function of the parameters n, T , calculated from the
integral equations, may be compared with the molecular dynamics calculations for various
potentials. Frequently one uses the hard core potential and the Lennard-Jones (12-6)
potential.

It turns out that the Percus–Yevick equation yields a function g2(r) and an n-dependence
of p/nkBT which display the best agreement with the data from molecular dynamics (Mc-
Quarrie 1976; Balescu 1975; Barker and Henderson 1976).

7.4. Perturbation Theory

Along with many other approximation methods, the formalism of a perturbation expansion,
known from classical mechanics, is also applicable in statistical mechanics.

For the potential we write

V (q1, . . . ,qN ) = V 0(q1, . . . ,qN ) + V 1(q1, . . . ,qN ),

where V 0(q1, . . . ,qN ) is assumed to be a potential for which the partition function Z0
N is

known. Let ⟨·⟩0 be the expectation value which is derived from the density

ρ0(x) =
1

N !h3NZ0
N

exp
[
−β(Hkin(p, q) + V 0(q1, . . . ,qN ))

]
.

Then

ZN =

∫
d3Np

∫
d3Nq

1

N !h3N
e−β(Hkin(p,q)+V

0(q1,...,qN ))e−βV
1(q1,...,qN )

=Z0
N

〈
e−βV

1(q1,...,qN )
〉
0

=Z0
N

(
1− β

〈
V 1
〉
0
+
β2

2

〈
(V 1)2

〉
0
+ . . .

)
where we have made a high-temperature expansion (i.e., an expansion in β = 1/kBT ) in
the last line. Finally, we obtain

F = F0 + F1
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where
F0 = −kBT logZ0

N (T, V,N)

and

F1 =− kBT log

(
1− β

〈
V 1
〉
0
+
β2

2

〈
(V 1)2

〉
0
+ . . .

)
=

∞∑
n=1

(−β)n−1

n!
ωn

≡
(
ω1 −

ω2

2kBT
+ . . .

)
with

ω1 =
〈
V 1
〉
0

ω2 =
〈
(V 1)2

〉
0
−
〈
V 1
〉2
0
,

etc.

From
V 1(q1, . . . ,qN ) =

∑
i<j

ν1(qi − qj)

one finds

ω1 =
〈
V 1
〉
0
=
N(N − 1)

2

〈
ν1(q1 − q2)

〉
0
=

1

2
n2V

∫
d3qν1(q)g02(q).

where g02(q) is the radial distribution function for V 0(q1, . . . ,qN ).

In the calculation of
〈
(V 1)2

〉
0
expressions of the form

⟨ν1(q1 − q2)ν
1(q3 − q4)⟩0

occur. They can only be written in a compact form like ⟨ν1(q1−q2)⟩0 if the corresponding
four-particle distribution function g4(q1,q2,q3,q4) is used. Such a four-particle distribu-
tion function, however, is difficult to calculate, thus revealing the limits of this method.

We now consider, as an example,

g02(q) =

{
0 for q < σ

1 for q > σ.

Then

ω1 =
1

2
n2V

∫ ∞

σ
dqq24πν1(q) = −aN

2

V
with

(7.15) a = −2π

∫ ∞

σ
dqq2ν1(q)
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For an attractive potential (ν1(q) < 0 for q ≥ σ) a is positive. This yields, to a first
approximation,

F = F0 − a
N2

V
,

and thus

P = −∂F
∂V

= −∂F0

∂V
− a

N2

V 2
= −∂F0

∂V
− a

ν2
.

Instead of

P = −∂F0

∂V
,

which is the equation of state for the potential V = V 0, taking into account the potential
V 1, we now obtain the equation of state(

P +
a

ν2

)
= −∂F0

∂V
,

where a is determined from the potential ν1(q) according to (7.15). For the attractive two-
particle potential ν1(q) one finds to first order in the perturbation expansion a decrease of
pressure.

A suitable choice of g02(q) together with a good approximation for F0 and inclusion of the
contributions of higher orders in a high-temperature expansion lead to equations of state
which are an improvement over methods where the radial distribution function is calculated
from integral equations.





Chapter 8

Dynamics

Statistical mechanics offers a nuanced framework for correlating molecular-level behaviors
with macroscopic thermodynamic properties. Central to this discourse is the dynamics
domain, which scrutinizes how individual particle motions culminate in large-scale system
behaviors. The interplay between the Langevin and Fokker-Planck equations, bridged by
the Feynman-Kac formula, epitomizes this discourse.

The Langevin equation, a stochastic differential equation, models particle trajectories influ-
enced by deterministic and random forces. It embodies microscopic dynamics, accounting
for forces derived from potential energy and random thermal interactions reflective of the
particle’s surroundings.

In contrast, the Fokker-Planck equation transitions to a macroscopic vantage point. It de-
lineates the evolution of probability densities, influenced by drift and diffusion processes,
thereby linking individual particle dynamics with the collective behavior of particle ensem-
bles.

The Feynman-Kac formula is pivotal in bridging these two perspectives. It translates the
stochastic dynamics of the Langevin equation into a partial differential equation frame-
work, akin to the Fokker-Planck equation. This translation facilitates the derivation of the
Fokker-Planck equation from Langevin dynamics, cementing the theoretical foundation
that connects microscopic particle trajectories with macroscopic probability distributions.

A significant implication of this connection is the emergence of the Boltzmann distribution
in the Fokker-Planck equation’s steady state. This distribution, fundamental in statistical
mechanics, represents the distribution of particles across various energy states in thermal
equilibrium. Deriving the Boltzmann distribution from foundational principles through the
Langevin and Fokker-Planck equations underscores the deep-rooted relationship between

429
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particle behavior at the microscopic scale and the macroscopic attributes of systems in
equilibrium.

This chapter discusses the ramifications of the Langevin and Fokker-Planck equations’
interconnection. The ensuing discourse navigates from a detailed examination of particle
dynamics to an expansive comprehension of statistical ensembles, thereby elucidating the
trajectory from molecular interactions to thermodynamic equilibrium.

8.1. Langevin Equation

A variety of situations occur in Nature where one is not primarily interested in the complete
dynamics of a many-body system, but rather in a subset of specific variables. The remain-
ing variables, through their equations of motion, give rise to relatively rapidly varying
stochastic forces and damping effects. Examples include the Brownian motion of a massive
particle in a liquid, the equations of motion of conserved densities, and the dynamics of
the order parameter in the vicinity of a critical point.

We begin our discussion with Brownian motion as a fundamental example of a stochastic
process. Consider a heavy particle of mass m and velocity v moving in a liquid com-
posed of lighter particles. This “Brownian particle” experiences random collisions with the
molecules of the liquid:

These collisions result in an average frictional force on the massive particle and a stochastic
force f(t), which fluctuates around its average value:
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The first contribution to this force, denoted as −ζmv, is characterized by a coefficient of
friction ζ. Under these physical conditions, the Newtonian equation of motion is modified
to include these effects, leading to the formulation of the so-called Langevin equation:

mv̇ = −mζv + f(t).

Such equations are referred to as stochastic equations of motion and the processes they
describe as stochastic processes. The correlation time τc denotes the time during which
the fluctuations of the stochastic force remain correlated. From this, we assume that the
average force and its autocorrelation function have the following form at differing times

⟨f(t)⟩ = 0, ⟨f(t)f(t′)⟩ = ϕ(t− t′).

Here, ϕ(τ) differs noticeably from zero only for some correlation time τ < τc:

Since we are interested in the motion of our Brownian particle over times of order t which
are considerably longer than τc, we can approximate ϕ(τ) by a delta function

ϕ(τ) = λδ(τ).

The coefficient λ is a measure of the strength of the mean square deviation of the stochastic
force. Since friction also increases proportionally to the strength of the collisions, there
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must be a connection between λ and the coefficient of friction ζ. In order to find this
connection, we first solve the Langevin equation.

8.1.1. Solution to The Langevin Equation. In Section 9.1.1 we learn that the solution
to a first order linear ODE with inhomogeneous term q(t)

dy

dt
+ p(t)y = q(t),

is

y(t) =
1

µ(t)

(∫
µ(t)q(t)dt+ C

)
.

where µ(t) = exp
(∫
p(t)dt

)
is an integrating factor. For the particular case of the Langevin

equation mv̇ = −mζv + f(t) this procedure leads to the solution:

v(t) = v0e
−ζt + e−ζt

∫ t

0
dτ eζtf(τ)/m.

Since f(t) is a stochastic process (random variable parametrized by time), it will be dif-
ferent every time the particle is tracked, i.e. the function {f(t)}t∈[0,T ] depends on ω ∈ Ω,
the particular realization of the random experiment. From this we can compute various
statistical moments. For example, the first moment is:

v(t) = v0e
−ζt,

since ⟨f(t)⟩ = 0. The second moment is

⟨v(t)2⟩ =v20e−2ζt + e−2ζt

∫ t

0
dτ

∫ t

0
dτ ′ eζ(τ+τ

′) ⟨f(τ)f(τ ′)⟩︸ ︷︷ ︸
λδ(τ−τ ′)

m−2,

=v20e
−2ζt + e−2ζtλm−2

∫ t

0
dτ e2ζτ ,

=v20e
−2ζt + e−2ζtλm−2

[
e2ζτ

2ζ

]t
0

,

=v20e
−2ζt +

λ

2ζm2
(1− e−2ζt)

t≫ζ−1

⇁
λ

2ζm2

where the cross-terms vanish because of ⟨f(t)⟩ = 0. For t ≫ ζ−1 the contribution of the
initial velocity v0 vanishes, as the memory of the initial value is lost. ζ−1 plays the role of
a relaxation or memory time.

We require that our particle attain thermal equilibrium after long times, t≫ ζ−1, i.e. that
the average value of the kinetic energy obey the equipartition theorem

1

2
m⟨v(t)2⟩ = 1

2
kBT.
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Substituting the result ⟨v(t)2⟩ → λ
2ζm2 , we find the Einstein relation:

λ = 2ζmkBT.

It is a type of fluctuation-dissipation theorem. It relates the fluctuation (λ, the amplitude
of the stochastic force) to the dissipation (ζ, the friction coefficient). This relationship
depends on temperature, as one would expect the fluctuations to be proportional to T .

We may also compute the velocity autocorrelation function (covariance function):

⟨v(t)v(t′)⟩ = e−ζ(t+t
′)

∫ t

0
dτ

∫ t′

0
dτ ′eζ(τ+τ

′) λ

m2
δ(τ − τ ′) + v20e

−ζ(t+t′).

Since t and t′ are interchangeable, we can assume w.l.o.g. that t < t′ and evaluate the two
integrals in the order given, with the result (e2ζmin(t,t′) − 1) λ

2ζm2 :

⟨v(t)v(t′)⟩ =
(
v20 −

λ

2ζm2

)
e−ζ(t+t

′) +
λ

2ζm2
e−ζ|t−t

′|.

For t, t′ ≫ ζ−1, the first term can be neglected since e−ζ(t+t
′) → 0. To get the mean square

displacement we integrate twice:

⟨x(t)2⟩ =
∫ t

0
dτ

∫ t

0
dτ ′⟨v(τ)v(τ ′)⟩ =

∫ t

0
dτ

∫ t

0
dτ ′

λ

2ζm2
e−ζ|τ−τ

′|

=
λ

2ζm2
2

∫ t

0
du(t− u)e−ζu =

λ

ζ2m2
t,

or ⟨x(t)2⟩ = 2Dt with the diffusion constant D = λ
2ζ2m2 = kBT

ζm .

8.1.2. Langevin Equation in a Force Field. A generalization of the Langevin equation
is obtained by adding an external force field:

(8.1) mv̇ = −ζmv − ∂V (x)

∂x
+ f(t).

There are special cases of interest, such as the limit of strong damping mζv ≫ mv̇, which
leads to

v = − 1

mζ

∂V

∂x
+

1

mζ
f(t).

It can be shown that an equilibrium distribution for this stochastic process is

∝ exp

(
−
(
p2

2m
+ V (x)

)
/kBT

)
.

The Langevin equation therefore allows us to recover the Gibbs distribution e−βH(p,q)

Z with

a Hamiltonian H(p,q) = p2

2m + V (x) that is the sum of kinetic and potential energies.

8.1.3. Statistical Description of Particle Trajectories. The Langevin equation de-
scribes the random motion of a particle. Integration of the Langevin equation yields a
single path {v(r)}. If the procedure is repeated many times, many paths are generated



434 8. Dynamics

and we can compile statistics of the random process. We are interested, for example, in a
statistical description that yields the probability distribution of particle velocities at some
given time t.

We define the probability density for the random event that the Brownian particle has the
velocity ξ at the time t:

p(ξ, t) = ⟨δ(ξ − v(t))⟩.
This means that p(ξ, t)dξ is the probability that the velocity lies within the interval [ξ, ξ+
dξ]. We now derive an equation of motion for p(ξ, t):

∂

∂t
p(ξ, t) =− ∂

∂ξ
⟨δ(ξ − v(t))v̇(t)⟩

=− ∂

∂ξ

〈
δ(ξ − v(t))

(
−ζv(t) + 1

m
f(t)

)〉
=− ∂

∂ξ

〈
δ(ξ − v(t))

(
−ζξ + 1

m
f(t)

)〉
=
∂

∂ξ
(ζp(ξ, t)ξ)− 1

m

∂

∂ξ
⟨δ(ξ − v(t))f(t)⟩ ,(8.2)

where the Langevin equation has been inserted in the second line. In the third line we have
replaced v(t) by its numerical value ξ, which is required because of the factor δ(ξ − v(t)).
In the last equality we have substituted the definition p(ξ, t) ≡ ⟨δ(ξ − v(t))⟩.
The probability density for the stochastic force is assumed to follow a Gaussian distribution:

P[f(t)] = e
−

∫ tf
t0

dt
f(t)2

4ζmkBT .

Computation of the averages ⟨. . . ⟩ generally requires a functional integral. As an example,
the last term:

⟨δ(ξ − v(t))f(t)⟩ =
∫

D[f(t′)]δ(ξ − v(t))f(t)e
−

∫ f(t′)2dt′
4ζmkBT

=− 2ζmkBT

∫
D[f(t′)]δ(ξ − v(t))

δ

δf(t)
e
−

∫ f(t′)2dt′
4ζmkBT

=2ζmkBT

∫
D[f(t′)]e

−
∫ f(t′)2dt′

4ζmkBT
δ

δf(t)
δ(ξ − v(t))

=2ζmkBT

〈
δ

δf(t)
δ(ξ − v(t))

〉
= −2ζmkBT

∂

∂ξ

〈
δ(ξ − v(t))

δv(t)

δf(t)

〉
.(8.3)
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where

D[r] ≡ lim
∆→0

N−1∏
i=0

(
dr(ti)

√
∆

4ΓkBTπ

)

N =
tf − ti
∆

, ti = t0 + i∆, i = 0, . . . , N − 1∫
D[r]P[r(t)] ≡ lim

∆→0

N−1∏
i=0

∫ (
dr(ti)

√
∆

4ΓkBTπ

)
e
−

∑
i ∆

r(ti)
2

4ΓkBT = 1

⟨r(ti)r(tj)⟩ =
4ΓkBT

2∆
δij = 2ΓkBT

δij
∆

→ 2ΓkBTδ(ti − tj), ⟨r(t)⟩ = 0.

The infinite-dimensional path integral plays the role of the joint probability density of
the stochastic process {f(t)}t∈[0,T ]. The use of a joint density is required because we are
computing the average of a function of v(t) whereas v(t) is obtained by integrating f(t),
meaning that v(t) is a function of all random variables {f(t)}t∈[0,T ]:

v(t) = v0e
−ζt + e−ζt

∫ t

0
dτ
f(τ)

m
.

Indeed, averages such as ⟨δ(ξ − v(t))⟩ must be computed using a path integral because it
is a function of v(t), which itself is a function of the entire path {f(t)}t∈[0,T ]. Using the

fact that δf(τ)
δf(t) = δ(τ − t), we obtain

(8.4)
δv(τ)

δf(t)
=

∫ t

0
dτe−ζ(t−τ)

1

m
δ(t− τ) =

1

2m
.

The factor 1
2 results from the fact that the integration interval includes only half of the

δ-function. Inserting (8.4) into (8.3) and (8.3) into (8.2), we obtain the equation of motion
for the probability density, the Fokker-Planck equation:

∂

∂t
p(v, t) = ζ

∂

∂v
vp(x, t) + ζ

kBT

m

∂2

∂v2
p(v, t).

Here, we have replaced the velocity ξ by v; it is not to be confused with the stochastic
variable v(t). This relation can also be written in the form of an equation of continuity

∂

∂t
p(v, t) = −ζ ∂

∂v

(
−vp(x, t)− kBT

m

∂

∂v
p(v, t)

)
.

Remark 8.1. Thew following remarks can be made:

(i) The current density, the expression in large parentheses, is composed of a drift term
and a diffusion current.

(ii) The current density vanishes if the probability density has the form p(v, t) ∝ e
− mv2

2kBT .
The Maxwell distribution is thus (at least one) equilibrium distribution. Here, the Einstein
relation plays a decisive role. Conversely, we could have obtained the Einstein relation by
requiring that the Maxwell distribution be a solution of the Fokker-Planck equation.
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(iii) p(v, t) becomes the Maxwell distribution in the course of time, and that the latter is
therefore the only equilibrium distribution of the Fokker-Planck equation.

8.1.4. Statistics of Position and Velocity. For the Langevin equation (8.1) in a force
field (see Section 8.1.2), which can also be written in the form

mẍ = −mζẋ− ∂V

∂x
+ f(t),

Here, we must distinguish carefully between the quantities x and v and the stochastic
variables x(t) and v(t). The meaning of the probability density p(x, v, t) can be charac-
terized as follows: p(x, v, t)dxdv is the probability of finding the particle in the interval
[x, x+dx] with a velocity in [v, v+dv]. The equation of motion of p(x, v, t), the generalized
Fokker-Planck equation

∂

∂t
p(x, v, t) + v

∂p

∂x
− 1

m

(
∂V (x)

∂x

)
∂p

∂v
= ζ

[
∂

∂v
vp+

kBT

m

∂2p

∂v2

]
follows from a series of steps similar to the previous ones.

8.1.5. Solving the Fokker-Planck Equation. We now want to solve the Fokker-Planck
equation for the free Brownian motion

(8.5) ṗ(v) = ζ
∂

∂v

(
pv +

kBT

m

∂p

∂v

)
.

We expect that p(v) will relax towards the Maxwell distribution, e
− mv2

2kBT according to an
exponential decay law e−ζt. This makes it reasonable to introduce the variable ρveζt in
place of v. Then we have

p(v, t) =p(ρe−ζt, t) ≡ Y (ρ, t),(8.6)

∂p

∂v
=
∂Y

∂ρ
eζt,

∂2p

∂v2
=
∂2p

∂ρ2
e2ζt,(8.7)

∂p

∂t
=
∂Y

∂ρ

∂ρ

∂t
+
∂Y

∂t
=
∂Y

∂ρ
ζρ+

∂Y

∂t
.(8.8)

Inserting this into Eq. (8.5) gives

∂Y

∂t
= ζY + ζ

kBT

m

∂2Y

∂ρ2
e2ζt.

Thus suggests the substitution Y = χeζt. Due to ∂Y
∂t = ∂χ

∂t e
ζt + ζY , it follows that

∂χ

∂t
= ζ

kBT

m

∂2χ

∂ρ2
e2ζt.

Now we introduce a new time variable by means of dϑ = e2ζtdt

ϑ =
1

2ζ

(
e2ζt − 1

)
,
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where ϑ(t = 0) = 0. We then obtain the diffusion equation

∂χ

∂ϑ
= ζ

kBT

m

∂2χ

∂ρ2

with its solution

χ(ρφ)
1√
4πqφ

e
− (ρ−ρ0)

2

4qϑ , q =
ζkBT

m
.

By returning to the original variables v and t, we obtain

(8.9) p(v, t) = χeζt =

√
m

2πkBT (1− e−2ζt)
e
− m(v−v0e

−ζt)2

2kBT (1−e−2ζt)

of the Fokker-Planck equation for a Brownian particle in the absence of external forces.
Let us look at some properties of this solution.

In the limiting case t→ 0, we have

(8.10) lim
t→0

p(v, t) = δ(v − v0).

In the limit of long times t→ ∞,

lim
t→∞

p(v, t) = e−mv
2/2kBT

√
m

2πkBT
.

Since p(v, t) has the property (8.10) the density (8.9) we have also found the conditional
probability density:

p(v, t|v0, t0) = p(v, t− t0).

We recall that the conditional probability p(v, t|v0, t0) gives the probability that at time
t the value v occurs, under the condition that it was v0 at the time t0. The density
p(v, t|v0, t0) obeys the same Fokker-Planck equation as p(v, t− t0).

For an arbitrary integrable and normalized initial probability density ρ(v0) at time t0∫
dv0 ρ(v0) = 1

we find with 8.9 the time dependence

ρ(v, t) =

∫
dv0 p(v, t− t0)ρ(v0).

Clearly, ρ(v, t) fulfills the initial condition

lim
t→t0

ρ(v, t) = ρ(v0),

while for long times

(8.11) lim
t→∞

ρ(v, t) = e
− mv2

2kBT

√
m

2πkBT

∫
dv0 ρ(v0) = e

− mv2

2kBT

√
m

2πkBT

the Maxwell distribution is obtained. Therefore, for the Fokker-Planck equation, we have
proved that an arbitrary initial distribution relaxes towards the Maxwell distribution (8.11).
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8.1.6. Smoluchowski Equation for the Overdamped Langevin Equation. The
Langevin equation in an external force field

(8.12) mẍ = −mζẋ− ∂V

∂x
+ f(t),

in the overdamped case (mζẋ≫ mẍ) is

ẋ =
1

mζ

(
−Γ

∂V

∂x
+ f(t)

)
= −Γ

∂V

∂x
+ r(t).

We can also define a probability density

p(ξ, t) = ⟨δ(ξ − x(t))⟩,
where p(ξ, t)dξ is the probability of finding the particle at time t at the position ξ in the
interval dξ. We now derive an equation of motion for p(ξ, t), performing the operation
(F (x) ≡ −∂V

∂x )

∂

∂t
p(ξ, t) =− ∂

∂ξ
⟨δ(ξ − x(t))ẋ(t)⟩

=− ∂

∂ξ
⟨δ(ξ − x(t))(ΓF (x) + r(t))⟩

=− ∂

∂ξ
(Γp(ξ, t)F (ξ))− ∂

∂ξ
⟨δ(ξ − x(t))r(t)⟩(8.13)

The overdamped Langevin equation (8.12) was inserted in the second line. For the last
term, we find

⟨δ(ξ − x(t))r(t)⟩ =2ΓkBT

〈
δ

δr(t)
δ(ξ − x(t))

〉
=− 2ΓkBT

∂

∂ξ

〈
δ(ξ − x(t))

δx(t)

δr(t)

〉
= −ΓkBT

∂

∂ξ
p(ξ, t).(8.14)

Here, we have integrated (8.12) from 0 to t

x(t) = x(0) +

∫ t

0
dτ (ΓF (x(τ)) + r(τ)),

from which it follows that

δx(t)

∂x(t′)
=

∫ t

0

(
∂ΓF (x(τ))

∂x(τ)

δx(τ)

δr(t′)
+ δ(t′ − τ)

)
dτ.

The derivative is δx(τ)
δr(t′) = 0 for τ < t′ due to causality and is nonzero only for τ ≥ t′, with

a finite value at τ = t′. We thus obtain:

δx(t)

δr(t′)
=

∫ t

0

∂ΓF (x(τ))

∂x(τ)

δx(τ)

δr(t′)
dτ + 1, for t′ < t
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and
δx(t)

δr(t′)
=

∫ t

0

∂ΓF (x(τ))

∂x(τ)

δx(τ)

δr(t′)︸ ︷︷ ︸
0 for t′=t

dτ +
1

2
=

1

2
, for t′ = t.

This demonstrates the last step in (8.14). From (8.14) and (8.13), we obtain the equation
of motion for p(ξ, t), the so called Smoluchowski equation

(8.15)
∂

∂t
p(ξ, t) = − ∂

∂ξ
(Γp(ξ, t)F (ξ)) + ΓkBT

∂2

∂ξ2
p(ξ, t).

Remarks:

(i) One can cast the Smoluchowski equation (8.15) in the form of an equation of continuity

∂

∂t
p(x, t) = − ∂

∂x
j(x, t),

with the current density

j(x, t) = −Γ

(
kBT

∂

∂x
− F (x)

)
p(x, t).

The current density j(x, t) is composed of a diffusion term and a drift term, in that order.

(ii) Clearly,

p(x, t) ∝ e−V (x)/kBT

is a stationary solution of the Smoluchowski equation. For this solution, j(x, t) is zero.

8.1.7. Chemical Reactions. We now calculate the thermally activated transition over
a barrier:

A thermally activated transition over a barrier from the minimum A into the minimum B.

An obvious physical application is the motion of an impurity atom in a solid from one
local minimum of the lattice potential into another. Certain chemical reactions can also be
described on this basis. Here, x refers to the reaction coordinate, which characterizes the
state of the molecule. The vicinity of the point A can, for example, refer to an excited state
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of a molecule, while B signifies the dissociated molecule. The transition from A to B takes
place via configurations which have higher energies and is made possible by the thermal
energy supplied by the surrounding medium. We formulate the following calculation in the
language of chemical reactions.

We require the reaction rate (also called the transition rate), i.e. the transition probability
per unit time for the conversion of type A into type B. We assume that friction is so strong
that we can employ the Smoluchowski equation

ṗ = − ∂

∂x
j(x).

Integrating from α to β:

(8.16)
d

dt

∫ xβ

xα

dv p(x, t) = −j(xβ) + j(xα),

where xβ lies between A and B. It then follows that j(xβ) is the transition rate between
the states (the chemical species) A and B.

To calculate j(xβ), we assume that the barrier is sufficiently high so that the transition
rate is small. Then in fact all the molecules will be in the region of the minimum A and
will occupy states there according to the thermal distribution. The few molecules which
have reached state B can be imagined to be filtered out. The strategy of our calculation
is to find a stationary solution p(x) which has the properties

p(x) =
1

Z
e−V (x)/kBT in the vicinity of A(8.17)

p(x) =0 in the vicinity of B(8.18)

From the requirement of stationarity, it follows that

0 = Γ
∂

∂x

(
kBT

∂

∂x
+
∂V

∂x

)
p(x),

from which we find by integrating once

(8.19) Γ

(
kBT

∂

∂x
+
∂V

∂x

)
p(x) = −j0.

The integration constant j0 plays the role of the current density which, owing to the fact
that (8.16) is source-free between A and B, is independent of x. This integration constant
can be determined from the boundary conditions given above. We make use of the following
Ansatz for p(x):

(8.20) p(x) = e−V/kBT p̂

in equation 8.19
∂

∂x
p̂ = − j0

kBTΓ
eV (x)/kBT .
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Integrating this equation from A to x

(8.21) p̂(x) = const.− j0
kBTΓ

∫ x

A
dx eV (x)/kBT .

The boundary condition at A, that there p follows the thermal equilibrium distribution
requires

const. =
1∫

A dx e
−V/kBT

.

Here,
∫
A means that the integral is evaluated in the vicinity of A. If the barrier is suffi-

ciently high, contributes from regions more distant from the minimum are negligible1. The
boundary condition at B requires

0 = e−VB/kBT
(
const.− j0

kBTΓ

∫ B

A
dx eV (x)/kBT

)
.

so that

(8.22) j0 =
kBTΓ

(∫
A dx e

−V (x)/kBT
)−1∫ B

A dx eV (x)/kBT
.

For V (x) in the vicinity of A, we set VA(x) ≈ 1
2(2πν)

2x2, and, without loss of generality,
take the zero point of the energy scale at the point A. We then find∫

A
dx e−VA/kBT =

∫ ∞

−∞
dx e−

1
2
(2πν)2x2/kBT =

√
kBT√
2πν

.

Here, the integration was extended beyond the neighborhood of A out to [−∞,∞], which
is permissible owing to the rapid decrease of the integrand. The main contribution to the
integral in the denominator of (8.22) comes from the vicinity of the barrier, where we set
V (x) ≈ ∆ − (2πν ′)2x2/2. Here ∆ is the height of the barrier and ν ′2 characterizes the
barrier’s curvature.∫ B

A
dx eV/kBT ≈ e∆/kBT

∫ ∞

−∞
dx e

− (2πν′)2x2
2kBT = e

∆
kBT

√
kBT√
2πν ′

.

This yields all together for the current density of the transition rate

j0 = 2πνν ′Γe−∆/kBT .

We point out some important aspects of the thermally activated transition rate: the decisive
factor in this result is the Arrhenius dependence e−∆/kBT , where ∆ denotes the barrier
height, i.e. the activation energy. We can rewrite the prefactor by making the replacements
(2πν)2 = mω2, (2πν ′)2 = mω′2 and Γ = 1

mζ :

j0 =
ωω′

2πζ
e−∆/kBT .

1Inserting (8.21) with (8.22) into (8.20) , one obtains from the first term in the vicinity of point A just the equilibrium

distribution, while the second term is negligible due to
∫ x
A dx eV/kBT /

∫B
A dx eV/kBT ≪ 1.
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If we assume that ω′ ≈ ω, then the prefactor is proportional to the square of the vibration
frequency characterized by the potential well.

Remark 8.2. ω is the frequency (attempt frequency) with which the particle arrives at
the right side of the potential well, from where it has the possibility (with however a small

probability ∼ e−∆/kBT of overcoming the barrier.

8.1.8. The Eigenvalue Problem. In order to bring the Smoluchowski equation (8.15)
(V ′ ≡ ∂V/∂x ≡ −F )

∂p

∂t
= Γ

∂

∂x

(
kBT

∂

∂x
+ V ′

)
p

into a form which contains only the second derivative with respect to x, we apply the
Ansatz

(8.23) p(x, t) = e−V (x)/2kBTρ(x, t),

obtaining

(8.24)
∂ρ

∂t
= kBTΓ

(
∂2

∂x2
+

V ′′

2kBT
− V ′2

4(kBT )2

)
ρ

This is a Schrödinger equation with an imaginary time

iℏ
∂ρ

∂(−iℏ2kBTΓ(t)
=

(
−1

2

∂2

∂x2

)
with the potential

(8.25) V 0(x) =
1

2

[
V ′2

4(kBT )2
− V ′′

2kBT

]
.

Following the separation of the variables

(8.26) ρ(x, t) = e−2kBTΓEntφn(x)

we obtain from Eq. (8.24) the eigenvalue equation

(8.27)
1

2
φ′′
n = (−En + V 0(x))φn.

Formally, equation (8.27) is identical with a time-independent Schrödinger equation. In (8.26)
and (8.27), we have numbered the eigenfunctions and eigenvalues which follow from (8.27)
with the index n. The ground state of (8.27) is given by

(8.28) φ0 = N e
− V

2kBT , E0 = 0,

where N is a normalization factor. Inserting in (8.23), we find for p(x, t) the equilibrium
distribution

p(x, t) = N e−V (x)/kBT .
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From (8.25), we can immediately see the connection with supersymmetric quantum me-
chanics. The supersymmetric partner to V 0 has the potential

V 1 =
1

2

[
V ′2

4(kBT )2
+

V ”

2kBT

]
The excitation spectra of the two Hamiltonians

H0,1 = −1

2

d2

dx2
+ V 0,1(x)

are related in the manner shown below:

Excitation spectra of the two Hamiltonians H0 and H1.

One can advantageously make use of this connection if the problem with H1 is simpler to
solve than that with H0.

8.1.9. Relaxation towards Equilibrium. We can now solve the initial value problem
for the Smoluchowski equation in general. Starting with an arbitrarily normalized initial
distribution p(x), we can calculate ρ(x) and expand in the eigenfunctions of (8.27)

ρ(x) = eV (x)/2kBT p(x) =
∑
n

cnφn(x),

with the expansion coefficients

cn =

∫
dxφ∗

n(x)e
V (x)/2kBT p(x).

From (8.26), we find the time dependence

ρ(x, t) =
∑
n

e−2kBTΓEntcnφn(x),
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from which, with (8.3.39),

(8.29) p(x, t) = e−V (x)/kBT
∞∑
n=0

cne
−2kBTΓEntφn(x)

follows. The normalized ground state has the form

φ0 =
e−V (x)/2kBT√∫
dx e−V (x)/kBT

.

Therefore, the expansion coefficient c0 is given by

c0 =

∫
dxφ∗

0e
V (x)/kBT p(x) =

∫
dx p(x)√∫

dx e−V (x)/kBT
=

1√∫
dx e−V (x)/kBT

.

This allows us to cast (8.29) in the form

p(x, t) =
e−V (x)/kBT∫
dx e−V (x)/kBT

+ e−V (x)/2kBT
∞∑
n=1

cne
−2kBTΓEntφn(x).

With this, the initial-value problem for the Smoluchowski equation is solved in general.
Since En > 0 for n ≥ 1, it follows from this expansion that

(8.30) lim
t→∞

p(x, t) =
e−V (x)/kBT∫
dx e−V (x)/kBT

,

which means that, starting from an arbitrary initial distribution, p(x, t) develops at long
times towards the equilibrium distribution (8.28) or (8.30).

8.2. Thermodynamics Connection via the Feynman-Kac Theorem

Remark 8.3. In this section we will denote expectation values as E[X] instead of ⟨X⟩,
because the mathematical literature on stochastic processes uses E[X].

Let us recast the Langevin equation for a particle of mass m, located at position x, moving
at velocity v and subjected to an external, deterministic force f in the following form

mdv = [f(x)− γmv]︸ ︷︷ ︸∑
Forces

dt+ ΓdWt︸ ︷︷ ︸
random force

where γmv is the drag force and Γ is the strength of random fluctuations. The noise term
ΓdWt, which is Brownian motion (see Section 8.2.2), models the complicated interactions
with the solvent.

8.2.1. Random Walk. In this section, we present the Brownian motion as the limit of a
random walk. Consider a sequence of random displacements. The position of a particle at
any given time is the sum of a all steps taken up to that point. We consider the 1D case
for simplicity. Starting at S0 = 0, each displacement Xi can be of magnitude +σ or −σ
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with equal probabilities 1
2 . After n such steps, the net displacement is

Sn = X1 + · · ·+Xn.

Since EXi = 0, we have ESn = 0. However,

var(Xi) = EX2
i − (EXi)

2 = σ2.

Since the Xi are statistically independent,

E(S2
n) =

n∑
i=1

var(Xi) = nσ2.

Since the total duration of the walk is

t = n∆t,

this is equivalent to
ES2

n = (σ2/∆t)t.

This is the signature property of Brownian motion: the mean square displacement is pro-
portional to t. The quantity (σ2/∆t) divided by 2 is called the diffusion constant.

Observe that by the central limit theorem (CLT), the probability law of this random walk
converges to a Gaussian, regardless of the distribution of each individual step:

Sn = X1 +X2 + · · ·+Xn ∼ N (0, nσ2) as n→ ∞.

8.2.2. Brownian Motion. A stochastic process is a random variable that depends on
time. It may be denoted as X(ω, t) or Xt(ω), or simply Xt or X(t) if the ω notation is
dropped. We shall write simply Xt. A stochastic process {Xt} is described by a joint
probability: for any choice of times t1, t2, . . . , tn and intervals B1, B2, . . . , Bn, the value of
the function

P(Xt1 ∈ B1, Xt2 ∈ B2, . . . , Xtn ∈ Bn)

must be specified. A graphical representation of this probability is shown in Fig. 8.1, where
the sets B1, . . . , B5 are shown in blue as vertical bars. This value of P is the probability
that a sample path ω passes through the vertical bars (or “gates”) B1, . . . , B5.

A set of the form

Ct1,...,tn(B1, . . . , Bn) = {ω : Xt1(ω) ∈ B1, Xt2(ω) ∈ B2, . . . , Xtn(ω) ∈ Bn}
is an event called cylinder set.

The (standard) Brownian motion orWiener process is a process {Wt} with continuous paths
which starts at 0, and has independent increments Wt+s −Ws (t > 0) whose distribution
is Gaussian with mean 0 and variance t. In other words,

P(Ws+t −Ws ∈ B) =

∫
B

e−x
2/2t

√
2πt

dx.
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t2 t3 t4 t5t1

B1 B2

B3 B4

B5

Figure 8.1. A sample path ω of a random process is shown for the Dow Jones Industrial
Average. The joint probability P(Xt1 ∈ B1, . . . , Xtn ∈ B5) is graphically represented in
blue by the cylinder sets B1, . . . B5.

This can be seen by subdividing the time axis as 0 = t0 < t1 < t2 < · · · < tn = t, each
interval having width t/n, and telescoping Wt:

Wt = (Wt1 −Wt0) + (Wt2 −Wt1) + · · ·+ (Wtn −Wtn−1).

From the above definition, each of these increments are independent, with mean 0 and
variance t/n. By the CLT, Wt should be Gaussian with mean 0 and variance t, i.e. Wt ∼
N (0, t). Also, the increments are independent and Gaussian: Wti−ti−1 ∼ N (0, ti− ti−1) for
all i = 1, . . . , n.

A consequence of this definition is that the joint distribution of random variablesWt1 , . . . ,Wtn

at any n time points 0 ≤ t1 < t2 < · · · < tn ≤ 1 is Gaussian with mean 0 and covariance

cov(Wti ,Wtj ) = E
{
WtiWtj

}
= E

{
Wti

[
Wti + (Wtj −Wti)

]}
= ti,

for ti < tj . For any s and t

E {WsWt} = s ∧ t ≡ min(s, t).

The joint probability density is therefore,

pt1,...,tn(x1, . . . , xn) =

n∏
i=1

1√
2π(ti − ti−1)

· exp

{
−

n∑
i=1

(xi − xi−1)
2

2(ti − ti−1)

}
Three possible sample paths of Brownian motion are shown in Figure 8.2.

The reader can verify that the following processes for t > 0 are also Wiener processes (i.e.

that the covariance cov(Ŵs, Ŵt) = s ∧ t):
a) Ŵt = {−Wt}
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Figure 8.2. The curves in red, blue and green represent plots of the functions X(·, ω) :
t → X(t, ω) for three different values of ω (or equivalently, for three different realizations
of the random process).

b) Ŵt = { 1√
c
Wct} for some constant c > 0

c) Ŵt = {tW1/t}

For an interpretation of the joint density, we refer to Fig. 8.1, which illustrates the proba-
bility

P(Wt1 ∈ B1,Wt2 ∈ B2, . . . ,Wtn ∈ Bn)

of a Brownian path ω to fall within the intervals B1, . . . , Bn. Writing the intervals Bi as
[ai, bi], we see that this probability is equal to:

P(Wt1 ∈ B1, . . . ,Wtn ∈ Bn) =

∫ b1

a1

· · ·
∫ bn

an

pt1,...,tn(x1, . . . , xn)dx1 . . . dxn.

This joint probability applies to any choice of times and vertical sets. It can be used to
compute expectation values for any functional of Brownian motion.

8.2.3. Itô’s Lemma. We now proceed to develop methods that will allow us to manip-
ulate stochastic equations. We start by determining the differential dYt for Yt = V (Xt, t)
(V is assumed to be sufficiently differentiable). Xt is the solution of

(8.31) dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

where dWt is the increment of the Brownian motion dWt = Wt+dt −Wt. Here we will be
using the order relation

[dWt]
2 = dt
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which holds in the mean squared sense (i.e. its mean equals dt and its variance vanishes):

E[dWt]
2 = E [Wt+dt −Wt]

2 = dt,

var[dWt]
2 = E[dWt]

4 −
[
EdW 2

t

]2
= 3dt2 − (dt)2 = 2dt2 → 0.

where we have used the fourth moment of a Gaussian N (0, σ2), namely 3σ4. By application
of Taylor’s theorem,

dV (Xt, t) = Vx(Xt, t)dXt+Vt(Xt, t)dt+
1
2Vxx(Xt, t)[dXt]

2+Vxt(Xt, t)dXtdt+
1
2Vtt(Xt, t)(dt)

2+. . .

Substituting dXt from Eq.(8.31) and invoking [dWt]
2 = dt we get:

dV (Xt, t) =
[
Vx(Xt, t)µ(Xt, t) + Vt(Xt, t) +

1
2Vxx(Xt, t)σ

2(Xt, t)
]
dt+Vx(Xt, t)σ(Xt, t)dWt.

8.2.4. Itô’s Integral. If we write the differential formula,

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

in integral form:

Xt −X0 =

∫ T

0
µ(Xt, t)dt+

∫ T

0
σ(Xt, t)dWt,

it is important to properly define the integral
∫ T
0 σ(Xt, t)dWt with respect to Brownian

motion. The ordinary Riemann-Stieltjes integral does not work here because dWt fluctuates
so much (almost all of its paths are nowhere differentiable!), on any length scale, that it
would diverge immediately.

Given a partition of the time axis 0 = t0 < t1 < t2 < · · · < tn = T , Kyosi Itô has defined
the integral as the limit:∫ T

0
σ(Xt, t)dWt = lim

n→∞

n−1∑
i=0

σ(Xti , ti)
[
Wti+1 −Wti

]
.

where the limit is taken so that the mesh of the partition gets progressively finer.

The important thing to notice is the term σ(Xti , ti)
[
Wti+1 −Wti

]
which is a product

of the increment Wti+1 − Wti times the function σ(Xti , ti) evaluated at time ti (i.e. at
the beginning of the time interval [ti, ti+1]). By definition of the Brownian motion, the
increment Wti+1 −Wti is statistically independent from the past. Therefore its expectation
value is zero,

E
(
σ(Xti , ti)

[
Wti+1 −Wti

])
= E [σ(Xti , ti)] · E

[
Wti+1 −Wti

]
= 0.

Therefore, the expectation value of the entire Itô integral is zero:

E
[∫ T

0
σ(Xt, t)dWt

]
= 0.

8.2.5. Theorem of Feynman and Kac. Consider the initial value problem

(8.32)
∂

∂t
u(x, t) + Lu(x, t) = φ(x), u(x, T ) = ϕ(x)
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L =
1

2
σ2(x, t)

∂2

∂x2
+ µ(x, t)

∂

∂x
+ c(x, t)

and for every (x, t) ∈ R× [0, T ] consider the stochastic differential equation

(8.33) dXs = µ(Xs, s)ds+ σ(Xs, s)dWs on [t, T ]

with initial value Xt = x, the solution u(x, t) of the initial value problem is given by

u(x, t) = E
[
ϕ(XT ) exp

(∫ T

t
c(Xs, s)ds

)]
− E

[∫ T

t
φ(Xr) exp

(∫ r

t
c(Xs, s)ds

)
dr

]
.

To prove this statement, we apply Itô’s formula to the function

u(Xs, s) exp

(∫ s

t
c(Xr, r)dr

)
.

First of all, we recall Itô’s formula for a function V (Xs, s) and stochastic differential

dXs = µ(Xs, s)ds+ σ(Xs, s)dWs

as being2

dV (Xs, s) =

[
Vs(Xs, s) + Vx(Xs, s)µ(Xs, s) +

1

2
Vxx(Xs, s)σ

2(Xs, s)

]
ds+Vx(Xs, s)σ(Xs, s)dWs.

Carrying out this operation, integrating from t to T and taking E,

E
[
ϕ(XT ) exp

(∫ T

t
c(Xs, s)ds

)]
− u(x, t) =E

[∫ T

t
[(∂r + L)u(Xr, r)] exp

(∫ r

t
c(Xs, s)ds

)
dr

]
=E

[∫ T

t
φ(Xr) exp

(∫ r

t
c(Xs, s)ds

)
dr

]
.

We have made use of the fact that the expectation value of the Itô integral vanishes:

E
[∫ T

t
Vx(Xr, r)σ(Xr, r)dWr

]
= E

[∫ T

t

∂u

∂x
(Xr, r) exp

(∫ r

t
c(Xs, s)ds

)
σ(Xr, r)dWr

]
= 0.

The Feynman-Kac theorem is a turning point in mathematical physics, elegantly connecting
the realms of stochastic differential equations (SDEs, e.g., Eq. 8.33) and partial differential
equations (PDEs, Eq. 8.32). This theorem allows us to interpret each SDE in terms of an
associated probability density, u(x, t), as introduced in this section. While the SDE char-
acterizes individual trajectories of particles undergoing Brownian motion, the associated
PDE, derived through the Feynman-Kac formulation, offers a more comprehensive physical
description. In many physical and financial models, the detailed trajectories of individual
particles or entities are less critical than the statistical properties of the system as a whole.
Here, u(x, t) signifies the probability of locating the particle within a specific spatial region
at a given time.

The Feynman-Kac theorem’s true power lies in its ability to translate the stochastic be-
havior of systems into the language of PDEs, enabling the use of well-established analytical

2Here Vs means ∂V/∂s, Vxx = ∂2V/∂2x, etc.
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and numerical methods for PDEs to solve problems initially formulated in stochastic terms.
This translation is particularly valuable in scenarios where direct analytical solutions of
SDEs are challenging or intractable. Furthermore, in the context of quantum mechanics
and statistical physics, the Feynman-Kac theorem is a basis of the path integral formula-
tion, providing deep insights into the evolution of quantum systems. In fields like finance, it
plays a crucial role in option pricing models, where the evolution of prices can be modeled
by SDEs, and risk assessments require understanding the probability distributions of future
outcomes. The concept of a probability density as a “weight” factor under the integral in
the computation of macroscopic averages, such as expectation values, further emphasizes
the theorem’s utility in a wide range of scientific inquiries, from fundamental physics to
applied financial analysis.

There are also compelling reasons why an SDE framework might be preferred in specific
contexts. One primary advantage of SDEs lies in their ability to capture the detailed
dynamics of systems at a microscopic level. This aspect is particularly crucial in fields
like molecular dynamics (MD) simulations, where the intricacies of particle interactions,
governed by intermolecular potentials, are fundamental. In contrast to PDEs, which often
rely on effective-medium coefficients representing averaged properties, SDEs can explicitly
model the stochastic nature of particle collisions and interactions. This fine-grained model-
ing is essential in scenarios where details of individual paths and interactions significantly
influence the system’s behavior, such as in the study of complex fluids or biomolecular
systems.

Furthermore, the path integral formulation in quantum mechanics, often solved numeri-
cally, aligns more closely with SDE methods than PDEs. This alignment is because path
integrals encompass a sum over all possible paths, akin to examining a multitude of stochas-
tic trajectories, each weighted by its quantum mechanical probability. The SDE approach
thus offers a more natural and direct framework for implementing these numerical tech-
niques, providing insights into the probabilistic nature of quantum systems. Consequently,
the SDE methodology is not just an alternative to PDEs but a complementary approach
that excels in situations where the details of randomness, individual trajectories, and mi-
croscopic interactions are pivotal to understanding the phenomena under study.

8.2.6. Parallel between Feynman-Kac and Green’s Method. The Feynman-Kac
theorem and the Green’s function method both offer profound insights into solving differ-
ential equations, yet they do so from different perspectives. Understanding the connection
between these approaches may enhance one’s grasp of the underlying physics and math-
ematics. The Feynman-Kac theorem addresses the solution to certain PDEs using the
language of stochastic processes. Consider a linear inhomogeneous PDE and its associated
initial value problem:

∂

∂t
u(x, t) + Lu(x, t) = φ(x), u(x, T ) = ϕ(x),
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where L is a differential operator. The solution u(x, t) according to the Feynman-Kac
theorem is given by an expectation value over a stochastic process Xs:

u(x, t) = E
[
ϕ(XT ) exp

(∫ T

t
c(Xs, s)ds

)]
− E

[∫ T

t
φ(Xr) exp

(∫ r

t
c(Xs, s)ds

)
dr

]
.

To the differential operator L in the PDE corresponds an Ito SDE that describes the
evolution of the stochastic process Xs:

dXs = µ(Xs, s)ds+ σ(Xs, s)dWs,

where µ(Xs, s) and σ(Xs, s) are the drift and diffusion coefficients, respectively, and dWs

represents the increment of a Wiener process (or Brownian motion). The solution to this
SDE, Xs, starting from an initial condition Xt = x at time t, is a stochastic process that
captures the dynamics encoded in the differential operator L.

The Feynman-Kac solution to the PDE can now be understood in terms of this stochastic
process. The solution u(x, t) to the PDE is expressed as an expectation value over the
realizations of Xs, as shown above in the explicit expression for u(x, t).

On the other hand, the Green’s function method, employs a Green’s function, denoted as
G(x, t; ξ, τ), to describe the response of the system at point x and time t due to an impulse
applied at point ξ and time τ . The solution of the inhomogeneous PDE can be written as:

u(x, t) =

∫
domain

G(x, t; ξ, τ)φ(ξ)dξ +

∫
initial

G(x, t; ξ, T )ϕ(ξ)dξ.

The first integral represents the effect of the inhomogeneous term φ(x) propagated through
the Green’s function, analogous to the second expectation term in the Feynman-Kac solu-
tion. The second integral represents the influence of the initial condition ϕ(x) at time T ,
similar to the first expectation term in the Feynman-Kac formula.

While the Feynman-Kac theorem uses stochastic processes and expectation values to de-
scribe the solution, the Green’s function method relies on the deterministic propagation
of effects (both from the initial conditions and inhomogeneous terms) through the Green’s
function. Both approaches, though seemingly different, converge on the same solution,
illustrating the deep interconnections between stochastic processes and traditional PDE
methods. This duality enriches our understanding of physical systems, whether we analyze
them through the lens of probability or deterministic equations.

8.2.7. Theorem of Feynman and Kac Recast As Initial Value Problem. The
usual (textbook) formulation of the Feynman-Kac problem is given in terms of a final
value problem, as we did. However, we can also easily recast it as an initial value problem:

∂

∂t
u(x, t) + Lu(x, t) = φ(x), u(x, 0) = ϕ(x)

where L = 1
2σ

2(x, t) ∂
2

∂x2
+ µ(x, t) ∂∂x + c(x, t) is the differential operator.
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For every (x, t) ∈ R× [0, T ], consider the stochastic differential equation

dXs = µ(Xs, s)ds+ σ(Xs, s)dWs on [0, t]

with initial value X0 = x. The solution u(x, t) of the initial value problem is given by

u(x, t) = E
[
ϕ(X0) exp

(∫ t

0
c(Xs, s)ds

)]
+ E

[∫ t

0
φ(Xr) exp

(∫ r

0
c(Xs, s)ds

)
dr

]
.

8.2.8. Langevin Equation. Let us return to the Langevin equation3

dXt = a(t)Xt︸ ︷︷ ︸
µ

dt+ σ(Xt, t) · dWt.

Consider the process V (Xt, t) = e−
∫ t
0 a(s)dsXt and apply Itô’s formula

dV =
[
Vxµ+ Vt +

1
2Vxxσ

2
]
dt+ VxσdWt,

to get

d
(
e−

∫ t
0 a(s)dsXt

)
=

e− ∫ t
0 a(s)dsa(t)Xt︸ ︷︷ ︸

Vxµ

−a(t)e−
∫ t
0 a(s)dsXt︸ ︷︷ ︸
Vt

 dt+ e−
∫ t
0 a(s)dsσ(Xt, t)︸ ︷︷ ︸

Vxσ

dWt

=e−
∫ t
0 a(s)dsσ(Xt, t)dWt.

Integrating both sides we obtain

e−
∫ t
0 a(s)dsXt −X0 =

∫ t

0
e−

∫ r
0 a(s)dsσ(Xr, r)dWr,

and finally

(8.34) Xt = X0e
∫ t
0 a(s)ds + e

∫ t
0 a(s)ds ·

∫ t

0
e−

∫ r
0 a(s)dsσ(Xr, r)dWr.

8.2.9. Solution via Feynman-Kac theorem. It is interesting to see that we may
also solve the Schrödinger equation in imaginary time – a diffusion equation – using the
Feynman-Kac theorem. First, we may write down a probabilistic solution to the PDE

−∂tψ(x, t) = [−D∇2 + Veff ]ψ(x, t)

subjected to the initial condition4

ψ(x, T ) = δ(x− xA)

3This equation is reminiscent of a linear ODE but with an inhomogeneous term σdWt. Recall that such an equation

is solved with the use of an integrating factor exp[−
∫ t
0 a(s)ds]. When dealing with SDEs, we must use Itô’s formula

to write down total differentials.
4Note: this is a “final condition” rather than an initial condition, according to how we have derived the Feynman-Kac
(FK) theorem. However, the FK theorem can be derived with T as the initial condition. It is equivalent to reversing

the order of the times t ↔ T and adding a sign change in the exponent and under the square root coefficient to
account for the sign change of the time steps (ti − ti−1).
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by setting up an Itô diffusion [with parameters: µ = 0, 1
2σ

2 = −D, c(x, t) = Veff (x, t)]
which can be immediately integrated:

dXs =
√
−2DdWs, Xs = x+ i

√
2D(Ws −Wt)

The probability law5 for Xs is therefore Xs ∼ N (x,−2D(s− t)). The solution to the PDE
is given by:

ψ(x, t) = E
[
δ(XT − xA)e

∫ T
t Veff (Xs,s)ds

]
Inserting the probability density corresponding to the Weiner measure

pt1,...,tn(x1, . . . , xn) =
n∏
i=1

1√
2π(ti − ti−1)

· e−
∑n

i=1

(xi−xi−1)
2

2(ti−ti−1)

(but using the initial point xA and scaling the variance by −2D) we may rewrite this
expectation value as

ψ(x, t) = lim
n→∞
∆t→0

∫ ∏
i

dxi
1√

(−2D)2π(ti − ti−1)
δ(x−(xA−xn))e

∑n
i=1

(xi−xi−1)
2

4D(ti−ti−1) e
∫ T
t Veff (Xs,s)ds

Taking the limit ∆t = maxi |ti − ti−1| → 0 allows us to replace the finite differences
by derivatives. This expression gives the conditional probability density for the particle
initially at (xA, T ) and ending at (x, t).

However, the initial time occurs after the final time (T > t), due to the way we have
constructed the Feynman-Kac solution. To reverse the order of t ↔ T so the initial time
precedes the final time, we flip the sign of all time steps dt and (ti − ti−1). The result is:

ψ(x, t) =

∫
x(0)=xA

D[x(τ)]e
−

∫ t
T

[
1
4D (

dx
dt )

2+Veff (x(t),t)
]
dt

where: ∫
x(0)=xA

D[x(τ)] = lim
n→∞

∫ ∏
i

dxi
1√

(−2D)2π(ti − ti−1)
δ(x− (xA − xn)).

This can be written as [with (ti − ti−1) > 0]:

p(xB, tB|xA, tA) = lim
n→∞

∫ ∏
i

dxi
1√

4πD(ti − ti−1)
e
−

∫ tB
tA

[
1
4D (

dx
dt )

2+Veff (x(t),t)
]
dt
.(8.35)

=

∫
x(tA)=xA

D[x(τ)]e
−

∫ tB
tA

[
1
4D (

dx
dt )

2+Veff (x(t),t)
]
dt
.(8.36)

5There is no need to worry about the apparently negative variance of the distribution. This is because we have not
yet settled the sign of s− t, which we will do later.
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Review of Math
Concepts

9.1. Differential Equations

9.1.1. First-Order Linear ODE with Inhomogeneous Term. Consider a first-order
linear ordinary differential equation (ODE) of the form

dy

dt
+ p(t)y = q(t),

where p(t) and q(t) are given functions of t, and y = y(t) is the unknown function we seek
to determine. The term q(t) makes the equation inhomogeneous.

The key to solving this type of ODE is to find an integrating factor that will allow us to
rewrite the equation in an integrable form. The integrating factor, µ(t), is obtained from
the corresponding homogeneous equation (i.e., setting q(t) = 0). The integrating factor is
defined as

µ(t) = exp

(∫
p(t)dt

)
.

Multiplying both sides of the original ODE by µ(t), we get

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)q(t).

Notice that the left-hand side of this equation is the derivative of µ(t)y. Therefore, the
equation can be rewritten as

d

dt
[µ(t)y] = µ(t)q(t).

455



456 9. Review of Math Concepts

To solve for y(t), we integrate both sides of the equation with respect to t:∫
d

dt
[µ(t)y]dt =

∫
µ(t)q(t)dt.

This yields

µ(t)y =

∫
µ(t)q(t)dt+ C,

where C is the constant of integration, which is determined by the initial condition. Solving
for y(t), we find

(9.1) y(t) =
1

µ(t)

(∫
µ(t)q(t)dt+ C

)
.

The solution can be expressed as a sum of two terms: one corresponding to the solution
of the homogeneous equation (initial condition term) and the other to the inhomogeneous
part (convolution term). The first term, involving C, represents the effect of the initial
conditions, while the second term represents the contribution from the inhomogeneous term
q(t).

9.1.2. Green’s Function Method. Suppose that we have a linear differential operator
L̂ defined on [a, b] acting on a function y(x) and yielding f(x):

L̂[y(x)] = f(x).

The Langevin equation has this form, with L̂ = m( ddt + ζ). The Green’s function G(x, ξ)
is defined to be a kind of inverse to the differential operator:

L̂[G(x, ξ)] = δ(x− ξ),

with the additional “causality” requirement that G(x, ξ) = 0 for x < ξ. Thus, G(x, ξ),
when viewed as a function of x is defined over the interval [a, b] − {ξ}. Using the sifting
property of the Dirac delta function and substituting the definition of the Green’s function:

L̂[y(x)] = f(x) =

∫ b

a
f(ξ)δ(x− ξ)dξ =

∫ b

a
f(ξ)L̂[G(x, ξ)]dξ = L̂

∫ b

a
f(ξ)G(x, ξ)dξ.

The limits of integration are required since L̂ is only defined on [a, b]. Without this restric-

tion, the last step would not be allowed. Application of the inverse L̂ from the left leads
to the particular solution to the inhomogeneous equation:

yinh(x) =

∫ b

a
f(ξ)G(x, ξ)dξ.

Because the operator L̂ is linear, we can always add two solutions together, and obtain a
new solution to the ODE. In particular, we can add yhom(x), the solution to the homoge-

neous equation L̂[y(x)] = 0
y(x) = yhom(x) + yinh(x),

and the result y(x) is still a solution to the inhomogeneous equation.
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Let us return to the Langevin equation to demonstrate this method. The independent
variable here is t. Let’s take the time origin at t = 0 to keep the notation compact. We
can always shift the origin as needed. The obtain the “retarded Green’s function” we must
solve

dG

dt
+ ζG = δ(t),

under conditions where g = 0 for t < 0. Here, G(t) is the Green’s function, ζ is a constant
coefficient, and δ(t) is the Dirac delta function, we consider the response in two time
regions: t < 0 and t > 0.

For t < 0: The equation simplifies to the homogeneous differential equation:

dG

dt
+ ζG = 0.

Solving this yields:
G(t) = A exp(−ζt),

where A is an integration constant. However, A = 0 for t < 0 as the Green’s function
should be zero before the impulse. This is not a result from mathematics; it is a physical
argument about causality: the cause (impulse from the delta-function) must come before
the effect.

For t > 0: After the impulse at t = 0, the equation again becomes:

dG

dt
+ ζg = 0.

Solving this, we get:
G(t) = B exp(−ζt),

where B is a constant. To find B, we use the property of the Dirac delta function at t = 0.
Integrating the original differential equation across an infinitesimally small interval around
t = 0 gives: ∫ ϵ

−ϵ

(
dG

dt
+ ζg

)
dt =

∫ ϵ

−ϵ
δ(t)dt.

This yields G(ϵ)−G(−ϵ) = 1. Since G(−ϵ) = 0, we find G(ϵ) = 1, indicating that B = 1.

Therefore, for t > 0, G(t) = exp(−ζt).
Combining these results, the full solution for the Green’s function is:

G(t) = Θ(t) exp(−ζt),
where Θ(t) is the Heaviside step function, which is 0 for t < 0 and 1 for t ≥ 0.

In the case of the Langevin equation the ODE is of the form:

dy

dt
+ p(t)y = q(t),

with an initial condition y(t0) = y0. Here, p(t) and q(t) are known functions, and y(t) is the

unknown function we seek. The operator L̂ is assumed to be defined on the interval [t0, t].
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Once the Green’s function G(t, t′) is known, the solution to the original inhomogeneous
ODE can be expressed as:

y(t) = yhom(t) + yinh(t),

where yhom(t) is the solution to the homogeneous equation (i.e., with q(t) = 0), and
yinhom(t) is the particular solution due to the inhomogeneous term. The two components
of the solution are:

1. Homogeneous Solution: The homogeneous solution, yhom(t), can be obtained using
the initial condition:

yhom(t) = y0G(t, t0).

2. Inhomogeneous Solution (Convolution Term): The inhomogeneous solution is
obtained via the convolution of the Green’s function with the inhomogeneous term q(t):

yinh(t) =

∫ t

t0

G(t, t′)q(t′)dt′.

Combining these components, the solution to the inhomogeneous ODE is:

(9.2) y(t) = y0G(t, t0) +

∫ t

t0

G(t, t′)q(t′)dt′.

This solution comprises the initial condition influenced by the Green’s function and the
cumulative effect of the inhomogeneous term over the interval from t0 to t, as expressed
by the convolution integral.

For the Langevin equation, the solution is therefore:

y(t) =v0e
−ζ(t−t0)Θ(t− t0) +

∫ t

t0

Θ(t− t′)e−ζ(t−t
′)f(t′)dt′

=v0e
−ζ(t−t0) +

∫ t

t0

e−ζ(t−t
′)f(t′)dt′

=v0e
−ζ(t−t0) +

∫ t

t0

e−ζ(t−t0+t0−t
′)f(t′)dt′

=v0e
−ζ(t−t0) + e−ζ(t−t0)

∫ t

t0

eζ(t
′−t0)f(t′)dt′

where we have expressed the solution in several equivalent forms. Alternatively, we can
absorb the factor eζt0 into the constant v0, renaming it ṽ0. (In the second term, t0 was
artificially introduced for demonstration purposes and hence can be dropped.). We recover
a form that is identical to the integrating factor method (see Eq. 9.1):

y(t) = ṽ0e
−ζt + e−ζt

∫ t

t0

eζt
′
f(t′)dt′ =

1

eζt

(
C +

∫ t

eζt
′
f(t′)dt′

)
.

The indefinite integral is used in the last step, as the lower limit of integration (t0) is
absorbed in the integration constant C. Similarly for the integration factor eζt, where any
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integration constant can be absorbed in C (whereas in the second term, such integration

constants from the integration factor cancel out with the factor eζt
′
in the integrand.).

9.1.3. In the Dirac Bra-Ket Notation. We may also employ the elegant notation of
Dirac bra kets to derive the same result. We start with the ODE L̂x[u] = f(x), where L̂x
is a linear differential operator. In abstract Dirac notation this can be formally written
as L̂ |u⟩ = |f⟩. If L̂ has an inverse L̂−1 ≡ Ĝ, the solution can be formally written as

|u⟩ = L̂−1 |f⟩ = Ĝ |f⟩. Multiplying this by ⟨x| and inserting the resolution of the identity

1 =
∫
dy |y⟩w(y) ⟨y| between Ĝ and |f⟩ gives:

(9.3) u(x) =

∫
dy G(x, y)w(y)f(y),

where the integration is over the range of definition of the functions involved. Once we
know G(x, y), this equation gives the solution u(x) in an integral form. How do we find
G(x, y)?

Sandwiching both sides of L̂Ĝ = 1 between ⟨x| and |y⟩ and using

1 =

∫
dx′ |x′⟩w(x′) ⟨x′|

between L̂ and Ĝ yields∫
dx′ L(x, x′)w(x′)G(x′, y) = ⟨x|y⟩ = δ(x− y)

w(x)

In particular, if L̂ is a local differential operator, then L(x, x′) = [δ(x − x′)/w(x)]L̂x, and
we obtain

(9.4) L̂xG(x, y) =
δ(x− y)

w(x)
or L̂xG(x, y) = δ(x− y),

where the second equation makes the frequently used assumption that w(x) = 1. G(x, y)

is called the Green’s function for the differential operator L̂x. L̂x might not be defined for
all functions on R.
Moreover, a complete specification of L̂x requires some initial (or boundary) conditions.
Therefore, we expect G(x, y) to depend on such initial conditions as well. We note that

when L̂x is applied to (9.3), we get

L̂xu(x) =

∫
dy
[
L̂xG(x, y)

]
w(y)f(y) =

∫
dy

δ(x− y)

w(x)
w(y)f(y) = f(x),

indicating that u(x) is indeed a solution of the original ODE. Equation (9.4) involving
the generalized function δ(x − y) is meaningful only in the same context. Thus, we treat
G(x, y) not as an ordinary function but as a distribution. Finally, (9.3) is assumed to hold
for an arbitrary (well-behaved) function f .
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9.2. The Derivative as a Linear Map

Let U ⊂ Rn be an open set and f : U → Rm a function. The derivative of f at a point
a ∈ U is defined as a linear transformation L : Rn → Rm that satisfies the following
condition:

f(a+ h) = f(a) + L(h) + o(∥h∥) as h → 0

In this definition: - h is a small perturbation or change in the input. - L(h), which is the
derivative of f at a, denoted as Df(a) or f ′(a), represents the best linear approximation
to the change in f due to h. - o(∥h∥) is a term that becomes negligible faster than ∥h∥
as h → 0. This term captures the error of the linear approximation and ensures that the
approximation becomes increasingly accurate as h becomes smaller.

The derivative L is typically represented by the Jacobian matrix in the case of functions
between Euclidean spaces.

Example 1: Linear Function
Consider f : Rn → Rm defined by f(x) = Ax, where A is an m × n matrix. To find the
derivative at any point x0 ∈ Rn:

f(x0 + h)− f(x0) = A(x0 + h)−Ax0 = Ah

Since Ah is linear in h and there are no higher-order terms, the derivative Df(x0) is the
matrix A itself.

Example 2: Scalar Field
Consider the scalar field f : R2 → R given by f(x, y) = x2 + y2. The derivative at a point
(x0, y0) is defined as the linear map Df(x0, y0)(h, k) that satisfies:

f(x0 + h, y0 + k)− f(x0, y0) = Df(x0, y0)(h, k) + o(∥(h, k)∥)

Expanding f(x0 + h, y0 + k):

f(x0 + h, y0 + k) = (x0 + h)2 + (y0 + k)2

= x20 + 2x0h+ h2 + y20 + 2y0k + k2

Subtracting f(x0, y0) and rearranging:

2x0h+ h2 + 2y0k + k2 = Df(x0, y0)(h, k) + o(∥(h, k)∥)

The derivative Df(x0, y0)(h, k) must be the linear part of the expression, which is 2x0h+
2y0k. The remaining terms h2 + k2 are higher-order and are represented by the little-o
notation o(∥(h, k)∥) as they become negligible compared to ∥(h, k)∥ when (h, k) → (0, 0).

Therefore, the derivative at (x0, y0) is given by the linear map:

Df(x0, y0)(h, k) = 2x0h+ 2y0k

This result corresponds to the gradient of f at (x0, y0) and is the best linear approximation
of the change in f at (x0, y0) due to an infinitesimal change in the direction (h, k).
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Example 3: Nonlinear Mapping
Consider f : R2 → R2 defined by f(x, y) = (x2, ey). The derivative at a point (x0, y0) is
found as:

f(x0 + h, y0 + k)− f(x0, y0) = ((x0 + h)2, ey0+k)− (x20, e
y0)

= (2x0h+ h2, ey0ek − ey0)

Identifying the linear terms gives the Jacobian matrix:

Df(x0, y0) =

(
2x0 0
0 ey0

)
The higher-order term h2 and the term ey0(ek − 1) which is little-o of k for small k, are
ignored in the derivative.

Example 4: Trigonometric Function
Consider the function f : R2 → R2 defined by f(x, y) = (sin(x), cos(y)). To find the
derivative at a point (x0, y0), we use the Taylor expansion of sin and cos around x0 and y0
respectively.

The Taylor expansion of sin and cos gives:

sin(x0 + h) = sin(x0) + cos(x0)h+ o(h)

cos(y0 + k) = cos(y0)− sin(y0)k + o(k)

Substituting these into f(x0 + h, y0 + k) and subtracting f(x0, y0), we have:

f(x0 + h, y0 + k)− f(x0, y0) = (sin(x0 + h), cos(y0 + k))− (sin(x0), cos(y0))

= (cos(x0)h+ o(h),− sin(y0)k + o(k))

The linear terms in this expression are cos(x0)h and − sin(y0)k. Therefore, the derivative
at (x0, y0) is given by the Jacobian matrix:

Df(x0, y0) =

(
cos(x0) 0

0 − sin(y0)

)
This matrix represents the best linear approximation of f at (x0, y0), and the higher-order
terms o(h) and o(k) become negligible as (h, k) → (0, 0).

Example 5: Composition of Functions
Let g : Rn → Rm and h : Rm → Rp be differentiable functions. We aim to find the
derivative of the composition h ◦ g at a point x0 ∈ Rn.
The composition h ◦ g at x0 is given by:

(h ◦ g)(x0 + h)− (h ◦ g)(x0) = h(g(x0 + h))− h(g(x0))

Using the differentiability of g and h, we can expand:

g(x0 + h) = g(x0) +Dg(x0)(h) + o(∥h∥)
h(y0 + k) = h(y0) +Dh(y0)(k) + o(∥k∥)
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where y0 = g(x0) and k = Dg(x0)(h).

Substituting these expansions into the composition, we get:

h(g(x0 + h))− h(g(x0)) = Dh(g(x0)) ·Dg(x0)(h) + o(∥h∥)

Therefore, the derivative of the composition h ◦ g at x0 is given by the matrix product of
the derivatives of h and g:

D(h ◦ g)(x0) = Dh(g(x0)) ·Dg(x0)

This represents the linear transformation that approximates h ◦ g near x0.

The derivative in multivariable calculus, defined as a linear map, extends the concept of
the derivative in single-variable calculus and provides a powerful tool for analysis in higher
dimensions.

9.3. Matrix Derivative

The derivative of a matrix function f : Rm×n → Rp×q at a matrix X ∈ Rm×n can be
understood both formally and practically.

Formal Definition: The formal definition of the derivative is given by the limit:

lim
∥H∥→0

∥f(X +H)− f(X)−Df(X)(H)∥
∥H∥

= 0

where: -H is a matrix representing a small perturbation in Rm×n. -Df(X) is the derivative
of f at X, a linear map from Rm×n to Rp×q. - The norm ∥ · ∥ is a suitable matrix norm.

Practical Definition (Little-oh Notation): Practically, the derivative is often used in the
form:

f(X +H) = f(X) +Df(X)(H) + o(∥H∥) as ∥H∥ → 0

where: - o(∥H∥) represents a matrix function whose norm becomes negligible faster than
∥H∥ as ∥H∥ → 0. - This notation emphasizes the linear approximation Df(X)(H) and
the error term o(∥H∥), which diminishes relative to ∥H∥.
The practical definition using little-oh notation is particularly useful in applications and
computations, as it directly relates the change in f due to a small perturbation H to the
linear approximation provided by the derivative Df(X).

9.3.1. Derivative of log(X) is X−1. Let us show that for a matrix function f(X) =
log(X), where X is an invertible square matrix, the derivative Df(X) is the linear map
X−1. To find D log(X), we consider the first-order Taylor expansion of log(X+H) around
X:

log(X +H) ≈ log(X) +X−1H.

Substitute into the limit definition:

lim
∥H∥→0

∥f(X +H)− f(X)−Df(X)(H)∥
∥H∥

= lim
∥H∥→0

∥ log(X +H)− log(X)−X−1H∥
∥H∥
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Using the Taylor expansion, the expression within the limit becomes 0. Hence the limit is 0.
Thus, the derivative of log(X) with respect to X is X−1. The linear map is Df(X)(H) =
D log(X)(H) = X−1H.

9.3.2. Example: density matrix log(ρ̂ + δρ̂). The result we just derived can be di-
rectly applied to the density matrix. Consider ρ̂ as the expansion point and δρ̂ as a small
perturbation. The expansion at ρ̂ is:

log(ρ̂+ δρ̂) = log(ρ̂) +
d

dX
log(X)

∣∣∣∣
X=ρ̂

· δρ̂+ o(∥δρ̂∥).

The derivative of log(X) with respect to X is X−1, hence the expansion becomes:

log(ρ̂+ δρ̂) ≈ log(ρ̂) + ρ̂−1 · δρ̂.
The approximation implies that the change in log(ρ̂) due to the small variation δρ̂ is
approximately proportional to the variation itself, scaled by ρ̂−1.

9.3.3. Derivative of Tr[ρ] with Respect to ρ. The derivative of Tr(ρ) with respect
to ρ is the identity matrix I. This is shown by considering a small perturbation δρ and
observing that:

Tr(ρ+ δρ) = Tr(ρ) + Tr(δρ) = Tr(ρ) + Tr(Iδρ)

Hence, the derivative is I.

To see that this is indeed the case we consider the function f(ρ) = Tr(ρ), where ρ is a
matrix, and explain why the derivative of f with respect to ρ is the identity matrix I, using
the definition of the derivative in little-oh notation. The derivative of a matrix function f
at a point X is a linear transformation Df(X) that satisfies:

f(X +H) = f(X) +Df(X)(H) + o(∥H∥)
where H is a small perturbation, and o(∥H∥) represents a term that becomes negligible
faster than ∥H∥ asH → 0. Now for the derivative of Tr(ρ), we consider a small perturbation
δρ to ρ. We evaluate f(ρ+ δρ):

f(ρ+ δρ) = Tr(ρ+ δρ).

The trace function is linear, so we expand:

Tr(ρ+ δρ) = Tr(ρ) + Tr(δρ)

To satisfy the derivative definition:

f(ρ) +Df(ρ)(δρ) + o(∥δρ∥) = Tr(ρ) + Tr(δρ).

It follows that Df(ρ)(δρ) = Tr(Iδρ) = Tr(δρ). The identity matrix I is the only matrix
that, when applied to δρ in the trace function, yields Tr(δρ) itself:

Tr(Iδρ) = Tr(δρ)
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Therefore, we interpret Df(ρ)(δρ) as an inner product, ⟨Df(ρ), δρ⟩, that involves multi-
plying Df(ρ) and δρ followed by the trace operation. Within this context, the derivative
of Tr(ρ) with respect to ρ is the identity matrix I, confirming that Df(ρ) = I. This is
consistent with the linear transformation that relates δρ to Tr(δρ) in the best possible way.

The derivative of Tr(ρ) with respect to the matrix ρ can also be computed as a Jacobian
matrix, which is a matrix of partial derivatives. Let ρ be an n× n matrix with entries ρij .
The trace of ρ is given by:

Tr(ρ) =
n∑
i=1

ρii.

The Jacobian matrix is constructed by taking the partial derivatives of Tr(ρ) with respect
to each element ρij of ρ:

∂Tr(ρ)

∂ρij
=

∂

∂ρij

(
n∑
k=1

ρkk

)
This partial derivative is 1 when i = j (for diagonal elements) and 0 otherwise (for off-
diagonal elements). Therefore, the Jacobian matrix of Tr(ρ) with respect to ρ is the identity
matrix I. This proves that the derivative of Tr(ρ) with respect to ρ is indeed I.

9.3.4. Derivative as a One-Form. We have just encountered a difficulty in defining
the derivative because our function involved taking the trace. Let’s provide an alternative
definition of derivative as a one-form, extending the notion of differentiation to abstract
vector spaces. Consider a vector space V over a field F and a function f : V → F. The
derivative of f at a point x ∈ V , denoted Df(x), is a one-form if it is a linear functional
on V . This means Df(x) : V → F satisfies for any u, v ∈ V and a, b ∈ F: 1) Linearity:

Df(x)(au+ bv) = aDf(x)(u) + bDf(x)(v)

2) The action of Df(x) on h ∈ V is defined as:

Df(x)(h) = lim
t→0

f(x+ th)− f(x)

t

representing the directional derivative of f at x in the direction h. The function f is
differentiable at x if such a linear functional Df(x) exists, approximating f near x as:

f(x+ h) = f(x) +Df(x)(h) + o(∥h∥)
where o(∥h∥) becomes negligible faster than ∥h∥ as h→ 0 in V .

9.3.4.1. Derivative of Tr(ρ) with Respect to ρ. Consider the function f(ρ) = Tr(ρ) where
ρ is a density operator (matrix). The derivative of f at ρ, Df(ρ), acts on a perturbation
h in the matrix space. According to the definition:

Df(ρ)(h) = lim
t→0

f(ρ+ th)− f(ρ)

t

For f(ρ) = Tr(ρ):
f(ρ+ th) = Tr(ρ+ th)
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Using the linearity of the trace:

Tr(ρ+ th) = Tr(ρ) + tTr(h)

The limit yields:

Df(ρ)(h) = lim
t→0

Tr(ρ) + tTr(h)− Tr(ρ)

t
= Tr(h)

The derivative of Tr(ρ) with respect to ρ, when acting on a perturbation h, is given by
Tr(h). This result confirms that Df(ρ) acts as the identity operator on h in the context
of matrix trace.

9.3.5. Derivative of Tr[ρ log ρ] with Respect to ρ. For the function Tr(ρ log ρ), the
derivative with respect to ρ is log(ρ) + I. Applying a perturbation δρ and using the first-
order expansion of the logarithm, we have:

Tr((ρ+δρ) log(ρ+δρ)) ≈ Tr(ρ log ρ)+Tr(δρ log ρ)+Tr(δρ) = Tr(ρ log ρ)+Tr((log ρ+I)δρ).

Therefore, the derivative is log(ρ) + I.

The derivative of f(ρ) = Tr(ρ log ρ) with respect to the matrix ρ is computed as follows:
Consider the function:

f(ρ) =

n∑
i,j=1

ρij(log ρ)ji

The partial derivative of f(ρ) with respect to each element ρij of ρ is:

∂f(ρ)

∂ρmn
=

n∑
i,j=1

δimδjn(log ρ)ji + ρij
∂(log ρ)ji
∂ρmn

= (log ρ)nm +
n∑

i,j=1

ρij(ρ
−1 ∂ρ

∂ρmn
)ji

= (log ρ)nm +

n∑
i=1

(ρρ−1 ∂ρ

∂ρmn
)ii

= (log ρ)nm + δmn

since ∂Tr[ρ]/∂ρmn = δmn. The Jacobian matrix is thus:

J = (log ρ) + I

where I is the identity matrix. This matrix has (log ρ)ii + 1 on the diagonal and (log ρ)ji
on the off-diagonal elements, corresponding to the matrix (log ρ)+ I. The Jacobian matrix
of Tr(ρ log ρ), computed as a matrix of partial derivatives, is (log ρ) + I.

9.3.6. Differentiation with Respect to Matrices. Matrix differentiation is an exten-
sion of classical differentiation to matrices. It is used to find how a matrix-dependent
function changes with variations in the matrix.
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Definition 9.1. Consider a matrix A with elements Aij . The derivative of a function f(A)

with respect to A is defined as a matrix B where Bij =
∂f
∂Aij

.

Remark 9.2. To find Bij , we consider the change in f when Aij is varied, keeping other
elements constant. In quantum mechanics, the density matrix ρ̂ is a key example. To
differentiate a function F (ρ̂) with respect to ρ̂, we compute the partial derivative with
respect to each element ρij . Consider the von Neumann entropy S = −kBTr(ρ̂ log ρ̂).
Differentiating this with respect to ρ̂ involves calculating how the trace changes with slight
changes in ρ̂. The result is −kB(log ρ̂+ I).

9.3.6.1. Limiting Procedure. The derivative of a matrix-valued function using a limiting
procedure is defined using norms. Let F : Rm×n → R be a function, and A an m × n
matrix. The derivative DF (A) of F at A is a linear map satisfying:

lim
∥H∥→0

∥F (A+H)− F (A)−DF (A)(H)∥
∥H∥

= 0

where H is a matrix of the same size as A, and ∥H∥ is the norm of H. DF (A) is the best
linear approximation of F at A. The norm ∥H∥ is typically the Frobenius norm, defined

as ∥A∥F =
√∑

i,j A
2
ij . If such a linear map DF (A) exists, then F is differentiable at A.

9.3.6.2. Example (Derivative of a Matrix-Valued Function). We calculate the derivative of
F (A) = Tr(AB) with respect to the matrix A using the limiting procedure. Consider a
function F (A) = Tr(AB), where A and B are matrices of the same size. The derivative
DF (A) is found via:

lim
∥H∥→0

∥Tr((A+H)B)− Tr(AB)−DF (A)(H)∥
∥H∥

= 0.

Expanding Tr((A+H)B):

Tr((A+H)B) = Tr(AB) + Tr(HB)

Thus, the limit becomes:
∥Tr(HB)−DF (A)(H)∥

∥H∥
.

The linear map DF (A) satisfying the limit is:

DF (A)(H) = Tr(HB).

The derivative of F (A) = Tr(AB) with respect to A is the linear map DF (A)(H) =
Tr(HB).

9.3.6.3. Detailed Examples of Matrix Differentiation.

Example 1: Derivative of F (A) = A2. With a function F (A) = A2, we find DF (A)(H)
such that:
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lim
∥H∥→0

∥(A+H)2 −A2 −DF (A)(H)∥
∥H∥

= 0.

Expanding the square:
(A+H)2 = A2 +AH +HA+H2

Leads to DF (A)(H) = AH+HA. In quantum mechanics AH+HA is the anticommutator
{A,H} of A and H. The derivative DF (A) is therefore the anticommutation superoperator
{A, ·}.

Example 2: Derivative of F (A) = A−1 (Matrix Inverse). Given a function: F (A) =
A−1, our task is to find DF (A)(H) such that:

lim
∥H∥→0

∥(A+H)−1 −A−1 −DF (A)(H)∥
∥H∥

= 0.

This is done by invoking the approximation:

(A+H)−1 ≈ A−1 −A−1HA−1 +O(H2).

From which we can read off the result:

DF (A)(H) = −A−1HA−1.

Note: the approximation for (A+H)−1 in the context of the derivative of F (A) = A−1 is
justified using the Neumann series. The Neumann series expression for a matrix inverse is:

(I −M)−1 = I +M +M2 + · · ·
To obtain an expression for (A+H)−1, we factor out A−1:

(A+H)−1 = (I +A−1H)−1A−1.

Applying the Neumann series for small H:

(I +A−1H)−1 ≈ I −A−1H.

Substituting into the expression for (A+H)−1:

(A+H)−1 ≈ A−1 −A−1HA−1.

The derivative is then:
DF (A)(H) = −A−1HA−1.

Example 3: Derivative of F (A) = Tr(eA) (Matrix Exponential). For the function
F (A) = Tr(eA), we find DF (A)(H) such that:

lim
∥H∥→0

∥Tr(eA+H)− Tr(eA)−DF (A)(H)∥
∥H∥

= 0.

This is accomplished by invoking the approximation eA+H ≈ eA + eAH + O(H2). The
result is DF (A)(H) = Tr(HeA).
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Note: the approximation eA+H ≈ eA+eAH+O(H2) is justified using the Baker-Campbell-
Hausdorff formula, or the the Zassenhaus formula. The latter provides a rigorous expansion
of eA+H for the derivative of F (A) = Tr(eA):

eA+H = eAeHe−
1
2
[A,H] · · ·

For small H, the expansion simplifies to eA+H ≈ eA(I + H). Thus, eA+H ≈ eA + eAH.
(This approximation can also be justified by the Suzuki-Trotter formula.) The derivative
DF (A)(H) is then DF (A)(H) = Tr(HeA).

Example 4: Derivative of F (A) = log(det(A)) (Log Determinant). Starting from the
function F (A) = log(det(A)), we find DF (A)(H) such that:

lim
∥H∥→0

∥ log(det(A+H))− log(det(A))−DF (A)(H)∥
∥H∥

= 0.

We do this by invoking the approximation:

log(det(A+H)) ≈ log(det(A)) + Tr(A−1H),

which leads to the final result:

DF (A)(H) = Tr(A−1H).

The log determinant approximation of F (A) = log(det(A)) we invoked is based on a first-
order Taylor expansion. We consider the determinant as product of eigenvalues:

det(A) =
∏
i

λi

Taking the log

log(det(A)) =
∑
i

log(λi)

For a small perturbation H, the eigenvalues change to λi + δλi:

log(det(A+H)) =
∑
i

log(λi + δλi)

Next, we perform a first-order Taylor expansion:

log(λi + δλi) = log λi(1 + δλi/λi) = log λi + log(1 + δλi/λi) ≈ log(λi) +
δλi
λi

Next we sum over eigenvalues:

log(det(A+H)) ≈
∑
i

log(λi) +
∑
i

δλi
λi
.

The trace representation is: ∑
i

δλi
λi

≈ Tr(A−1H).

Finally,
log(det(A+H)) ≈ log(det(A)) + Tr(A−1H).
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Note: the step
∑

i
δλi
λi

≈ Tr(A−1H) follows from the approximation for the change in
eigenvalues due to a perturbation. This is based on first-order perturbation theory. Starting
from the eigenvalue problem where, for Aui = λiui, ui is the eigenvector, and λi is the
eigenvalue of a Hermitian matrix A. Adding a small perturbation H to A results in a
new matrix A + H. The perturbed eigenvalues and eigenvectors are λ′i = λi + δλi and
u′i = ui + δui. We then have the perturbed eigenvalue equation:

(A+H)(ui + δui) ≈ (λi + δλi)(ui + δui).

Invoking Aui = λiui leaves us with

Aδui +H(ui + δui) ≈ λiδui + δλi(ui + δui).

We want to solve for δλi. To lowest order in ui, we find Hui ≈ δλiui. Projecting onto ui
leads to ⟨ui, Hui⟩ ≈ δλi⟨ui, ui⟩. Solving for δλi gives δλi ≈ ⟨ui,Hui⟩

⟨ui,ui⟩ .

Example 5: Derivative of F (A) = ∥A∥2F (Frobenius Norm Squared). When F (A) =
∥A∥2F , finding DF (A)(H) such that:

lim
∥H∥→0

∥∥A+H∥2F − ∥A∥2F −DF (A)(H)∥
∥H∥

= 0.

This follows from direct application of the definition of the Frobenius norm:

∥A+H∥2F = Tr[(A+H)∗(A+H)] = Tr[A∗A+A∗H+H∗A+H∗H] = ∥A∥2F+2Tr(ATH)+∥H∥2F
which leads to

DF (A)(H) = 2Tr(ATH).

Example 6: Maximizing Entropy to Find the Canonical Density Matrix. In quantum
statistical mechanics, the canonical density matrix is derived by maximizing the von Neu-
mann entropy subject to normalization and energy constraints.

The von Neumann Entropy is: S = −kBTr(ρ̂ log ρ̂). The constraints are: 1) Normalization:

Tr(ρ̂) = 1. 2) Average Energy: Tr(ρ̂Ĥ) = ⟨E⟩. Introduce Lagrange multipliers α and β:

L(ρ̂) = −kBTr(ρ̂ log ρ̂)− α(Tr(ρ̂)− 1)− β(Tr(ρ̂Ĥ)− ⟨E⟩)
Let δρ̂ be a small variation in ρ̂. We expand each term in L(ρ̂+ δρ̂): The entropy term is:

−kBTr((ρ̂+ δρ̂) log(ρ̂+ δρ̂))

Using the series expansion for the logarithm:

log(ρ̂+ δρ̂) ≈ log(ρ̂) + ρ̂−1δρ̂

The expanded entropy term becomes:

−kBTr
(
(ρ̂+ δρ̂)(log(ρ̂) + ρ̂−1δρ̂)

)
Simplifying, we have:

−kBTr(ρ̂ log ρ̂)− kBTr(δρ̂ log ρ̂)− kBTr(ρ̂ρ̂
−1δρ̂)− kBTr(δρ̂ρ̂

−1δρ̂)
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The normalization term is:
−α(Tr(ρ̂+ δρ̂)− 1).

Expanding the trace:
−α(Tr(ρ̂) + Tr(δρ̂)− 1).

Invoking the energy constraint:

−β(Tr((ρ̂+ δρ̂)Ĥ)− ⟨E⟩).
Expanding the trace term:

−β(Tr(ρ̂Ĥ) + Tr(δρ̂Ĥ)− ⟨E⟩).
Combining these terms, we get:

L(ρ̂+ δρ̂) = −kBTr(ρ̂ log ρ̂)− kBTr(δρ̂ log ρ̂)− kBTr(δρ̂)− kBTr(δρ̂ρ̂
−1δρ̂)

− α(Tr(ρ̂) + Tr(δρ̂)− 1)− β(Tr(ρ̂Ĥ) + Tr(δρ̂Ĥ)− ⟨E⟩)
The linear map DL(ρ̂) applied to δρ̂ is:

DL(ρ̂)(δρ̂) = Tr
((

−kB(log ρ̂+ I)− αI − βĤ
)
δρ̂
)
.

The condition for L to be stationary under the variation δρ̂ is:

lim
∥δρ̂∥→0

∥L(ρ̂+ δρ̂)− L(ρ̂)−DL(ρ̂)(δρ̂)∥
∥δρ̂∥

= 0

Example 7: Grand Canonical Density Operator. In quantum statistical mechanics,
the grand canonical ensemble is used to describe systems in thermal equilibrium with a
reservoir of energy and particles. The grand canonical density operator ρ̂ is determined by
maximizing the entropy subject to certain constraints. The entropy in quantum mechanics
is given by the von Neumann entropy:

S = −kBTr(ρ̂ log ρ̂)
where kB is the Boltzmann constant. The constraints are:

(1) Normalization: Tr(ρ̂) = 1.

(2) Fixed average energy: ⟨Ĥ⟩ = Tr(ρ̂Ĥ), where Ĥ is the Hamiltonian.

(3) Fixed average number of particles: ⟨N̂⟩ = Tr(ρ̂N̂), where N̂ is the particle number
operator.

The Lagrange function L incorporating these constraints with Lagrange multipliers α, β,
and γ is:

L(ρ̂) = −kBTr(ρ̂ log ρ̂)− α(Tr(ρ̂)− 1)− β(Tr(ρ̂Ĥ)− ⟨Ĥ⟩)− γ(Tr(ρ̂N̂)− ⟨N̂⟩).
To find the extremum of L, we compute the derivative of L with respect to the matrix ρ̂
and set it to zero:

∂L
∂ρ̂

= 0.
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See Section 9.3.5 for the derivative of Tr(ρ̂ log ρ̂) and similar trace expressions. Expanding
this, we get:

−kB(log ρ̂+ I)− αI − βĤ − γN̂ = 0

we rearrange and divide by −kB:

log ρ̂+ I = − α

kB
I − β

kB
Ĥ − γ

kB
N̂ .

Exponentiating both sides gives:

ρ̂ · e · I = exp

(
− α

kB
I − β

kB
Ĥ − γ

kB
N̂

)
.

Introducing the normalization condition with partition function Z:

ρ̂ =
1

Z
exp

(
− α

kB
I − β

kB
Ĥ − γ

kB
N̂

)
The negative signs in the exponential are absorbed into the Lagrange multipliers for con-
ventional representation:

ρ̂ =
1

Z
exp

(
α

kB
I +

β

kB
Ĥ +

γ

kB
N̂

)
.

This representation ensures the correct handling of negative signs and maintains the phys-
ical requirement of normalization.

The Lagrange multipliers α, β, and γ are determined by substituting ρ̂ back into the
constraints. Typically, β is associated with the inverse temperature 1

kBT
and γ with the

chemical potential µ. Thus, the grand canonical density operator in quantum statistical
mechanics is derived by maximizing the entropy under constraints of normalization, fixed
average energy, and fixed average number of particles.

9.3.7. The Fréchet Derivative. The Fréchet derivative is an extension of the classical
derivative concept, tailored for operators between Banach spaces. Named after Maurice
Fréchet, it plays a vital role in functional analysis and is essential for understanding sys-
tems within infinite-dimensional spaces. In simple terms, the derivative in single-variable
calculus represents the slope of the tangent to a function’s graph at a point, indicating how
the function value changes with a small change in input. The Fréchet derivative expands
this idea to functions with functions as inputs or outputs, essential for dealing with changes
in the shape or behavior of function outputs in response to perturbations.

Definition 9.3 (Fréchet derivative). Given Banach spacesX and Y , a function F : X → Y
is said to be Fréchet differentiable at a point x ∈ X if there exists a bounded linear operator
A : X → Y such that:

lim
h→0

∥F (x+ h)− F (x)−Ah∥Y
∥h∥X

= 0.

Here h is a small perturbation in x, and Ah represents the linear approximation of the
change in F at x. The operator A is the Fréchet derivative of F at x, denoted as F ′(x).
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Consider F as a physical system where x represents a set of conditions. The Fréchet
derivative, F ′(x), then describes the system’s response to infinitesimal variations in these
conditions.

Examples in Physics. 1. Quantum Mechanics: Operators in quantum mechanics sym-
bolize physical observables. The Fréchet derivative aids in understanding how these ob-
servables change under transformations.

2. Field Theory: In classical field theory, fields are functions over space-time. The
Fréchet derivative is instrumental in analyzing field responses to perturbations, crucial for
comprehending aspects like wave propagation and interactions.

9.3.7.1. Worked Examples of Fréchet Derivative Computations.

Example 1: Linear Map. Consider a linear map L : Rn → Rm defined by a matrix A. The
Fréchet derivative of L at any point is the map itself.

Computation:

Given L(x) = Ax, we need to find a linear map A′ such that:

lim
h→0

∥L(x+ h)− L(x)−A′h∥
∥h∥

= 0.

Since L is linear, L(x+ h)− L(x) = Ah. Thus, we choose A′ = A. The limit becomes:

lim
h→0

∥Ah−Ah∥
∥h∥

= lim
h→0

∥0∥
∥h∥

= 0.

Hence, the Fréchet derivative of L at any point is A.

Example 2: Nonlinear Map. Consider the nonlinear function F : R2 → R2 defined by
F (x, y) = (x2, ey).

Computation:

The Fréchet derivative of F at a point (x0, y0) is a linear map A such that:

lim
(h,k)→(0,0)

∥F (x0 + h, y0 + k)− F (x0, y0)−A(h, k)∥
∥(h, k)∥

= 0.

Expanding F , we have:

F (x0 + h, y0 + k)− F (x0, y0) = (x20 + 2x0h+ h2 − x20, e
y0+k − ey0).

We propose A(h, k) = (2x0h, e
y0k). Then,

lim
(h,k)→(0,0)

∥(h2, ey0+k − ey0 − ey0k)∥
∥(h, k)∥

= 0.

Since the terms h2 and ey0+k − ey0 − ey0k are of higher order compared to ∥h∥ and ∥k∥,
the limit goes to zero. Therefore, the Fréchet derivative of F at (x0, y0) is given by the
Jacobian matrix:

F ′(x0, y0) =

(
2x0 0
0 ey0

)
.
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Example 3: Quadratic Function. Consider a quadratic function Q : R → R defined by
Q(x) = x2.

Computation:

The Fréchet derivative of Q at a point x0 is a linear map A such that:

lim
h→0

|Q(x0 + h)−Q(x0)−A(h)|
|h|

= 0.

Expanding Q, we have Q(x0 + h)−Q(x0) = x20 +2x0h+ h2 − x20 = 2x0h+ h2. We propose
A(h) = 2x0h. Then,

lim
h→0

|2x0h+ h2 − 2x0h|
|h|

= lim
h→0

|h2|
|h|

= lim
h→0

|h| = 0.

Thus, the Fréchet derivative of Q at x0 is the function 2x0.

Example 4: Exponential Function. Consider the exponential function E : R → R defined
by E(x) = ex.

Computation:

The Fréchet derivative of E at a point x0 is a linear map A such that:

lim
h→0

|E(x0 + h)− E(x0)−A(h)|
|h|

= 0.

Since E(x0 + h) = ex0eh, the expression becomes ex0eh − ex0 . We propose A(h) = ex0h.
Then,

lim
h→0

|ex0eh − ex0 − ex0h|
|h|

= ex0 lim
h→0

|eh − 1− h|
|h|

= 0.

As h→ 0, eh − 1− h is of higher order than h, making the limit zero. Hence, the Fréchet
derivative of E at x0 is ex0 .

Example 5: Polynomial Function. Consider a polynomial function P : R → R defined by
P (x) = a0 + a1x+ a2x

2 + . . .+ anx
n.

Computation:

The Fréchet derivative of P at a point x0 is a linear map A such that:

lim
h→0

|P (x0 + h)− P (x0)−A(h)|
|h|

= 0.

Expanding P and using the binomial theorem, we get P (x0 + h) =
∑n

k=0 ak(x0 + h)k.

We propose A(h) =
∑n

k=1 kakx
k−1
0 h. Then,

lim
h→0

|
∑n

k=0 ak(x0 + h)k − P (x0)−
∑n

k=1 kakx
k−1
0 h|

|h|
= 0.

The terms of higher order in h become negligible, and the limit goes to zero. Therefore,
the Fréchet derivative of P at x0 is the polynomial

∑n
k=1 kakx

k−1
0 .
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Example 6: Sine Function. Consider the sine function S : R → R defined by S(x) = sin(x).

Computation:

The Fréchet derivative of S at a point x0 is a linear map A such that:

lim
h→0

| sin(x0 + h)− sin(x0)−A(h)|
|h|

= 0.

Using the sum formula for sine, sin(x0 + h) = sin(x0) cos(h) + cos(x0) sin(h). We propose
A(h) = cos(x0)h. Then,

lim
h→0

| sin(x0) cos(h) + cos(x0) sin(h)− sin(x0)− cos(x0)h|
|h|

= 0.

As h → 0, the terms involving higher powers of h become negligible. Hence, the Fréchet
derivative of S at x0 is cos(x0).

Example 7: Functional Derivative in Field Theory. Consider a functional S in field theory,
defined over a field ϕ(x) as S[ϕ] =

∫
f(ϕ(x),∇ϕ(x), x) dx, where f is a function of the field

ϕ, its gradient ∇ϕ, and position x.

Computation:

The Fréchet derivative, or functional derivative, of S with respect to ϕ at ϕ0, denoted
δS
δϕ ,

is defined such that for a small variation ϵη(x) in ϕ, where η is a test function and ϵ is a
small parameter, we have:

δS

δϕ(x)
= lim

ϵ→0

S[ϕ0 + ϵη]− S[ϕ0]

ϵ
.

Expanding and simplifying the functional using the fundamental lemma of calculus of
variations, we obtain:

δS

δϕ(x)
=
∂f

∂ϕ
−∇ ·

(
∂f

∂∇ϕ

)
.

Example 8: Functional Derivative in Quantum Mechanics. Consider a functional in quan-
tum mechanics, F [ψ] =

∫
|∇ψ(x)|2 dx, where ψ(x) is a wave function.

Computation:

The Fréchet derivative of F with respect to ψ at ψ0, denoted
δF
δψ , is defined similarly:

δF

δψ(x)
= lim

ϵ→0

F [ψ0 + ϵη]− F [ψ0]

ϵ
.

Expanding F and simplifying, we find:

δF

δψ(x)
= −∇2ψ(x).

This represents the second spatial derivative of the wave function, indicating how the
kinetic energy part of the quantum Hamiltonian operator varies with respect to changes in
the wave function.
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Example 9: Functional in Elasticity Theory. Consider a functional J in elasticity theory
representing the total potential energy of an elastic body, defined as J [u] =

∫
Ω

(
1
2A∇u · ∇u− fu

)
dx,

where u(x) is the displacement field, A is a positive-definite matrix representing material
properties, f is a body force, and Ω is the region occupied by the body.

Computation:

The Fréchet derivative of J with respect to u at u0, denoted
δJ
δu , is defined as:

δJ

δu(x)
= lim

ϵ→0

J [u0 + ϵv]− J [u0]

ϵ
.

For a variation ϵv(x) in u, where v is a test function, expanding J and applying the limit,
we obtain:

δJ

δu(x)
= −A∇2u(x)− f(x).

This represents the Euler-Lagrange equation in elasticity theory, connecting the material
response to external forces.

Example 10: Operator in Heat Equation. Consider an operator K associated with the heat

equation, defined as K[θ] =
∫ T
0

∫
Ω

(
∂θ
∂t − α∇2θ

)2
dx dt, where θ(x, t) is the temperature

distribution, α is the thermal diffusivity, T is the time interval, and Ω is the spatial domain.

Computation:

The Fréchet derivative of K with respect to θ at θ0, denoted
δK
δθ , is defined as:

δK

δθ(x, t)
= lim

ϵ→0

K[θ0 + ϵϕ]−K[θ0]

ϵ
.

For a small perturbation ϵϕ(x, t) in θ, where ϕ is a test function, expanding K and taking
the limit, we find:

δK

δθ(x, t)
= 2

(
∂θ

∂t
− α∇2θ

)
.

This derivative indicates how the integral of the squared residual in the heat equation
changes with respect to small variations in temperature distribution.

Example 11: Fréchet Derivative in Optimal Control Theory. Consider an optimal control

problem where the objective is to minimize a cost functional J [u, y] =
∫ T
0 L(y(t), u(t), t) dt

subject to a differential equation ẏ(t) = f(y(t), u(t), t) with initial condition y(0) = y0.
Here, y(t) is the state variable, u(t) is the control variable, and L is a given Lagrangian.

Computation:

To find the Fréchet derivative of J with respect to u, we consider variations δu(t) in the
control variable. The corresponding variation in the state variable is denoted δy(t).

The Fréchet derivative δJ
δu is defined as:

δJ

δu(t)
= lim

ϵ→0

J [u+ ϵδu, y + ϵδy]− J [u, y]

ϵ
.
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Applying the chain rule and using the Euler-Lagrange equation, we obtain an expression
involving partial derivatives of L and f , which leads to the necessary conditions for optimal
control, known as the Pontryagin’s Maximum Principle.

Example 12: Fréchet Derivative in Nonlinear Schrödinger Equation. Consider the nonlin-
ear Schrödinger equation given by i∂ψ∂t +∆ψ + |ψ|2ψ = 0 in a domain Ω with appropriate

boundary conditions. We define a functional F [ψ] =
∫
Ω

(
|∇ψ|2 − 1

2 |ψ|
4
)
dx, where ψ is a

complex-valued function.

Computation:

The Fréchet derivative of F with respect to ψ gives the variational formulation of the
nonlinear Schrödinger equation. For a variation ϵϕ in ψ, where ϕ is a test function, we
compute:

δF

δψ
= lim

ϵ→0

F [ψ + ϵϕ]− F [ψ]

ϵ
.

Expanding this and applying the limit, we obtain the weak form of the nonlinear Schrödinger
equation, which is essential in understanding soliton solutions and stability analysis in non-
linear wave mechanics.

9.3.8. Green’s Functions for Linear Inhomogeneous ODEs. Suppose we have a
linear differential operator L̂ operating on a function space. Define the Green’s function
as the solution to:

L̂[G(x, ξ)] = δ(x− ξ)

Then,

L̂[y(x)] = f(x) =

∫
f(ξ) δ(x− ξ)︸ ︷︷ ︸

L̂[G(x,ξ)]

dξ = L̂[

∫
f(ξ)G(x, ξ)dξ].

Thus, we have proved that L̂[y(x)] = L̂[
∫
f(ξ)G(x, ξ)dξ]. If we can find an inverse of the

operator L̂, i.e. L̂−1L̂ = 1, then this implies that

y(x) =

∫
f(ξ)G(x, ξ)dξ.

9.4. Matrix Logarithmic Property

The matrix logarithmic property is

log(AB) = log(A) + log(B),

where A and B are matrices of suitable dimensions. This obviously does not hold in most
situations. However, under certain restrictions on A and B, the result can hold.

9.4.1. Case 1: Commuting Matrices.

Theorem 9.4. The relationship log(AB) = log(A) + log(B) holds under the conditions:

(1) AB = BA (Commutativity).
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(2) There exists a unitary matrix U such that A = UDAU
† and B = UDBU

†, where
DA and DB are diagonal matrices (Simultaneous Diagonalizability).

Proof. Given A = UDAU
† and B = UDBU

†, we can write the product AB as:

AB = UDAU
†UDBU

† = UDADBU
†

The logarithm of a diagonal matrix is a diagonal matrix of the logarithms of its entries.
Hence, for DA and DB:

log(DA) = diag(log(λA,1), log(λA,2), . . .)

log(DB) = diag(log(λB,1), log(λB,2), . . .)

where λA,i and λB,i are the eigenvalues of A and B, respectively. Since DA and DB are
diagonal and commute, DADB is also diagonal. The logarithm of DADB is:

log(DADB) = diag(log(λA,1λB,1), log(λA,2λB,2), . . .)

Using the logarithmic property for real numbers:

log(λA,iλB,i) = log(λA,i) + log(λB,i)

Thus:
log(DADB) = log(DA) + log(DB)

Finally, applying the unitary transformation U , we have:

log(AB) = log(UDADBU
†) = U log(DADB)U

†

= U(log(DA) + log(DB))U
† = log(UDAU

†) + log(UDBU
†)

= log(A) + log(B)

Thus, under the assumptions of commutativity and simultaneous diagonalizability, log(AB) =
log(A) + log(B) for matrices A and B. □

9.4.2. Case 2: Small B.

Theorem 9.5. The relationship log(AB) ≈ log(A) + log(B) holds under the conditions:

• A is an invertible matrix.

• B is a matrix close to the identity, i.e., ∥B − I∥ is sufficiently small.

Proof. If a matrix B is close to I, then log(B) ≈ log(I+(B−I)) ≈ B−I. Now, considering
AB as the product of A and a matrix close to I, we can use the linear approximation to
write:

log(AB) = log(A(I + (B − I))) = log(A+A(B − I)))

= log(A) +D log(A)︸ ︷︷ ︸
A−1

·A(B − I) + o(∥A(B − I)∥) ≈ log(A) +B − I
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Comparing this with the expansion of log(B), we have:

log(AB) ≈ log(A) + log(B)

Thus, for B close to I, the matrix logarithmic property log(AB) ≈ log(A) + log(B) holds.
□

9.5. Volume of a Sphere in n Dimensions

Let Ωn(R) be the volume of the n-dimensional sphere of radius R:

Ωn(R) =

∫
|x⃗|≤R

dnx.

By analogy with the 3D case, V (R) = 4
3πR

3, it is reasonable to assume that in n dimensions
we will get Ωn(R) = CnR

n. In that case, the surface Sn(R) of the n-dimensional sphere
will be given by

Sn(R) =
dΩn(R)

dR
= nCnR

n−1.

The constant Cn can be evaluated starting from the identity

πn/2 =

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxn exp[−(x21 + · · ·+ x2n)]

=

∫ ∞

0
dRSn(R) exp(−R2) = nCn

∫ ∞

0
dRRn−1 exp(−R2).

We recall the integral representation of Euler’s gamma function Γ(z), for ℜ(z) > 0

Γ(z) =

∫ ∞

0
tz−1e−t dt.

Setting t = R2, dt = d(R2) = 2RdR, so that dR = dt
2R = dt

2
√
t
, we find∫ ∞

0
Rn−1 exp(−R2) dR =

∫ ∞

0
t(n−1)/2e−t

dt

2
√
t
=

1

2

∫ ∞

0
tn/2−1e−t dt =

1

2
Γ(n/2)

and then, eventually:

Cn =
2πn/2

nΓ(n/2)

which leads to

Ωn(R) =
2πn/2

nΓ(n/2)
Rn.

9.6. The Dirac Delta Function

The Dirac delta function, denoted as δ(x), is a fundamental concept in mathematics and
engineering, particularly in the fields of signal processing and physics. It is not a function
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in the traditional sense, but rather a distribution or generalized function that encapsulates
an idealized point mass or point charge.

Properties of the Dirac Delta Function. The one dimensional Dirac delta function,
denoted by δ(x), is a distribution with the following defining property, known as the sifting
property: ∫ ∞

−∞
f(x)δ(x− a) dx = f(a),

where f(x) is a test function that is continuous at x = a.

In multiple dimensions, for x ∈ Rn and a ∈ Rn, the Dirac delta is defined similarly by:∫
Rn

f(x)δ(x− a) dx = f(a)

Sifting Property. For any continuous function f(x) and a real number a:∫ ∞

−∞
f(x)δ(x− a) dx = f(a).

Proof:

lim
ϵ→0

∫ ∞

−∞
f(x)

1

ϵπ

sin2(x−aϵ )

(x− a)2
dx = lim

ϵ→0

∫ a+ϵ

a−ϵ
f(x)

1

ϵπ

sin2(x−aϵ )

(x− a)2
dx

= lim
ϵ→0

f(a)

∫ a+ϵ

a−ϵ

1

ϵπ

sin2(x−aϵ )

(x− a)2
dx = f(a).

Scaling Property. For a non-zero scalar α:

δ(αx) =
1

|α|
δ(x).

Proof: ∫ ∞

−∞
f(x)δ(αx) dx =

∫ ∞

−∞
f
(u
α

)
δ(u)

1

|α|
du

=
1

|α|
f(0) =

1

|α|

∫ ∞

−∞
f(x)δ(x) dx.

Representations.

Representations. Although the Dirac delta cannot be represented as a function in the
traditional sense, it can be approximated by functions that concentrate a unit mass at a
point. Two common representations are:

Integral Representation as a Fourier Integral: The Dirac delta can also be repre-
sented as the Fourier transform of the constant function f(k) = 1. This integral represen-
tation is given by:

δ(x) =
1

2π

∫ ∞

−∞
eikx dk
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This integral diverges for any finite value of x, but in the distributional sense, it converges
to the Dirac delta function.

Infinite Sum Representation:

δ(x) = lim
N→∞

N∑
n=−N

e2πinx

Limit of a sequence of Gaussians:

δ(x) = lim
ϵ→0

1

ϵ
√
π
e−x

2/ϵ2 .

Proof:

lim
ϵ→0

∫ ∞

−∞
f(x)

1

ϵ
√
π
e−x

2/ϵ2 dx = lim
ϵ→0

∫ ∞

−∞
f(0)

1

ϵ
√
π
e−x

2/ϵ2 dx

= f(0) lim
ϵ→0

1

ϵ
√
π

∫ ∞

−∞
e−x

2/ϵ2 dx = f(0).

Lorentzian Representation:

δ(x) = lim
ϵ→0

1

π

ϵ

x2 + ϵ2

Derivative of the Heaviside Function. The Dirac delta function is the derivative of the
Heaviside step function H(x):

δ(x) =
dH(x)

dx
.

The Heaviside step function, denoted as H(x), is defined as:

H(x) =


0 if x < 0,
1
2 if x = 0,

1 if x > 0.

Proof: ∫ ∞

−∞
f(x)

dH(x)

dx
dx =

∫ ∞

−∞
f(x) dH(x) = f(0).

where the last step follows from the Stieltjes integral.

Scaling Property: Consider the integral:∫ ∞

−∞
f(x)δ(ax) dx

By substituting u = ax, we have dx = du
a , and the integral becomes:∫ ∞

−∞
f
(u
a

)
δ(u)

du

a
=

1

|a|
f(0)
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which implies that δ(ax) = 1
|a|δ(x).

Composition with a Function. For a smooth function g(x) with a simple zero at x0, i.e.,
g(x0) = 0 and g′(x0) ̸= 0, the composition of the delta function with g(x) is:

δ(g(x)) =
δ(x− x0)

|g′(x0)|

Derivatives. The n-th derivative of the delta function is defined via its action on a test
function f(x): ∫ ∞

−∞
f(x)δ(n)(x− a) dx = (−1)nf (n)(a)

9.7. Solving Systems of 2 Equations and 2 Unknowns

To solve for N unknowns in N equations we can use the matrix inverse. The formula for
the inverse of a 2× 2 matrix is:(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The cross product ad− bc is the determinant of the 2×2 matrix. Students unfamiliar with

matrix inverses should check that the inverse of this 2 × 2 matrix A =

(
a b
c d

)
, denoted

A−1, satisfies the following conditions: AA−1 = I and A−1A = I. Here, I is the 2 × 2

identity matrix, I =

(
1 0
0 1

)
.

Suppose that we need to solve:

An+B
∑

xi =
∑

yi

A
∑

xi +B
∑

x2i =
∑

xiyi.

This is done by rewriting it in matrix form:(
n

∑
xi∑

xi
∑
x2i

)(
A
B

)
=

( ∑
yi∑
xiyi

)
.

Multiplying both sides on the left by the inverse of

(
n

∑
xi∑

xi
∑
x2i

)
, we solve for A,B:

(9.5)

(
A
B

)
=

(
n

∑
xi∑

xi
∑
x2i

)−1( ∑
yi∑
xiyi

)
.

Here, the inverse of that matrix is:

(9.6)

(
n

∑
xi∑

xi
∑
x2i

)−1

=
1

∆

( ∑
x2i −

∑
xi

−
∑
xi n

)
.
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Substitution of (9.6) into (9.5) gives the final result:(
A
B

)
=

1

∆

(∑
x2i
∑
yi −

∑
xi
∑
xiyi

n
∑
xiyi −

∑
xi
∑
yi

)
, ∆ = n

∑
x2i − (

∑
xi)

2.

9.8. Changing Variables Under the Integral Sign

We often need to change variables under the integral sign to express the probabilistic inte-
gral in terms of known probability densities. At the same time, we should use a convenient
coordinate system where the integrals can be computed.

Suppose that we want to integrate f(u, v) over a region R. Under the inverse of the
transformation u = u(x, y), v = v(x, y) the region R becomes S and the double integral
becomes ∫∫

R
f(u, v) dudv =

∫∫
S
f(u(x, y), v(x, y))

∣∣∣∣∂(u, v)∂(x, y)

∣∣∣∣ dx dy,
where ∂(u,v)

∂(x,y) is the Jacobian determinant:

∂(u, v)

∂(x, y)
≡

∥∥∥∥∥∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∥∥∥∥∥ =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

If we look at the area elements, we see that the Jacobian plays the role of a scaling factor
indicating by how much the area element is scaled in the new coordinates:

dudv =

∣∣∣∣∂(u, v)∂(x, y)

∣∣∣∣ dx dy.
This idea extends to multi-dimensional integrals, where the Jacobian represents the scaling
of the volume element, etc. To simplify the notation we may use the shorthand notation
∂xu = ∂u

∂x , etc. for partial derivatives.

For those who don’t remember the change-of-variables formula, there is another method
which does not require you to remember anything except for the rules of alternating forms.
du and dv are differential 1-forms (covector fields). The product dudv should instead be
viewed as a “wedge product” du∧dv, which is a 2-form. A 2-form du ∧ dv is an oriented
area element spanned by the covectors du and dv. In the left hand side we replace dudv
by the wedge product du∧dv∫∫

R
f(u, v) dudv =

∫∫
R
f(u, v) du ∧ dv

Then, viewing u and v as functions of x and y, we expand du and dv as total differentials:

du(x, y) = (∂xu)dx+ (∂yu)dy

and
dv(x, y) = (∂xv)dx+ (∂yv)dy.
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Then we form the wedge product of du and dv:

du ∧ dv = [(∂xu)dx+ (∂yu)dy] ∧ [(∂xv)dx+ (∂yv)dy] ,

When distributing the product, we apply the rules of the alternating algebra: since dx∧dy
is an oriented area element spanned by the covectors dx and dy, we have that dx ∧ dy =
−dy ∧ dx (sign flipped because we have an “oriented area element” and this amounts to
changing from the left hand rule to the right hand rule in a cross product), dx ∧ dx = 0
and dy ∧ dy = 0 (zero because the area spanned by two collinear vectors is zero). We are
left with:

du ∧ dv = (∂xu)(∂yv)dx ∧ dy + (∂yu)(∂xv)dy ∧ dx = (∂xu ∂yv − ∂yu ∂xv)dx ∧ dy.

You will recognize the coefficient of dx ∧ dy on the right hand side as the Jacobian deter-

minant ∂(u,v)
∂(x,y) . Thus, the alternating algebra of differential forms took care of calculating

the determinant for us. This works in any number of dimensions.

Let us work out an example. Suppose that we have an integral∫∫
R
f(x, y) dx dy

and want to change from Cartesian to polar coordinates, i.e.

x = r cos θ, y = r sin θ.

The total differentials are:

dx(r, θ) = ∂rx dr + ∂θx dθ = cos θ dr − r sin θ dθ

dy(r, θ) = ∂ry dr + ∂θy dθ = sin θ dr + r cos θ dθ.

Forming the wedge product dx ∧ dy:

dx ∧ dy = [cos θ dr − r sin θ dθ] ∧ [sin θ dr + r cos θ dθ] .

Applying the rules dθ ∧ dθ = 0, dr ∧ dr = 0 and dr ∧ dθ = −dθ ∧ dr, we are left with:

dx ∧ dy = r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr = r dr ∧ dθ,

which is the familiar area element in polar coordinates.

Now let us return to the example of the previous section where we had the integral∫∫
pU (u)pV (v)dudv, where v = z and u = zy. Writing dudv as a wedge product du ∧ dv,

expanding the total differentials: du(y, z) = zdy + ydz and dv(y, z) = dz yields du ∧ dv =
zdy ∧ dz, where z is the Jacobian determinant that was sought and dy ∧ dz are the new
integration variables. The alternating algebra of differential forms automatically computes
the determinant for us.
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9.9. Leibniz Formula

The Leibniz formula for differentiation of integrals (the Leibniz integral rule) is:

d

dy

(∫ b(y)

a(y)
f(x, y) dx

)
=

∫ b(y)

a(y)

∂

∂y
f(x, y) dx︸ ︷︷ ︸
1

+ f
(
b(y), y

)
· b′(y)︸ ︷︷ ︸

2

− f
(
a(y), y

)
· a′(y)︸ ︷︷ ︸

3

which consists of the sum of three terms: in the first one the differentiation is carried out
inside the integral; the remaining two terms are surface (boundary) terms. This formula
will help you compute PDFs from CDFs.

Let’s look at an example of obtaining the PDF from the CDF P(Y < y) whenX ∼ N (µ, σ2)
and Y = eX , by differentiating with respect to y. Since the y dependence occurs only in
the upper limit of the integral, only the second term in the Leibniz formula is non-zero:

pY (y) ≡
dP(Y < y)

dy
=

d

dy

∫ log y

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx =

1√
2πσ2

e−(log y−µ)2/2σ2 · 1
y
.

This particular PDF is also known as the log-normal distribution.

9.10. Infinitesimals

It is important to know how to work with infinitesimals. Let us take the link between CDF
and PDF as an example. Denoting the CDF as P(X < x) = F (x), let us Taylor expand
F (x+ ϵ) about the point x (here ϵ > 0 is a small quantity):

(9.7) F (x+ ϵ) = F (x) + ϵ · F ′(x) + o(|ϵ|)
where F ′(x) = dF (x)/dx and o(|ϵ|) denotes higher order terms (in this case ϵ2 and higher
powers of ϵ) which decay to 0 faster than ϵ in the limit ϵ→ 0:

lim
ϵ→0

o(|ϵ|)
|ϵ|

= 0,

so that taking the limit ϵ→ 0 in Eq. (9.7) leads to F (x+ ϵ) = F (x) + ϵdF (x)/dx. Taking
ϵ = dx (infinitesimal) this can be rewritten as:

F (x+ dx)− F (x) =���F (x) + dx · F ′(x) + o(|dx|)−���F (x) = dF (x) + o(|dx|),
since F ′(x) = dF (x)/dx. Thus, as dx → 0 (without being equal to 0) the term o(|dx|)
vanishes and we have that

(9.8) F (x+ dx)− F (x) = dF (x).

(This is only true if dx is an infinitesimal. In that case, dF is the total differential of F .)

Denote the CDF as F (x) ≡ P(X < x) and recall the interpretation of the PDF. Given a
random variable X its PDF pX(x) times dx gives the probability that X will lie in the
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interval (x, x+ dx):

pX(x)dx = P(x ≤ X ≤ x+ dx) = P(X ≤ x+ dx)− P(X ≤ x) = dP(X ≤ x),

where dF (x) = F (x+dx)−F (x) was used in the last step. In the second equality we have
made use of the definition of the “probability function” P(·) as an integral of the PDF, i.e.

P(a ≤ X ≤ b) =

∫ b

a
pX(x)dx =

∫ b

−∞
pX(x)dx−

∫ a

−∞
pX(x)dx

= P(X ≤ b)− P(X ≤ a)

hence P(x ≤ X ≤ x + dx) = P(X ≤ x + dx) − P(X ≤ x). Another way to look at the
quantity P(x ≤ X ≤ x+ dx) is the integral of the PDF from x to x+ dx

P(x ≤ X ≤ x+ dx) =

∫ x+dx

x
pX(x

′)dx′ = pX(x)dx.

The last equality follows because the integral is a Riemann sum containing only 1 term.
It contains only 1 term because the interval [x, x+ dx] where the integral is carried out is
infinitesimally small.

So integrating from a to b we get the probability that X takes values between a and b:∫ b

a
pX(x

′)dx′ =

∫ b

a
P(x ≤ X ≤ x+ dx) =

∫ b

a
[P(X ≤ x+ dx)− P(X ≤ x)]

=

∫ b

a
dP(X ≤ x) = P(X ≤ b)− P(X ≤ a)

=P(a ≤ X ≤ b).

If the interval (a, b) is chosen to be (−∞, x) we get the CDF:1∫ x

−∞
pX(x

′)dx′ = P(−∞ ≤ X ≤ x) = P(X ≤ x).

Differentiating with respect to x yields a method for obtaining the PDF from the CDF:

(9.9)
dP(X ≤ x)

dx
= pX(x).

So now you know how to go from PDF to CDF or from CDF to PDF. The two concepts
are related to each other by an integral or a derivative. If you are asked to obtain the
probability distribution of a rv you can derive either the PDF or the CDF. In general,
obtaining the CDF is easier because fewer steps are needed and the interpretation of the
CDF in terms of probability is also simpler.

1Notice that we wrote P(X ≤ x) instead of P(−∞ ≤ X ≤ x) because the statement that X ≥ −∞ is always true
and therefore, unnecessary or redundant.
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9.11. Taylor’s Theorem in Several Variables

Because nonlinear optimization methods make extensive use of partial derivatives, here we
review partial derivatives and the Taylor’s theorem in multiple variables. We will show how
to compute the partial derivatives of 1/r, where r = |r| and r has components r = (x, y, z).
r is its Euclidean length:

|r| ≡ r ≡
√
x2 + y2 + z2.

9.11.1. Einstein summation convention. To simplify the notation one may use the
Einstein summation convention. Whenever two indices are repeated in the same term,
a summation is implied. For example, in the dot product of u = (ux, uy, uz) and v =
(vx, vy, vz) we have:

u · v = uαvα ≡
3∑
i=1

uivi = uxvx + uyvy + uzvz.

It is simpler to write uαvα than the entire summation.

9.11.2. Multivariate Taylor expansion. In 1D the Taylor expansion of f(x+ h) at x
is:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

3!
f (3)(x)h3 + . . .

In n-D, a scalar-valued function f(x), where x ∈ Rn, is expanded as:

f(x+ h) = f(x) +
n∑
i=1

∂f(x)

∂xi
hi +

1

2

n∑
i=1

n∑
j=1

∂2f(x)

∂xi∂xj
hihj

+
1

3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3f(x)

∂xi∂xj∂xk
hihjhk + . . .

9.11.3. Abbreviation for Partial Derivatives. We will often use the shorthand nota-
tion to abbreviate the notation for partial differentiation:

∂α ≡ ∂

∂xα
In this notation, and using the summation convention, the multivariate Taylor expansion
looks particularly neat:

f(x+ h) = f(x) + hi∂if(x) +
1

2
hihj∂i∂jf(x) +

1

3!
hihjhk∂i∂j∂kf(x) . . .

(summation convention). The vectors h have been moved to the left-hand-side of all
derivative operators to avoid any possible confusion about which quantity is differentiated.
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9.11.4. Example: Derivative of 1/r. The first order partial derivative of

1

r
≡ 1

|r|
=

1√
x2 + y2 + z2

with respect to x is:

∂

∂x

(
1

r

)
≡ ∂x

(
1

r

)
= −1

2

(2x)

(x2 + y2 + z2)3/2
= − x

r3
.

Similar expressions are found for differentiation with respect to y or z. Thus, for any
component α = x, y, z we have:

∂

∂rα

(
1

r

)
≡ ∂α

(
1

r

)
= −rα

r3
.

9.12. Legendre Transformation in Thermodynamics

The Legendre transformation is a very useful tool in mathematics and the physical sciences.
It transforms convex functions on a vector space to convex functions on the dual space
while preserving the convexity. Thus, it goes beyond a simple “change-of-variable” by
maintaining the local shapes of the surfaces, loosely speaking. This is useful if we are
trying to optimize a function, such as maximizing the entropy or finding the minimum in
the free energy surface, as we often do in thermodynamics.

In chemistry, it is used to define some thermodynamic potentials. For example, we may go
from the internal energy U(S, V,N), whose differential is

dU = TdS − pdV + µdN

to the Helmholtz free energy A(T, V,N) = U − TS,

dA = dU − SdT − TdS = −SdT − pdV + µdN

or to the enthalpy H(S, p,N) = U + pV , whose differential is

dH = TdS + V dp+ µdN

or to the free enthalpy (Gibbs’ potential) G(T, p,N) = U − TS + pV , whose differential is

dG = dU − TdS − SdT + pdV + V dp = −SdT + V dp+ µdN.

9.12.1. Classical Mechanics. In classical mechanics, the Hamiltonian function is ob-
tained from the Lagrangian through a Legendre transformation. The Hamiltonian is convex
in the momenta because of the kinetic energy term:

H(p,q) =
∑
i

p2i
2mi

+ U(q).
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Figure 9.1. Legendre transformation.

The Lagrangian, which is obtained by switching from the p variables to the velocities, q̇i,
is convex in these new variables:

L(q, q̇) =
∑
i

1

2
miq̇

2
i − U(q).

It can also be used as a tool to solve differential equations that would otherwise be impos-
sible to solve. An example of this is given at the end of this supplement.

9.12.2. How to Compute It. In this section, we give an intuitive definition of the
Legendre transform based on the treatment found in Arnold:

• V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edition, Springer-Verlag
(1997).

Another good reference, with a different set of examples, is the book by Honerkamp:

• J. Honerkamp, Statistical physics: an advanced approach with applications, 2nd edition,
Springer-Verlag (2004).

Definition 9.6. Let y = f(x) be a convex function, f ′′(x) > 0. The Legendre transfor-
mation of the function f is a new function g of a new variable p, which is constructed
in the following way (Figure 9.1). We draw the graph of f in the x, y plane. Let p be a
given number. Consider the straight line y = px. We take the point x = x(p) at which
the curve is farthest from the straight line in the vertical direction: for each p the function
px − f(x) = F (p, x) has a maximum with respect to x at the point x(p). Now we define
g(p) = F (p, x(p)). The point x(p) is defined by the extremal condition ∂F/∂x = 0, i.e.
f ′(x) = p. Since f is convex, the point x(p) is unique (if it exists).

9.12.3. Examples.
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Figure 9.2. Legendre transformation taking an angle to a line segment.

Example 9.7. Let f(x) = x2. Then F (p, x) = px− x2, x(p) = (1/2)p, g(p) = (1/4)p2.

Example 9.8. Let f(x) = mx2/2. Then g(p) = p2/2m.

Example 9.9. Let f(x) = xα/α. Then g(p) = pβ/β, where (1/α) + (1/β) = 1 (α > 1,
β > 1).

Example 9.10. Let f(x) be a convex polygon. Then g(p) is also a convex polygon, in
which the vertices of f(x) correspond to the edges of g(p), and the edges of f(x) to the
vertices of g(p). For example, the corner depicted in Fig. 9.2 is transformed to a line
segment under the Legendre transformation.

9.12.4. Involutivity. Let us illustrate what it means for the Legendre transform to be
involutive. Consider a function f which is differentiable as many times as necessary, with
f ′′(x) > 0. It is easy to verify that a Legendre transformation takes convex functions to
convex functions. Therefore, we can apply it twice.

Theorem 9.11. The Legendre transformation is involutive, i.e., its square is the identity:
if under the Legendre transformation f is taken to g, then the Legendre transform of g will
again be f .

Proof. In order to apply the Legendre transform to g, with variable p, we must by defini-
tion look at a new independent variable (which we call x), construct the function

G(x, p) = xp− g(p),

and find the point p(x) at which G attains its maximum: ∂G/∂p = 0, i.e., g′(p) = x. Then
the Legendre transform of g(p) will be the function of x equal to G(x, p(x)).

We will show that G(x, p(x)) = f(x). To this end we notice that G(x, p) = xp− g(p) has a
simple geometric interpretation: it is the ordinate of the point with abscissa x on the line
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Figure 9.3. Involutivity of the Legendre transformation

tangent to the graph of f(x) with slope p (Figure 9.3). For fixed p, the function G(x, p) is a
linear function of x, with ∂G/∂x = p, and for x = x(p) we have G(x, p) = xp−g(p) = f(x)
by the definition of g(p).

Let us now fix x = x0 and vary p. Then the values of G(x, p) will be the ordinates of the
points of intersection of the line x = x0 with the line tangent to the graph of f(x) with
various slopes p. By the convexity of the graph it follows that all these tangents lie below
the curve, and therefore the maximum of G(x, p) for a fixed x(p0) is equal to f(x) (and is
achieved for p = p(x0) = f ′(x0)).

□

9.12.5. Inequalities. By definition of the Legendre transform, F (x, p) = px−f(x) is less
than or equal to g(p) for any x and p. From this we have Young’s inequality:

px ≤ f(x) + g(p).

Example 9.12. If f(x) = 1
2x

2, then g(p) = 1
2p

2 and we obtain the well-known inequality

px ≤ 1
2x

2 + 1
2p

2 for all x and p.

Example 9.13. If f(x) = xα/α, g(p) = pβ/β, where (1/α) + (1/β) = 1, and we obtain
Young’s inequality px ≤ (xα/α) + (pβ/β) for all x > 0, p > 0, α > 1, β > 1 and
(1/α) + (1/β) = 1.

Problem 136. Let f by a quadratic form f(x) =
∑
fijxixj . Show that its Legendre

transform is again a quadratic form g(p) =
∑
gijpipj , and that the values of both forms

at corresponding points coincide:
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f(x(p)) = g(p) and g(p(x)) = f(x).

Solution. The Legendre transform of f is (see next section below for notation):

f∗(p) = max
x

{p · x− f(x)}

The max is found by setting the derivative equal to zero:

∂

∂x
(p · x− f(x)) = 0,

which implies:

p =
∂f(x)

∂x
= 2Fx.

where f(x) = xtFx, with F the matrix with entries fij . Solving for x in terms of p gives
x = 1

2F
−1p. Substituting this special value of x corresponding to p into p · x− f(x). This

gives:

g(p) = {p · x− f(x)}x= 1
2
F−1p =

1

2
p · F−1p− 1

4
(F−1p)tFF−1p

=
1

2
p · F−1p− 1

4
(F−1p)tp =

1

4
ptF−1p

from which we see that the matrix [gij ] is
1
4F

−1. ■

9.12.6. Convexity of Legendre Transform. Here we follow Evans:

• L. Evans, Partial Differential Equations, American Mathematical Society (1998).

Let’s call the function we wish to transform, L, the Lagrangian2. Its Legendre transform
will be denoted L∗. The conjugate variables will be denoted q⃗ and p⃗, both of which are
vectors.

Definition 9.14 (Convex function). A function L is convex over some domain U if its
value is never greater than its average slope (between q⃗1 and q⃗2):

L(tq⃗1 + (1− t)q⃗2) ≤ tL(q⃗1) + (1− t)L(q⃗2)

where q⃗1, q⃗2 ∈ U , t ∈ [0, 1].

Suppose that the Lagrangian L : Rn → R satisfies the following conditions: 1) the mapping
q → L(q⃗) is convex, 2) lim|q⃗|→∞ L(q⃗)/|q⃗| = +∞. The convexity implies L is continuous.

Definition 9.15 (Legendre transform). The Legendre transform of L is

(9.10) L∗(p⃗) := max
q⃗∈Rn

{p⃗ · q⃗ − L(q⃗)} (p⃗ ∈ Rn).

2There is a slight difference in notation with classical mechanics, which uses q̇ as the velocity and q for the position.

The Legendre transform eliminates q̇ in favor of p. In this section we eliminate q instead of q̇ to keep the notation
simple.
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Remark 9.16. The “max” means that for every p⃗ there exists some q⃗ ∗ ∈ Rn for which

L∗(p⃗) = p⃗ · q⃗ ∗ − L(q⃗∗)

and the mapping q⃗ → p⃗ · q⃗ − L(q⃗) has a maximum at q⃗ = q⃗ ∗. But then p⃗ = ∇q⃗L(q⃗
∗),

provided L is differentiable at q⃗ ∗. Hence the equation p⃗ = ∇q⃗L(q⃗) is solvable (although
perhaps not uniquely) for q⃗ in terms of p⃗, q⃗ ∗ = q(p⃗). Therefore

L∗(p⃗) = p⃗ · q(p⃗)− L(q(p⃗)).

However, this is exactly the definition of the Hamiltonian associated with L. We conse-
quently write

(9.11) H = L∗.

Thus, this definition tells us how to obtain the Hamiltonian H from the Lagrangian L.

Now, we ask the converse question: given H, how do we compute L?

Theorem 9.17 (Convex duality of Hamiltonian and Lagrangian). Assume L satisfies the
previous conditions and define H as before. Then the mapping p⃗→ H(p⃗) is convex and

lim
|p⃗|→∞

H(p⃗)/|p⃗| = +∞.

Furthermore, L = H∗.

Remark 9.18. Thus H is the Legendre transform of L, and vice versa:

L = H∗, H = L∗.

We say H and L are dual convex functions.

Proof. 1. For each fixed q⃗, the function p⃗ → p⃗ · q⃗ − L(q⃗) is linear, and consequently the
mapping

p⃗→ H(p⃗) = L∗(p⃗) = max
q⃗∈Rn

{p⃗ · q⃗ − L(q⃗)}

is convex. Indeed, if 0 ≤ t ≤ 1, p⃗1, p⃗2 ∈ Rn,

H(tp⃗1 + (1− t)p⃗2) =max
q⃗

{(tp⃗1 + (1− t)p⃗2) · q⃗ − L(q⃗)}

=max
q⃗

{(tp⃗1 + (1− t)p⃗2) · q⃗ − (1− t+ t)L(q⃗)}

=max
q⃗

{(tp⃗1 + (1− t)p⃗2) · q⃗ − (1− t)L(q⃗)− tL(q⃗)}

≤tmax
q⃗

{p⃗1 · q − L(q⃗)}+ (1− t)max
q⃗

{p⃗2 · q⃗ − L(q⃗)}

=tH(p⃗1) + (1− t)H(p⃗2),(9.12)

which is the definition of a convex function. ∴ L convex implies that H is convex. Where
we used the inequality maxx⃗{f(x⃗) + g(x⃗)} ≤ max{f(x⃗)}+max{g(x⃗)}.
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2. Fix any λ > 0, p⃗ ̸= 0. Then

H(p⃗) =max
q⃗

{p⃗ · q⃗ − L(q⃗)} ≥ λ|p⃗| − L(λ
p⃗

|p⃗|
) (q⃗ = λ

p⃗

|p⃗|
)

≥λ|p⃗| − max
B(0,λ)

L.(9.13)

(The first inequality holds by virtue of the fact that the supremum over all q⃗ exceeds any
particular choice of q⃗ such as q⃗ = λp⃗/|p⃗| which is just some vector of arbitrary magnitude
λ pointing in the direction of the unit vector p⃗/|p⃗|. The second inequality is trivial.)

Thus lim inf |p⃗|→∞H(p⃗)/|p⃗| ≥ λ for all λ > 0.

3. In view of (9.11), H(p⃗) + L(q⃗) ≥ p⃗ · q⃗ for all p⃗, q⃗ ∈ Rn. (This follows easily from
the application of the definition L∗(p⃗) := maxq⃗ {p⃗ · q⃗ − L(q⃗)} to the sum L∗(p⃗) + L(q⃗).)
Consequently

(9.14) L(q⃗) ≥ max
p⃗

{p⃗ · q⃗ −H(p⃗)} = H∗(q⃗).

On the other hand

H∗(q⃗) =max
p⃗

{
p⃗ · q⃗ −max

r
{p⃗ · r⃗ − L(r⃗)}

}
=max

p⃗
min
r⃗

{p⃗ · (q⃗ − r⃗) + L(r⃗)}.(9.15)

Now since q → L(q⃗) is convex, there exists s⃗ ∈ Rn such that

(9.16) L(r⃗) ≥ L(q⃗) + s⃗ · (r⃗ − q⃗) (r⃗ ∈ Rn).

(If L is differentiable at q⃗, take s⃗ = ∇q⃗(q⃗). See Figure 9.4.) Taking p⃗ = s⃗ in (9.15), we
compute

(9.17) H∗(q⃗) ≥ min
r⃗

{s⃗ · (q⃗ − r⃗) + L(r⃗)} = L(q⃗).

(The last step follows by ”substituting” (9.16) into (9.17). The term s⃗ · (r⃗ − q⃗) cancels
s⃗ · (q⃗ − r⃗) while the minimum of L(q⃗) taken of all r⃗ is still L(q⃗).)

□

9.13. Legendre Transformation in Classical Field Theory

Classical field theory provides a framework for describing physical fields, such as elec-
tromagnetic fields or gravitational fields. A key mathematical tool in this theory is the
Legendre transformation, which allows us to transition from the Lagrangian to the Hamil-
tonian formalism. This transformation is crucial for understanding the dynamics of fields
and plays a significant role in the quantization of fields in quantum field theory.
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Figure 9.4. For a convex function, its average slope (L(r⃗)−L(q⃗))/(r⃗− q⃗) is greater than
its slope s⃗ = ∇q⃗(q⃗) at q⃗.

9.13.1. Lagrangian and Hamiltonian in Field Theory. The Lagrangian density L
is a function that depends on field variables and their derivatives. It encapsulates the
dynamics of the field. The Hamiltonian density H, on the other hand, represents the
energy density of the field and is derived from the Lagrangian density through the Legendre
transformation.

9.13.2. Mathematical Framework of the Legendre Transformation. Given a La-
grangian density L(ϕ, ∂µϕ), where ϕ represents the field and ∂µϕ its derivatives, the Hamil-
tonian density is obtained as follows:

H =
∑
i

πiϕ̇i − L

where πi are the canonical momenta defined by:

πi =
∂L
∂ϕ̇i

Here, ϕ̇i represents the time derivative of the field components ϕi.

9.13.3. Energy Stored in a Dielectric Medium. In a dielectric medium, the energy
stored in the electromagnetic field can be analyzed using the electric displacement field D
and the magnetic field B. Here, we derive the Hamiltonian density without assuming the
Coulomb gauge (∇ϕ = 0).

9.13.3.1. Lagrangian Density in a Dielectric Medium. The Lagrangian density for the elec-
tromagnetic field in a dielectric medium is:

L =
1

2
D ·E− 1

2µ
B2

where E = −∇ϕ− ∂A
∂t , B = ∇×A, and µ is the magnetic permeability of the medium.
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9.13.3.2. Canonical Momenta. The canonical momentum conjugate to the vector potential
A is given by:

Π =
∂L

∂(∂A/∂t)
= −D

Note that this formulation considers the general expression for E including both −∇ϕ and
−∂A

∂t .

9.13.3.3. Hamiltonian Density. Applying the Legendre transformation, we obtain the Hamil-
tonian density:

H = Π · ∂A
∂t

− L
Substituting Π and L and simplifying, we get:

H =
1

2
D ·E+

1

2µ
B2

This Hamiltonian density describes the energy density of the electromagnetic field in a
dielectric medium.

Note: In the general case, the relation between D and E is influenced by the dielectric
properties of the medium, typically D = εE, where ε is the permittivity.

9.14. Navier-Stokes Equation and Fluid Mechanics in Classical Field
Theory

9.14.1. Lagrangian and Hamiltonian Formulation for an Ideal Fluid. The Navier-
Stokes equations are fundamental in describing fluid motion. For an ideal fluid, which is
a simplified model neglecting viscous terms (leading to Euler equations), we consider the
Lagrangian density defined by the fluid’s velocity field v and density ρ:

L(v, ρ) = 1

2
ρv2 − ρU(ρ)

where U(ρ) denotes the internal energy per unit mass.

Applying the Euler-Lagrange equations to this Lagrangian density gives the Euler equa-
tions, a subset of the Navier-Stokes equations for an ideal fluid.

9.14.2. Canonical Momentum and Hamiltonian Density. The canonical momen-
tum Π is defined as the derivative of the Lagrangian density with respect to the fluid’s
velocity:

Π =
∂L
∂v

= ρv

This represents the momentum density of the fluid. The Hamiltonian density, indicating
the total energy density of the fluid, is obtained via the Legendre transformation:

H = Π · v − L =
1

2
ρv2 + ρU(ρ)
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This formulation aligns with the principles of field theory for continuous systems like fluids
and is essential for understanding fluid dynamics from a Hamiltonian perspective.

9.14.3. Energy Conservation in the Euler Equations. The Euler equations for an
ideal fluid are fundamental in fluid dynamics, describing the conservation of mass and
momentum. A key aspect of these equations is the conservation of energy, which we can
demonstrate by showing that the total derivative of the Hamiltonian density with respect
to time is zero.

9.14.3.1. Hamiltonian Density for an Ideal Fluid. The Hamiltonian density for an ideal
fluid, representing the total energy density, is given by:

H =
1

2
ρv2 + ρU(ρ)

where ρ is the mass density, v is the fluid velocity, and U(ρ) is the internal energy per unit
mass.

9.14.3.2. Proof of Energy Conservation. To prove energy conservation, we must show that
the total derivative of the Hamiltonian density with respect to time is zero:

dH
dt

= 0

Step 1: Total Time Derivative The total time derivative ofH encompasses both explicit
and implicit time dependencies:

dH
dt

=
∂H
∂t

+
∂H
∂v

· dv
dt

+
∂H
∂ρ

dρ

dt
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Step 2: Using the Euler Equations3 The Euler equations are:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
dv

dt
+ ρ(v · ∇)v = −∇p

where p is the pressure.

Step 3: Substituting into the Total Derivative Substituting the Euler equations into
the expression for dH

dt and simplifying, we find that it equals zero:

dH
dt

= 0

This result indicates that the total energy density of the ideal fluid, as represented by the
Hamiltonian density, is conserved over time, including both the fluid’s kinetic and internal
energies.

9.15. Liouville’s Theorem

9.15.1. The Principle of Equal A Priori Probabilities. The principle of equal chances
for each microstate in a nearly isolated system is a key idea in statistical mechanics. This
concept is often called the principle of equal a priori probabilities. It says that if a system

3For completeness, let’s provide a derivation of Euler equations from the Hamiltonian density. The Hamiltonian
density for an ideal fluid is given by:

H =
1

2
ρv2 + ρU(ρ)

where ρ is the mass density, v is the fluid velocity, and U(ρ) is the internal energy per unit mass.

Hamilton’s equations for a fluid with field variables v (velocity) and ρ (density) are:

∂v

∂t
=
∂H
∂Π

where Π is the momentum density.
Step 1: Momentum Density Evolution Using the Hamiltonian density, the evolution of momentum density

Π = ρv is given by:
∂Π

∂t
= −∇H

Expanding this and substituting the Hamiltonian density, we get the momentum conservation equation.

Step 2: Mass Density Evolution The continuity equation for mass conservation is derived from the time derivative
of the density:

∂ρ

∂t
+∇ · (ρv) = 0

This equation ensures mass conservation in the fluid.

Step 3: Deriving the Euler Equations Combining the equations from Steps 1 and 2, we arrive at the Euler
equations for an ideal fluid:

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p

where p is the pressure related to the internal energy density. These Euler equations describe the dynamics of an

ideal fluid, encapsulating the conservation of mass and momentum.
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has a specific energy, each of the microstates that make up that energy level is equally
likely to occur.

Liouville’s theorem is important in this context. It comes from classical mechanics and
suggests that the volume of phase space – the space where all possible states of a system
are represented – stays constant over time for an isolated system. This theorem allows us
to say that the density of a statistical ensemble, which is a collection of all the states the
system can possibly be in, depends only on the system’s energy.

The statistical ensemble we talk about here is known as Gibbs’ ensemble. It is a group of
microstates that are in agreement with the laws of mechanics and do not change over time.
In this ensemble, the probability of a system being in any particular microstate is directly
related to the phase space volume it occupies.

Quantum mechanics echoes this principle by stating that every quantum state with the
same energy has the same statistical weight. This means that the likelihood of a system
being in any quantum state is the same for all states at the same energy level.

The ergodic hypothesis is another concept that supports this principle. It suggests that
the time average of a quantity – what you get if you measure something many times over
a long period and then average it – is the same as the ensemble average – the average you
would get if you could measure all possible states at once. This hypothesis is important
because it implies that over time, a nearly isolated system will naturally explore all of its
microstates, which means that its time average will represent an ensemble average.

The ergodic problem is about trying to understand these ideas using the rules of mechanics.
It has been studied more from a mathematical standpoint, but it’s still a fundamental
question in statistical mechanics. It’s about connecting the dots between the predictable
nature of classical mechanics and the probabilistic nature of statistical ensembles.

The principle of equal a priori probabilities is grounded on classical mechanical principles,
quantum mechanical rules, and the ergodic hypothesis. They provide the basis for us to use
probability theory in statistical mechanics in a way that matches up with the mechanical
behavior of physical systems.

To learn more, see the books by Kubo & Toda, Arnold and Khinchin:

• V.I. Arnold, Mathematical Methods of Classical Mechanics, Second Edition, Springer-
Verlag (1989), pp. 68-70.

• A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover (1960)

• M. Toda, R. Kubo, N. Saito, Statistical physics I, 2nd edition, Springer (1998)

9.15.2. Proof of Liouville’s Theorem. Recall Hamilton’s equations of motion, for a
Hamiltonian H(p,q, t):

(9.18) ṗ = −∂H
∂q

, q̇ =
∂H
∂p

.
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In this course on equilibrium statistical mechanics, we will mostly consider time-independent
Hamiltonians H(p,q). The coordinates (p,q) have their usual meaning, e.g.

p = (p1,p2, . . . ,pN ),

q = (q1,q2, . . . ,qN ),

(p,q) = (p1, . . . ,pN ,q1, . . . ,qN ).

where p1 = (p1x, p2x, p3x) etc. The phase flow is defined by the transformation

gt : (p(0),q(0)) → (p(t),q(t)),

where p(t) and q(t) are solutions of Hamilton’s equations. In previous lectures, we used
the shorthand notation x = (p,q). The Liouville theorem is the statement that, for any
region D of phase space we have (see Figure 9.5):

volume of gtD = volume of D.

D

gtD

Figure 9.5. Liouville’s theorem is the statement that the volume of a set of points in
phase space remains constant. Thus, if the heigh of the ”object” is reduced, its width
increases such that its volume remains unchanged.

Consider a system of ODEs:
ẋ = f(x)

where x = (x1, . . . , xn). The solution of this ODE can be expanded in a Taylor series:

(9.19) gtx = x+ f(x)t+O(t2).

At time t = 0, let D(0) be a region in phase space and v(0) its volume. Let:

v(t) = volume of D(t), D(t) = gtD(0).
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We now proceed to show that: if ∇ · f =
∑

i ∂fi/∂xi = 0 then gt preserves volume:
v(t) = v(0). This result follows because:

dv(t)

dt

∣∣∣∣
t=0

=

∫
D(0)

∇ · f dx,

and if ∇ · f = 0 then dv/dt = 0. To show that dv(t)
dt

∣∣∣
t=0

=
∫
D(0)∇ · f dx, we note that the

formula for changing variables in a multiple integral gives (y = gtx)

v(t) =

∫
D(t)

dy =

∫
D(t)

det

∣∣∣∣∂y∂x
∣∣∣∣ dx.

Differentiating Eq. (9.19) with respect to x, and expanding in powers of t, we find:

∂y

∂x
=
∂gtx

∂x
= 1+

∂f

∂x
t+O(t2),

where 1 is the unit matrix and the first order term ∂f
∂x is the derivative of gtx with respect

to x evaluated at the point t = 0. The latter can be read directly from Eq. (9.19). The
determinant of this expression is:

det
∂gtx

∂x
= 1 + Tr

[
∂f

∂x

]
t+O(t2).

The formula det(1 + At) = 1 + tTr(A) + O(t2) follows from the direct expansion of the
determinant: all terms are O(t2) except for the product of diagonal elements:

(1 + ta11)(1 + ta22) . . . (1 + tann) = 1 + tTr(A) +O(t2).

Using the fact that Tr[∂f/∂x] =
∑

i ∂fi/∂xi = ∇ · f , we arrive at:

v(t) =

∫
D(0)

[
1 + t∇ · f +O(t2)

]
dx.

Differentiating with respect to t gives the desired result. In the case of Hamilton’s equations
of motion, we have [taking f = (ṗ, q̇) and x = (p,q)]:

∇ · f = (∂p, ∂q) · (ṗ, q̇) =
∂

∂p
· ṗ+

∂

∂q
· q̇ =

∂

∂p
·
(
−∂H
∂q

)
+

∂

∂q
·
(
∂H

∂p

)
= 0.

Thus, the velocity field (ṗ, q̇) in phase space has zero divergence. This is analogous to the
case of an incompressible fluid4.

9.15.2.1. Application of the Liouville theorem in classical mechanics. In classical mechan-
ics, the Liouville theorem says that dv/dt = 0 for Hamiltonian flow. It makes sense to
take v(t) to represent a probabiliy density ρ(x)dx of finding a particle inside a volume
element dx at x. This density may evolve over time due to the Hamiltonian flow, so we
write ρ(x, t) ≡ ρ(gtx) because it is the points x → gtx that evolve under the flow. The

4In fluid mechanics, a fluid is incompressible if its velocity field v = ẋ has zero divergence ∇ ·v = 0. In Hamiltonian
mechanics, the velocity field is f = (ṗ, q̇). It is incompressible if ∇ · f = 0.
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total number of particles N in our system at any given time should remain constant:

N =

∫
ρ(gtx)dx.

Thus, the Liouville theorem tell us that the density of points in phase space remains
invariant:

dρ

dt
(x, t) =

∂ρ

∂t
+∇xρ ·

dx

dt︸︷︷︸
(ṗ,q̇)

=
∂ρ

∂t
+

(
∂ρ

∂q
· ∂H
∂p

− ∂ρ

∂p
· ∂H
∂q

)
= 0,

where x = (p,q). The equation dρ/dt says that the convective derivative5 of ρ is zero, i.e.
the derivative along the flow does not change, although at a fixed location in space it may
change (the partial derivative ∂ρ/∂t is not necessarily zero). This situation is illustrated
in Fig. (9.6), where the density of representative points in some small region between the
surfaces E and E + δE demains constant in time, as the system moves along the strip of
constant energy (Hamiltonian flow). In other words, the distribution function is constant
along any trajectory in phase space.

Figure 9.6. Hamiltonian flow for a system of constant energy E. The distribution of
points (phase space volume) always remains constant along the trajectory of the flow.
This is seen by the volume (dark region) at time t1 becoming narrower at later times (t3)
but also taller, such that its volume is unchanged.

5In fluid mechanics, a differential operator of the form d/dt = ∂/∂t+ ẋ · ∇ is called convective derivative. It arises

because of the chain rule of calculus, when the total derivative d/dt acts on a function of time and space, such as
ρ(x, t), and space itself is a function of time, i.e. x ≡ x(t).
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Therefore, rewriting the last equality in component form, we get:

∂ρ

∂t
+

N∑
i=1

(
∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

)
= 0

The summation term is called the Poisson bracket of H and ρ and this is often written in
shorthand notation as:

∂ρ

∂t
+ {ρ,H} = 0.

This equation is also called the Liouville equation of classical mechanics. It is sometimes

written ∂ρ/∂t = −L̂ρ where L̂ is the Liouvillian operator, L̂ =
∑N

i=1

(
∂H
∂pi

∂
∂qi

− ∂H
∂qi

∂
∂pi

)
.

The formal solution is
ρ(gtx) = e−L̂tρ(x).

The exponential operator is computed with the Liouvillian utilizing variables (p,q) evalu-
ated at time t = 0. There exists also a Liouville equation in quantum mechanics (Sakurai,
p. 181),

∂ρ̂

∂t
+

1

iℏ
[ρ̂, Ĥ] = 0,

but where ρ̂ is the density matrix and [Ĥ, ρ̂] is the commutator of Ĥ and ρ̂. This is also often

written in terms of the Liouvillian superoperator: ∂ρ̂/∂t = − ˆ̂
Lρ̂, where

ˆ̂
L ≡ (i/ℏ)[Ĥ, ·].

We will not make explicit use of this theorem in this course, apart from using it to justify
the probabilistic structure of the microcanonical ensemble. Its importance to statistical
mechanics is great. To learn more about the classical Liouville theorem, see Goldstein:

• H. Goldstein, Classical Mechanics Second Edition, Addison Wesley (1980).

9.15.3. Ergodic Theorems. In statistical mechanics, ergodic theorems basically say that
time averages can be equated to phase space averages under appropriate conditions. This
is important to us because experimental measurements, which almost always are time
averages, can be predicted by calculation of ensemble averages. It is generally an easier
task to calculate ensemble averages than time averages. We look at a few of these theorems
but we omit the proofs, which are of a rather technical nature. They can be found in the
book by Khinchin:

• A.I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover Publications
(1960).

9.15.3.1. Birkhoff’s Theorem (Toda p.179). Since the volume V of a subspace in phase
space is invariant under the transformation gtV , i.e. gtV = V , then for almost all points
x in phase space, the long-time average of f exists (Birkhoff’s first theorem):

f = lim
T→∞

1

T

∫ T

0
f(gtx)dt.
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Birkhoff’s second theorem states that this average has the same value for all x along the
path of the flow. In other words, the time average is independent of the choice of point x
as long as x is along the trajectory.

The implications of these theorems are that the time-evolution gt is ergodic iff all the
invariant functions f are constant. This constant equals the ensemble average ⟨f⟩. The
concepts of metric transitivity and mixing (Toda, pp. 182-183) are sometimes used to
prove ergodicity. The concept of metric transitivity is hard to prove. Instead, it is easier to
use the following theorem by Khinchin, which requires only to compute a time-correlation
function.

9.15.3.2. Khinchin’s Theorem (Toda p.183). If the time-correlation function

R(u) =
1

⟨f2(x)⟩
⟨f(gtx)f(gt+ux)⟩ → 0 as u→ ∞.

where ⟨. . . ⟩ denotes a phase average - recall that it is an average over a surface of constant
energy E:

⟨f⟩ = ⟨f⟩E =
1

WδE(E)

∫
Γ
δ(H(x)− E)f(x)dx =

1

WδE(E)

∫
H(x)=E

f(x)
ds

|∇H(x)|
,

then the phase function f(x) is ergodic, i.e. its phase average equals its time average:

⟨f⟩E = lim
τ→∞

1

τ

∫ τ

0
f(gtx)dt.

9.15.3.3. Proof of the Volume to Surface Integral Formula via the Coarea Formula. Let
Rn denote the n-dimensional Euclidean space, and let g : Rn → R be a continuously
differentiable function such that ∇g(x) ̸= 0 for all x ∈ Rn. The level set g−1(0) is then a
smooth (n− 1)-dimensional manifold. The formula is given by:∫

Rn

f(x) δ(g(x)) dx =

∫
g−1(0)

f(x)

|∇g(x)|
dσ(x)

Proof: First we recall the Dirac delta δ centered at zero, which is defined by the property
that for any test function ϕ: ∫

Rn

ϕ(x) δ(g(x)) dx = ϕ(0)

when g(0) = 0 and ∇g(0) ̸= 0. Next, we invoke Sard’s Theorem, which states that the set
of critical values of g has measure zero. This implies that almost every level set g−1(c) is a
smooth manifold, and in particular, g−1(0) is a smooth manifold since ∇g is nowhere zero.
Secondly, we invoke the Coarea formula, which states that for any integrable function h:∫

Rn

h(x) dx =

∫ ∞

−∞

(∫
g−1(c)

h(x)

|∇g(x)|
dσc(x)

)
dc

where dσc is the surface measure on the level set g−1(c). Finally, we apply to f and δ: Let
h(x) = f(x)δ(g(x)). Since the delta function is nonzero only when g(x) = 0, the coarea
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formula reduces to: ∫
Rn

f(x)δ(g(x)) dx =

∫
g−1(0)

f(x)

|∇g(x)|
dσ(x)

where dσ is the surface measure on g−1(0). This concludes the proof. The delta function
effectively collapses the entire integral to the level set g−1(0), and the coarea formula relates
the volume integral to the integral over this level set, accounting for the gradient ∇g to
ensure the correct “density” of the integral is maintained.

9.15.3.4. Justification of the basic assumptions in microcanonical statistics. We summarize
the previous observations/results:

• Time averages are constant on trajectories. (Birkhoff’s theorem.)

• Time averages are constant on the energy surfaces. (This is a consequence of the previous
point, and the fact that trajectories move along energy surfaces.)

• Time averages equal microcanonical averages. (We need to show that trajectories do not
“linger” in some regions of the energy surface.)
– Liouville’s theorem told us that the microcanonical ensemble was time independent.
– So the ensemble average equals its time average, which equals the ensemble average

of the time average.
– But the time average is constant.
– So in an ergodic system the ensemble average equals the time average everywhere.

9.15.3.5. Non-ergodic systems of statistical mechanics. It turns out to be very difficult to
prove ergodicity of a dynamical system. There are a lot of real systems which are not
ergodic. The following systems have been shown to be non-ergodic:

• Glasses

• Fermi, Pasta, Ulam and KdV

• Broken symmetry phases

• KAM tori and the three-body problem

9.16. Properties of the Laplace Transform

Definition of the Laplace Transform. The Laplace transform of a function f(t), de-
fined for all real numbers t ≥ 0, is given by the integral

L{f(t)} = F (s) =

∫ ∞

0
e−stf(t) dt,

where s is a complex number for which the integral converges.
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Inversion Formula. The original function f(t) can be recovered from its Laplace trans-
form F (s) using the inverse Laplace transform, provided certain conditions are met:

f(t) = L−1{F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds,

where γ is a real number greater than the real part of all singularities of F (s).

Properties and Theorems

Linearity. For constants a and b and functions f(t) and g(t),

L{af(t) + bg(t)} = aF (s) + bG(s).

Proof: Follows directly from the linearity of the integral.

Time-Delay. For a time delay τ > 0,

L{f(t− τ)u(t− τ)} = e−τsF (s).

Proof: Apply the definition with a change of variable z = t− τ .

First Derivative. If f(t) has a first derivative f ′(t),

L{f ′(t)} = sF (s)− f(0).

Proof: Integrate by parts, using the definition of the Laplace transform.

Second Derivative. For the second derivative f ′′(t),

L{f ′′(t)} = s2F (s)− sf(0)− f ′(0).

Proof: Apply the first derivative property twice.

Initial Value Theorem. If limt→0+ f(t) exists,

lim
s→∞

sF (s) = f(0+).

Proof: Consider the limit as s goes to infinity in the Laplace integral.

Time Scaling. For a scaling factor a > 0,

L{f(at)} =
1

a
F
(s
a

)
.

Proof: Use the substitution method in the definition with z = at.
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Multiplication by Time.

L{tnf(t)} = (−1)n
dn

dsn
F (s).

Proof: Differentiate under the integral sign n times with respect to s.

Complex Shift. For a complex number a,

L{eatf(t)} = F (s− a).

Proof: Apply the definition with the exponential function as part of the integrand.

Convolution Theorem. The Laplace transform of the convolution of f(t) and g(t) is

L{f ∗ g} = F (s)G(s).

Proof: Use Fubini’s theorem to interchange the order of integration in the convolution
integral.

Parseval’s Theorem. For functions f(t) and g(t) with Laplace transforms F (s) and G(s),
respectively, ∫ ∞

0
f(t)g(t) dt =

1

2πi

∫ γ+i∞

γ−i∞
F (s)G(s) ds.

Proof: Derive from the inversion formula and properties of complex conjugates.

9.17. Properties of Fourier Transforms

Parseval’s theorem (conservation of total energy).∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̂(ω)|2dω.

Proof: ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
f(x)f(x)dx =

∫ ∞

−∞
f̂(ω)f̂(ω)dω =

∫ ∞

−∞
|f̂(ω)|2dω.

Utilizing the Fourier transform and its inverse, the proof follows from the definition of the
Fourier transform and the complex conjugate.

Convolution of f and g.

h(x) = (f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y)dy.

In Fourier space, the convolution is a product of their Fourier transforms

ĥ(ω) = f̂(ω) · ĝ(ω).
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i.e.,

ĥ(ω) =

∫ ∞

−∞
h(x)e−iωxdx = f̂(ω) · ĝ(ω).

Proof: Let f(x) and g(x) be two functions with their respective Fourier transforms defined
as:

f̂(ω) =

∫ ∞

−∞
f(x)e−iωxdx, ĝ(ω) =

∫ ∞

−∞
g(x)e−iωxdx.

The convolution h(x) of f(x) and g(x) is given by:

h(x) = (f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y)dy

Taking the Fourier transform of h(x):

ĥ(ω) =

∫ ∞

−∞
h(x)e−iωxdx =

∫ ∞

−∞

[∫ ∞

−∞
f(y)g(x− y)dy

]
e−iωxdx =

∫ ∞

−∞
f(y)

[∫ ∞

−∞
g(x− y)e−iωxdx

]
dy

Let u = x− y, then dx = du and the inner integral becomes:∫ ∞

−∞
g(u)e−iω(u+y)du = e−iωy

∫ ∞

−∞
g(u)e−iωudu = e−iωy ĝ(ω)

Substituting back into the integral for ĥ(ω):

ĥ(ω) =

∫ ∞

−∞
f(y)e−iωy ĝ(ω)dy = ĝ(ω)

∫ ∞

−∞
f(y)e−iωydy = ĝ(ω)f̂(ω)

Hence, we have shown that the Fourier transform of the convolution h(x) is the product

of the Fourier transforms of f(x) and g(x), i.e., ĥ(ω) = f̂(ω) · ĝ(ω).

Functions defined in a 3D Box (finite region). Functions in a finite region (3D box
with side lengths Lx, Ly, Lz and volume V = LxLyLz), and periodic, e.g. f(r + Lxex) =
f(r+ Lyey) = f(r+ Lzez) = f(r),

f(r) =
1

V
∑
k

fke
ik·r,

{
kx = 2πnx

Lx
, nx = 0,±1,±2, . . . ,

where

fk =

∫
V
d3rf(r)e−ik·r.

Proof: Consider a function f(r) defined within a three-dimensional box with side L and
volume V = L3, which obeys periodic boundary conditions. The function can be expanded
as a Fourier series:

f(r) =
∑
n

cne
ikn·r

where kn = 2π
L n and n is a vector of integers (nx, ny, nz), representing the quantization

of wave vectors due to boundary conditions. The coefficients cn can be determined by the
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inverse Fourier series:

cn =
1

V

∫
V
f(r)e−ikn·rd3r.

This integral extends over the volume V of the box. The periodic boundary conditions
ensure that the function f(r) and its Fourier series representation are identical on opposite
faces of the box. This leads to a discrete set of kn values.

The orthogonality of the exponential functions over the box volume is given by:∫
V
ei(kn−km)·rd3r = V δn,m

where δn,m is the Kronecker delta, which is 1 if n = m and 0 otherwise. This property

allows us to isolate each coefficient cn when we multiply the Fourier series by e−ikm·r and
integrate over the volume V .

Thus, the Fourier series expansion is a valid representation of f(r) within a 3D box with
periodic boundary conditions. The set of wave vectors kn forms a discrete lattice in recip-
rocal space, which is a direct consequence of the finite spatial domain and periodicity of
the function.

Important theorems:∫
d3re−ik·r = Vδk,0,

1

V
∑
k

eik·r = δ(r).

Proof: These identities follow directly from the orthogonality relations of the complex
exponentials in a finite volume and their delta function representation.

Infinite Region. In an infinite region, we may let V → ∞ and obtain:

f(r) =

∫
d3k

(2π)3
fke

ik·r, fk =

∫
d3rf(r)e−ik·r.

Proof: In an infinite region, we may let V → ∞, and in the limit of infinite volume,
summations become integrals and we recover the continuous Fourier transform relations.

FT theorems, continuous versions.∫
d3k

(2π)3
eik·r = δ(r),

∫
d3re−ik·r = (2π)3δ(k).

Proof: These are derived from the properties of the Dirac delta function in three dimensions
and the inverse relations of the Fourier transform.

Time and frequency transforms. These differ by a sign (in line with the usual phase

factor of a propagating wave ei(k·r−ωt))

f(t) =

∫ ∞

−∞

dω

2π
fωe

−iωt, fω =

∫ ∞

−∞
dtf(t)eiωt,
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∫ ∞

−∞

dω

2π
e−iωt = δ(t),

∫ ∞

−∞
dteiωt = 2πδ(ω).

Proof:

(9.20)

∫ ∞

−∞

dω

2π
e−iωt = δ(t),

∫ ∞

−∞
dteiωt = 2πδ(ω).

These results are a special case of the Fourier transform applied to time-dependent functions
and their frequencies.

Fourier transforms of differential operators.

∇r ↔ ik ∇2
r ↔ −k2, ∂t ↔ −iω, ∇× ↔ ik×

Proof:

F
{
∂nf

∂xn

}
=

∫ ∞

−∞

∂nf

∂xn
e−iωxdx = (iω)nf̂(ω).

This result is obtained by applying integration by parts and assuming the boundary terms
vanish, leading to the multiplication of the Fourier transform of the function by (iω)n. We
used the time-frequency transform (t ↔ ω), but this also applies to spatial coordinates
(x ↔ k).

Fourier transform of the function f = 1.

1r ↔Vδk,0 1k ↔δ(r) discrete k

1r ↔(2π)3δ(k) 1k ↔δ(r) continuous k

1t ↔2πδ(ω) 1ω ↔δ(t) continuous ω

Convolution integrals (multidimensional case).

f(r) =

∫
d3sh(r− s)g(s) =

∫
d3s

1

V2

∑
k,k′

hke
ik·(r−s)gk′eik

′·s =
1

V
∑
k

hkgke
ik·r

Therefore, ∫
dsh(r− s)g(s) ↔ hkgk

Proof:

f̂(k) ∗ ĝ(k) =
∫
d3k′f̂(k′)ĝ(k− k′) =

∫
d3r f(r)g(r)e−ik·r.

The proof exploits the Fourier transform properties to convert the convolution of two
functions in the spatial domain to a multiplication in the Fourier (k-space) domain.



510 9. Review of Math Concepts

Invariance of inner products going from r to k.∫
d3rh(r)g∗(r) =

∫
d3k

(2π)3
hkg

∗
k∫

d3rh(r)g(r) =

∫
d3k

(2π)3
hkg−k∫

d3rh(r)g(−r) =

∫
d3k

(2π)3
hkgk

Proof: ∫
d3r f∗(r)g(r) =

∫
d3k f̂∗(k)ĝ(k) = ⟨f |g⟩ = ⟨f̂ |ĝ⟩.

(Note: we used the symmetric version of the Fourier transform, so the factor (2π)3 isn’t
needed.) This demonstrates the inner product (or the ’dot product’ in function space)
is preserved under the Fourier transform, which is a crucial property for maintaining the
physical interpretation of quantum mechanical states in both position and momentum
spaces.

Translationally invariant systems. If a function depends only on the difference of its
arguments, i.e. f(r, r′) = f(r− r′), then it is easy to show from the definitions that its
Fourier transform has the property f(r, r′) ↔ fk,−k.

Proof:

F{f(r− r0)} =

∫
d3r f(r− r0)e

−ik·r = e−ik·r0 f̂(k).

The proof follows from a change of variable in the integral, which highlights that a trans-
lation in real space results in a phase shift in Fourier space, reflecting the invariance of the
system’s properties under translation.

9.18. Fock Space

We explore the fundamental concepts of Fock space and how it is used to derive the Fermi-
Dirac and Bose-Einstein distributions. Fock space is a concept used in quantum mechanics
to describe a quantum state of a variable number of particles. It is constructed as a direct
sum of Hilbert spaces, each corresponding to a different number of particles.

9.18.1. Basis States. In Fock space, the basis states can be represented as occupation
number states, which are denoted by kets like |n1, n2, . . .⟩. Each ni in the ket represents
the number of particles in the i-th quantum state. The basis states include:

• The vacuum state |0, 0, . . .⟩, indicating no particles in any state.

• One-particle states such as |1, 0, . . .⟩, |0, 1, . . .⟩, indicating a single particle in one of the
quantum states.

• Two-particle states like |2, 0, . . .⟩, |1, 1, . . .⟩, and so on.
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• Higher occupation number states representing more particles in various configurations.

9.18.2. Operators. Operators in Fock space can be one-body or two-body operators,
and their action can be understood by considering the structure of Fock space.

9.18.2.1. One-Body Operators. For one-body operators, we only need to consider states
with a single particle (N = 1). These operators act on kets with one particle, and their
matrix elements can be written as:

O
(1)
ij = ⟨1; i|Ô(1)|1; j⟩,

where |1; i⟩ and |1; j⟩ are shorthand for one-particle states in specific quantum states (i
and j, respectively).

9.18.2.2. Two-Body Operators. For two-body operators, we consider states with two par-
ticles (N = 2). The action of two-body operators on kets with two particles is expressed
as:

O
(2)
ijkl = ⟨2; ij|Ô(2)|2; kl⟩,

where |2; ij⟩ and |2; kl⟩ are two-particle states (for states ij and kl, respectively).

9.18.2.3. Resolution of the Identity. The identity operator in Fock space, considering the
structure of Fock space, can be expressed using a double summation:

Î =

∞∑
N=0

∑
{nk},

∑
nk=N

|N ;n1, n2, . . .⟩⟨N ;n1, n2, . . . |.

9.18.2.4. Matrix Elements. The resolution of the identity allows us to express the matrix
elements of an operator Ô by sandwiching Ô between these identity operators, accounting
for all possible particle numbers:

Oij = ⟨i|ÎÔÎ|j⟩

=
∞∑
N=0

∑
{nk},

∑
nk=N

∑
N ′=0

∑
{mk},

∑
mk=N ′

⟨i|N ;n1, n2, . . .⟩⟨N ;n1, n2, . . . |Ô|N ′;m1,m2, . . .⟩⟨N ′;m1,m2, . . . |j⟩.
where i and j denote two arbitrary kets of our choosing. The matrix representation of an
operator in Fock space takes into account the different possible numbers of particles. For
a general operator Ô, its matrix representation would involve summing over all possible
occupation numbers, reflecting the infinite-dimensional nature of Fock space.
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Example: The matrix representation of the outer product of vacuum states |0⟩⟨0| is a
matrix with all zero elements except for a 1 in the top-left corner. This matrix is infinite-
dimensional and can be written as:

|0⟩⟨0| =


1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .



9.18.3. Trace of Operators.

9.18.3.1. Trace of One-Body Operators. For one-body operators, which act on individual
particles, the trace in Fock space simplifies significantly. Considering a one-body operator
Ô(1), the trace over Fock space can be expressed as:

Tr(Ô(1)) =
∞∑
N=0

∑
{nk}

⟨N ;n1, n2, . . . |Ô(1)|N ;n1, n2, . . .⟩.

However, since Ô(1) is a one-body operator, it only has a non-zero effect on the states with
N = 1. Thus, the trace reduces to:

Tr(Ô(1)) =
∑
i

⟨1; i|Ô(1)|1; i⟩,

where the summation is over all one-particle states.

9.18.3.2. Trace of Two-Body Operators. For two-body operators, which involve interactions
between pairs of particles, the trace calculation is slightly more complex but still simplifies
from the general form. For a two-body operator Ô(2), the trace in Fock space is:

Tr(Ô(2)) =
∞∑
N=0

∑
{nk}

⟨N ;n1, n2, . . . |Ô(2)|N ;n1, n2, . . .⟩.

However, Ô(2) only affects two-particle states, meaning the trace collapses to consider only
states with N = 2:

Tr(Ô(2)) =
∑
i,j

⟨2; ij|Ô(2)|2; ij⟩,

where the summation is over all pairs of two-particle states.

Trace Contributions of One-Body and Two-Body Operators in Fock Space. In
the formalism of second quantization, the action of one-body and two-body operators on
states in Fock space is governed by the algebra of creation and annihilation operators.
We explore why one-body operators only contribute to the trace for single-particle states
(N = 1) and two-body operators for two-particle states (N = 2).
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One-Body Operators A one-body operator Ô(1) in second quantization can be expressed
as:

Ô(1) =
∑
ij

O
(1)
ij â

†
i âj

Consider a Fock state |n1, n2, . . .⟩ with more than one particle (N > 1). The action of

Ô(1) on this state yields a linear combination of states where at most one particle’s state
is changed (e.g., a particle in state j is destroyed whereas one in state i is created). The
inner product with any other N -particle state will vanish unless it differs by at most one
single-particle state. Therefore, the trace contribution of Ô(1) over states with N > 1
vanishes.

Example: For a two-particle state |0, 2, . . . ⟩, the operator â†1â2 acting on it will produce a
state |1, 1, . . . ⟩ (if particles are distinguishable). The inner product of this state with any
other two-particle state, like |0, 2, . . . ⟩, will be zero, showing the vanishing trace contribu-
tion.

Two-Body Operators A two-body operator Ô(2) can be written as:

Ô(2) =
1

2

∑
ijkl

O
(2)
ijklâ

†
i â

†
j âkâl

In the case of states with N > 2 or N < 2, the two-body operator either creates or
annihilates more than two particles, resulting in states that have no overlap (non-zero
inner product) with the original N-particle states. Consequently, the trace contributions
from states with N > 2 or N < 2 are zero.

Example: For a three-particle state |3⟩, the action of a two-body operator like â†1â2â3â4
will create or annihilate particles, leading to states with a different number of particles.
These states will have zero overlap with any three-particle state, leading to a vanishing
trace contribution.

Fermions: The trace of an operator in Fock space can be computed using a double
summation over the total number of particles and over all kets with occupation numbers
that add up to that total number. For fermions, the trace is computed using the eigenvalue
relation of the number operator. The partition function Z for fermions is given by:

Z =
∏
i

(1 + e−βϵi)

where β is 1/(kBT ) and ϵi are single-particle energies.

Bosons: For bosons, the trace is computed as:

Z =
∏
i

1

1− e−βϵi

This is derived by summing over all possible occupation numbers for each state.
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Fermi-Dirac Distribution: The Fermi-Dirac distribution gives the average number of
fermions in a given energy state. It is derived from the partition function and given by:

⟨ni⟩ =
1

eβ(ϵi−µ) + 1

Bose-Einstein Distribution: The Bose-Einstein distribution gives the average number
of bosons in a given energy state. It is derived from the partition function for bosons and
is expressed as:

⟨ni⟩ =
1

eβ(ϵi−µ) − 1

Single Mode in Fock Space: The trace of an operator Ô in Fock space is calculated by
summing the expectation values of Ô in all basis states:

Tr(Ô) =

∞∑
N=0

∑
{ni}

⟨n1, n2, . . . |Ô|n1, n2, . . .⟩

where {ni} denotes all possible sets of occupation numbers for N -photon states.

Consider a simplified Fock space with only one mode. The space is spanned by states |n⟩
for n photons in this mode. For an operator Ô, the trace is:

Tr(Ô) =
∞∑
n=0

⟨n|Ô|n⟩.

Particularly for the number operator n̂ = â†â, this becomes:

Tr(n̂) =

∞∑
n=0

n⟨n|n⟩ =
∞∑
n=0

n.

This sum diverges, reflecting the unbounded nature of the photon number in this idealized
scenario.

9.18.4. Structure of Fock Space. Fock space is the Hilbert space used to describe
quantum states of a system with a variable number of identical particles, such as photons.
In the case of photons, which are bosons, the Fock space is the direct sum of Hilbert spaces
for each possible photon number. Fock space provides a framework for understanding
the quantum states of such systems, including those of identical particles like bosons and
fermions.

Mathematical Definition. Technically, Fock space Fν(H) is defined as the Hilbert space
completion of the direct sum of symmetric or antisymmetric tensors in the tensor powers
of a single-particle Hilbert space H:

Fν(H) =

∞⊕
n=0

SνH⊗n
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where Sν is the symmetrization (for bosons, ν = +) or antisymmetrization (for fermions,
ν = −) operator, and H⊗n represents the n-fold tensor product of H.

Fock Space for Bosons and Fermions. For bosons (resp. fermions), Fock space is con-
structed from the symmetric (resp. antisymmetric) tensors:

F+(H) = S∗H (Bosons)

F−(H) =
∗∧
H (Fermions)

Structure and States. The structure of Fock space can be described as follows:

• The space C consists of states corresponding to no particles (the vacuum state).

• H represents the states of one particle.

• Sν(H ⊗H) represents the states of two identical particles, and so on.

A general state in Fock space is an infinite sum:

|Ψ⟩ν = a|0⟩ ⊕
∑
i

ai|ψi⟩ ⊕
∑
ij

aij |ψi, ψj⟩ν ⊕ · · ·

where |ψi⟩ is a state in the single-particle Hilbert space, and a, ai, aij are complex coeffi-
cients.

Inner Product and Norm. The inner product on Fock space is defined as:

⟨Ψ|Φ⟩ν :=
∑
n

⟨Ψn|Φn⟩ν

where |Ψn⟩, |Φn⟩ are states in the n-particle Hilbert spaces. The n-particle norm is defined
by the inner product, ensuring that the norm of the entire state is finite.

Orthogonality of Subspaces. The n-particle subspaces are orthogonal for different n, mean-
ing states with different numbers of particles are orthogonal to each other in Fock space.

Worked Examples

Example 1: Vacuum State and Single Particle States
Consider a Fock space for a system of fermions. The vacuum state, denoted by |0⟩,
represents a state with no particles. It is the simplest element in Fock space.
Now, let’s introduce a single-particle state |ψ⟩ in the Hilbert space H. In Fock space,
this state is represented simply by |ψ⟩ itself, indicating the presence of one particle
in state ψ. If we have another orthogonal single-particle state |ϕ⟩, the two-particle
state formed by these particles would be represented by the antisymmetrized state
1√
2
(|ψ⟩ ⊗ |ϕ⟩ − |ϕ⟩ ⊗ |ψ⟩).
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Example 2: Two Bosons in Different States
Consider a Fock space for bosons. Let |ψ⟩ and |ϕ⟩ be two orthogonal single-particle
states. The state with one particle in |ψ⟩ and another in |ϕ⟩ is represented by the
symmetrized state 1√

2
(|ψ⟩⊗ |ϕ⟩+ |ϕ⟩⊗ |ψ⟩). This state reflects the indistinguishable

nature of the bosons and the requirement that their joint state must be symmetric
under particle exchange.

Example 3: Inner Product in Fock Space
To illustrate the inner product in Fock space, consider two simple states: |Ψ⟩ =
|0⟩⊕ |ψ⟩ and |Φ⟩ = |0⟩⊕ |ϕ⟩, where |ψ⟩ and |ϕ⟩ are orthogonal single-particle states.
The inner product ⟨Ψ|Φ⟩ in Fock space is calculated as:

⟨Ψ|Φ⟩ = ⟨0|0⟩+ ⟨ψ|ϕ⟩ = 1 + 0 = 1

since ⟨ψ|ϕ⟩ = 0 due to orthogonality.

Example 4: Two Fermions in a Superposition State
Consider a Fock space for fermions with two single-particle states |ψ1⟩ and |ψ2⟩. We
construct a two-fermion state where each fermion is in a superposition of |ψ1⟩ and
|ψ2⟩. The state is given by:

|Ψ⟩ = 1

2
(|ψ1⟩+ |ψ2⟩)⊗ (|ψ1⟩ − |ψ2⟩) .

Antisymmetrizing this state results in:

|Ψ⟩ = 1

2
√
2
(|ψ1, ψ2⟩ − |ψ2, ψ1⟩) .

This example illustrates the complexity of constructing antisymmetrized states for
fermions in superposition.

Example 5: Annihilation Operator Acting on a Two-Boson State
In the Fock space of bosons, consider the annihilation operator â associated with a
single-particle state |ϕ⟩. Let’s apply this operator to a two-boson state |Ψ⟩ = |ϕ, ϕ⟩.
The action of â is given by:

â|Ψ⟩ =
√
2|ϕ⟩.

This demonstrates the effect of the annihilation operator in reducing the number of
particles in a given state, along with the accompanying normalization factor.
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Example 6: Particle Number Operator in a Mixed State
Consider a mixed state in the Fock space of fermions, described by a density matrix
ρ. Suppose the system has a probability p of being in the one-fermion state |ψ⟩ and
1− p in the two-fermion state |ψ1, ψ2⟩. The density matrix is:

ρ = p|ψ⟩⟨ψ|+ (1− p)|ψ1, ψ2⟩⟨ψ1, ψ2|.

The expectation value of the particle number operator N̂ in this state is:

⟨N̂⟩ = Tr(N̂ρ) = p⟨ψ|N̂ |ψ⟩+ (1− p)⟨ψ1, ψ2|N̂ |ψ1, ψ2⟩
This example illustrates the calculation of expectation values in mixed states within
Fock space.

The particle number operator N̂ in Fock space is defined as the sum of the number operators

for each mode or state. If â†i and âi are the creation and annihilation operators for the

i-th mode, respectively, then the number operator for that mode is n̂i = â†i âi. The total
number operator is then given by:

N̂ =
∑
i

n̂i =
∑
i

â†i âi

This operator counts the total number of particles across all modes in the state it acts
upon.

Example 7: Inner Product of Phonon States

Consider two phonon states in mode k, |ϕk⟩ = â†k|0⟩ and |ϕ′k⟩ = â†k|0⟩. The inner
product is:

⟨ϕ′k|ϕk⟩ = ⟨0|âkâ†k|0⟩

= ⟨0|(â†kâk + 1)|0⟩ (using commutation relation)

= ⟨0|0⟩+ ⟨0|â†kâk|0⟩
= 1 (since âk|0⟩ = 0)

This calculation illustrates the orthonormality of single-phonon states.
Now, for different states:

⟨ϕl|ϕk⟩ = ⟨0|âlâ†k|0⟩ = ⟨0|0⟩ = 0 (since âlâ
†
k = 0 for l ̸= k).

This illustrates the orthonormality of single-phonon states in different modes.
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Example 8: Inner Product of Cooper Pair States
Consider two Cooper pair states, |Cooper⟩ = b̂†|0⟩ and |Cooper′⟩ = b̂†|0⟩, with

b̂† = â†k↑â
†
−k↓. The inner product is:

⟨Cooper′|Cooper⟩ = ⟨0|b̂b̂†|0⟩

= ⟨0|â−k↓âk↑â†k↑â
†
−k↓|0⟩

= ⟨0|â−k↓â†−k↓|0⟩ (since âk↑â
†
k↑ = 1)

= ⟨0|0⟩ = 1

This demonstrates the orthonormality of Cooper pair states.
Now, for different states:

⟨Cooperl|Cooperk⟩ = ⟨0|b̂lb̂†k|0⟩ = 0 (as b̂l and b̂
†
k commute for l ̸= k).

This demonstrates the orthogonality of Cooper pair states in different momentum
pairs.

Example 9: Inner Product in Fermionic Coherent States

Fermionic coherent states are given by |α⟩ = eαâ
† |0⟩, where α is a Grassmann

number. For fermions, the square of the creation operator is zero. Therefore, the
state simplifies to |α⟩ = (1 + αâ†)|0⟩.
Considering two different fermionic coherent states |α⟩ and |β⟩, the inner product
is:

⟨β|α⟩ = ⟨0|(1 + β∗â)(1 + αâ†)|0⟩

= ⟨0|1 + β∗αââ†|0⟩

= 1 + β∗α⟨0|ââ†|0⟩
= 1 + β∗α (since â|0⟩ = 0)

This calculation directly uses the properties of fermionic operators and the Fock
space inner product.
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Example 10: Inner Product in Bosonic Coherent States
Consider two different bosonic coherent states |α⟩ and |β⟩ in a single mode, where
|α⟩ and |β⟩ are generated by displacing the vacuum state by α and β respectively,
with α, β ∈ C. The states are given by:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
(â†)n|0⟩, |β⟩ = e−

|β|2
2

∞∑
n=0

βn√
n!
(â†)n|0⟩.

The inner product between these states is:

⟨β|α⟩ =

(
e−

|β|2
2

∞∑
m=0

(β∗)m√
m!

⟨0|(â)m
)(

e−
|α|2
2

∞∑
n=0

αn√
n!
(â†)n|0⟩

)

= e−
|α|2
2

− |β|2
2

∞∑
m=0

∞∑
n=0

(β∗)mαn√
m!n!

⟨0|(â)m(â†)n|0⟩

= e−
|α|2
2

− |β|2
2

∞∑
n=0

(β∗)nαn

n!
(since ⟨0|(â)m(â†)n|0⟩ = n!δmn)

= e−
|α|2
2

− |β|2
2 eβ

∗α = eβ
∗α− |α|2+|β|2

2 .

This result demonstrates the overlap of bosonic coherent states and is a key charac-
teristic in quantum optics.

In this last example, we could also have expressed the bosonic coherent states as |α⟩ =

eαâ
† |0⟩, where α is a complex number. For bosons, the creation operator can be raised

to any power. Considering two different bosonic coherent states |α⟩ and |β⟩, the inner
product is:

⟨β|α⟩ = ⟨0|eβ∗âeαâ
† |0⟩ = e−

|α|2
2

− |β|2
2

∞∑
m,n=0

(β∗)mαn√
m!n!

⟨0|(â)m(â†)n|0⟩ = eβ
∗α− |α|2+|β|2

2 .
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Example 11: Trace of a Density Operator in Quantum Optics
Consider a thermal light field described by the density operator ρ at temperature T .
The Hamiltonian Ĥ of the harmonic oscillator is Ĥ = ℏω(â†â+ 1

2), where â
† and â

are the creation and annihilation operators, and ω is the frequency of the oscillator.
The density operator in the thermal state is given by:

ρ =
1

Z
e−βĤ ,

with β = 1
kBT

and Z being the partition function.

To compute the trace of ρ using coherent states, we use the integral representation:

Tr(ρ) =

∫
d2α

π
⟨α|ρ|α⟩,

where |α⟩ are the coherent states of the light field.
The integral is computed as follows:

Tr(ρ) =

∫
d2α

π
⟨α| 1

Z
e−βĤ |α⟩ = 1

Z

∫
d2α

π
e−α

∗α⟨α|e−βℏω(â†â+
1
2
)|α⟩

=
1

Z

∫
d2α

π
e−α

∗αe−
1
2
βℏω⟨α|e−βℏωâ†â|α⟩. (disentangling the exponential)

The remaining integral involves evaluating the matrix element ⟨α|e−βℏωâ†â|α⟩, which
can be done using the properties of coherent states and the harmonic oscillator.
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Part 2 of Example 11:

We continue from where we left off, calculating the matrix element ⟨α|e−βℏωâ†â|α⟩
for a coherent state |α⟩ in quantum optics.
First, recall that a coherent state |α⟩ is an eigenstate of the annihilation operator â
with eigenvalue α:

â|α⟩ = α|α⟩.
Using this property, we can simplify the matrix element as follows:

⟨α|e−βℏωâ†â|α⟩ = ⟨α|e−βℏωα∗â|α⟩ (since â†â|α⟩ = α∗â|α⟩)

= e−βℏωα
∗α⟨α|α⟩ (using the eigenvalue equation)

= e−βℏω|α|
2
.

This result reflects the property of coherent states being eigenstates of the annihi-
lation operator.
Substituting this back into the integral for the trace, we get:

Tr(ρ) =
1

Z

∫
d2α

π
e−α

∗αe−
1
2
βℏωe−βℏω|α|

2
=

1

Z
e−

1
2
βℏω

∫
d2α

π
e−α

∗α(1+βℏω).

This integral can be evaluated using Gaussian integration techniques, leading to the
final result for the trace.
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Part 3 of Example 11:
Continuing from the previous steps, we have the integral:

Tr(ρ) =
1

Z
e−

1
2
βℏω

∫
d2α

π
e−α

∗α(1+βℏω).

This integral is over the complex plane, so we can write α = x+ iy and d2α = dx dy.
The integral becomes:

Tr(ρ) =
1

Z
e−

1
2
βℏω

∫ ∞

−∞

∫ ∞

−∞

dx dy

π
e−(x2+y2)(1+βℏω)

=
1

Z
e−

1
2
βℏω 1

π

∫ ∞

−∞
e−x

2(1+βℏω)dx

∫ ∞

−∞
e−y

2(1+βℏω)dy.

Both integrals are Gaussian integrals of the form
∫∞
−∞ e−ax

2
dx =

√
π
a for a > 0.

Thus, we get:

Tr(ρ) =
1

Z
e−

1
2
βℏω 1

π

(√
π

1 + βℏω

)2

=
1

Z
e−

1
2
βℏω 1

1 + βℏω
.

Finally, the partition function Z for a single harmonic oscillator is Z = Tr(e−βĤ) =
1

1−e−βℏω , so the trace of ρ simplifies to:

Tr(ρ) = 1,

which is expected, as the trace of a density operator should be 1 in a normalized
quantum system.
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Example 12: Trace in Path Integral Formulation
In quantum field theory, the partition function Z at finite temperature can be ex-
pressed as a trace over coherent states in the path integral formulation. Consider a
quantum field described by the Hamiltonian Ĥ.
The partition function is given by:

Z = Tr(e−βĤ) =

∫
Dϕ ⟨ϕ|e−βĤ |ϕ⟩,

where |ϕ⟩ represents coherent states of the field, and Dϕ is a functional integration
over all field configurations.
The calculation involves:

Z =

∫
Dϕ ⟨ϕ|e−βĤ |ϕ⟩ =

∫
Dϕ e−β⟨ϕ|Ĥ|ϕ⟩ (using the coherent state representation).

This integral sums over all possible field configurations |ϕ⟩, weighted by the expo-
nential of the negative Hamiltonian.
This example illustrates the use of coherent states in the path integral formulation to
compute the partition function in quantum field theory, providing a bridge between
quantum mechanics and statistical mechanics.

Part 2 of Example 12:
The matrix element for the harmonic oscillator Hamiltonian in a coherent state |ϕ⟩
is:

⟨ϕ|e−βĤ |ϕ⟩ = ⟨ϕ|e−βℏω(â†â+
1
2
)|ϕ⟩.

Expanding the exponential and using the property â|ϕ⟩ = ϕ|ϕ⟩, we get:

⟨ϕ|e−βĤ |ϕ⟩ = e−
1
2
βℏω⟨ϕ|e−βℏωâ†â|ϕ⟩ = e−

1
2
βℏωe−βℏω|ϕ|

2
.

The partition function Z is then:

Z =

∫
Dϕ e−

1
2
βℏωe−βℏω|ϕ|

2
= e−

1
2
βℏω

∫
d2ϕ

π
e−βℏω|ϕ|

2
= e−

1
2
βℏω 1

βℏω
.

This integral is evaluated in a similar manner to Gaussian integrals, and the result
gives the partition function for a single-mode harmonic oscillator in quantum field
theory.
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Mathematical Proof: Simplification of Path Integral for Harmonic
Oscillator

Consider a single-mode quantum harmonic oscillator with Hamiltonian

Ĥ = ℏω(â†â+
1

2
),

where â† and â are creation and annihilation operators.
Step 1: Time-Independent Hamiltonian and Thermal State
Since the Hamiltonian is time-independent and we are considering a thermal state,
the partition function at temperature T (or inverse temperature β = 1

kBT
) is given

by

Z = Tr(e−βĤ).

Step 2: Coherent States as Eigenstates
Coherent states |α⟩ are eigenstates of the annihilation operator â:

â|α⟩ = α|α⟩.

Therefore, for a coherent state |α⟩, the action of e−βĤ simplifies as

⟨α|e−βĤ |α⟩ = e−
1
2
βℏω⟨α|e−βℏωâ†â|α⟩ = e−

1
2
βℏωe−βℏω|α|

2
.

Step 3: Integral Over Coherent States
The partition function becomes

Z =

∫
d2α

π
⟨α|e−βĤ |α⟩ = e−

1
2
βℏω

∫
d2α

π
e−βℏω|α|

2
.

Step 4: Gaussian Integral
The integral over α (a complex number) is a Gaussian integral in the complex plane,
which can be evaluated directly without the need for time-slicing:

Z = e−
1
2
βℏω

∫
d2α

π
e−βℏω|α|

2
= e−

1
2
βℏω 1

βℏω
.

This demonstrates that for a time-independent Hamiltonian in a thermal state, par-
ticularly for a single-mode quantum harmonic oscillator, the path integral simplifies
to a Gaussian integral over coherent states. This simplification bypasses the need
for time-slicing, typical in path integrals for time-dependent quantum field theory
problems.

9.19. Coherent States

9.19.1. Bosonic Coherent States. Bosonic coherent states are known for their classical-
like properties, particularly having well-defined phase and amplitude. This can be mathe-
matically demonstrated by examining the properties of these states.
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A coherent state |α⟩ is defined as an eigenstate of the annihilation operator â:

â|α⟩ = α|α⟩
where α is a complex number. Coherent states can be expressed in terms of the number
basis as:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
|n⟩.

The complex number α can be written in polar form as α = |α|eiθ, where |α| is the
amplitude and θ is the phase.

The expectation values of the position x̂ and momentum p̂ operators in a coherent state
provide insight into its classical-like nature.

The position operator in the harmonic oscillator basis is x̂ = x0(â + â†), where x0 =√
ℏ/2mω. The expectation value of x̂ in the coherent state is:

⟨x̂⟩ = ⟨α|x0(â+ â†)|α⟩
= x0(α+ α∗)

= 2x0|α| cos(θ)
This shows that the position expectation value oscillates with an amplitude of 2x0|α| and
a phase of θ, resembling a classical wave.

Similarly, for the momentum operator p̂ = −iℏ(â− â†)/2x0, the expectation value is:

⟨p̂⟩ = ⟨α| − iℏ(â− â†)/2x0|α⟩
= −iℏ(α− α∗)/2x0

= ℏ|α| sin(θ)/x0
The momentum expectation value also exhibits oscillatory behavior, consistent with a
classical wave.

The above derivation shows that bosonic coherent states are characterized by well-defined
phase and amplitude. The expectation values of position and momentum operators oscillate
in a manner analogous to a classical wave, thus demonstrating the classical-like properties
of coherent states.

9.19.2. Displacement Operator. Bosonic coherent states can be defined in two ways:
as an eigenstate of the annihilation operator, and as the result of applying the displacement
operator to the vacuum state. We’ll show the equivalence of these definitions.

The coherent state |α⟩ is defined as an eigenstate of the annihilation operator â:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
|n⟩
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The displacement operator D̂(α) is defined as:

D̂(α) = exp(αâ† − α∗â)

The coherent state can also be defined as:

|α⟩ = D̂(α)|0⟩
where |0⟩ is the vacuum state.

We aim to show that applying the displacement operator to the vacuum state yields the
same result as the eigenstate definition.

The displacement operator can be expanded using the Baker-Campbell-Hausdorff formula:

D̂(α) = exp(αâ† − α∗â) = exp(−|α|2

2
) exp(αâ†) exp(−α∗â)

Applying D̂(α) to the vacuum state:

D̂(α)|0⟩ = exp(−|α|2

2
) exp(αâ†) exp(−α∗â)|0⟩

= exp(−|α|2

2
) exp(αâ†)|0⟩ (since exp(−α∗â)|0⟩ = |0⟩)

Now, expand exp(αâ†):

exp(αâ†)|0⟩ =
∞∑
n=0

(αâ†)n

n!
|0⟩

=
∞∑
n=0

αn

n!
(â†)n|0⟩

=
∞∑
n=0

αn√
n!
|n⟩

Combining the results, we get:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
|n⟩.

This matches the eigenstate definition of the coherent state.

Thus, we have shown the equivalence of the two definitions of a bosonic coherent state.
The coherent state as defined by the displacement operator acting on the vacuum state
indeed yields the same result as the eigenstate definition.

9.19.3. Expansion Using BCH Formula. To expand the displacement operator D̂(α)
using the Baker-Campbell-Hausdorff formula, consider:

D̂(α) = exp(αâ† − α∗â)
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where â and â† are the annihilation and creation operators, respectively.

The BCH formula states that for operators A and B, if [A, [A,B]] = [B, [A,B]] = 0, then:

eA+B = eAeBe−
1
2
[A,B].

For the creation and annihilation operators, we have:

[â, â†] = ââ† − â†â = 1

since the creation and annihilation operators obey the bosonic commutation relation [â, â†] =
1.

Let A = αâ† and B = −α∗â. Then, the commutator [A,B] is:

[A,B] = [αâ†,−α∗â] = −αα∗[â†, â] = −|α|2.
Applying the BCH formula:

D̂(α) = exp(αâ† − α∗â)

= exp(αâ†) exp(−α∗â) exp(−1

2
[−|α|2])

= exp(αâ†) exp(−α∗â) exp(
|α|2

2
)

Therefore, the displacement operator D̂(α) can be expanded as:

D̂(α) = exp(
|α|2

2
) exp(αâ†) exp(−α∗â).

This expansion is crucial in the context of quantum optics and the study of coherent states.

9.19.4. Quantum Field Operators and Hamiltonian Formulation. Quantum field
operators play a crucial role in quantum field theory, facilitating the description of particle
creation and annihilation. Here, we define these operators and show how they are used to
construct Hamiltonians.

The annihilation operator âk is defined as:

âk|nk⟩ =
√
nk|nk − 1⟩.

It reduces the number of particles in the state k by one.

The creation operator â†k is defined as:

â†k|nk⟩ =
√
nk + 1|nk + 1⟩.

It increases the number of particles in the state k by one.

The quantum field operator Ψ̂(r) at position r is expressed as:

Ψ̂(r) =
∑
k

ϕk(r)âk

where ϕk(r) is the mode function for the state k.
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The kinetic energy term in the Hamiltonian is:

Ĥkinetic =

∫
d3r Ψ̂†(r)

(
− ℏ2

2m
∇2

)
Ψ̂(r).

For an external potential V (r):

Ĥpotential =

∫
d3r V (r)Ψ̂†(r)Ψ̂(r).

Combining kinetic and potential energy terms:

Ĥ = Ĥkinetic + Ĥpotential =

∫
d3r Ψ̂†(r)

(
− ℏ2

2m
∇2 + V (r)

)
Ψ̂(r).

Consider the Hamiltonian for a free particle in a box:

Ĥ =

∫
d3r Ψ̂†(r)

(
− ℏ2

2m
∇2

)
Ψ̂(r).

Substituting the field operator expansion:

Ĥ =

∫
d3r

(∑
k

ϕ∗k(r)â
†
k

)(
− ℏ2

2m
∇2

)(∑
l

ϕl(r)âl

)
.

This expression can be further simplified by considering orthonormal mode functions and
the properties of creation and annihilation operators.

9.19.5. Free Particle Hamiltonian in Quantum Field Theory. To simplify the
Hamiltonian for a free particle in quantum field theory, we consider the orthonormal mode
functions and the properties of creation and annihilation operators.

The Hamiltonian for a free particle expressed in terms of quantum field operators is:

Ĥ =

∫
d3r

(∑
k

ϕ∗k(r)â
†
k

)(
− ℏ2

2m
∇2

)(∑
l

ϕl(r)âl

)
.

The mode functions ϕk(r) are assumed to be orthonormal, satisfying:∫
d3r ϕ∗k(r)ϕl(r) = δkl

where δkl is the Kronecker delta.
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Applying the orthonormality condition, the Hamiltonian becomes:

Ĥ =
∑
k,l

∫
d3r ϕ∗k(r)

(
− ℏ2

2m
∇2

)
ϕl(r)â

†
kâl

=
∑
k,l

â†kâl

∫
d3r ϕ∗k(r)

(
− ℏ2

2m
∇2

)
ϕl(r)

=
∑
k

ϵkâ
†
kâk

where ϵk is the energy of mode k.

The final form of the Hamiltonian, representing the total energy of the system, is:

Ĥ =
∑
k

ϵkâ
†
kâk.

This expression shows the energy of each mode k multiplied by the number operator â†kâk,
which counts the number of particles in that mode.

This derivation illustrates how the use of orthonormal mode functions and the properties
of creation and annihilation operators simplify the Hamiltonian of a quantum field. The
result is a concise expression that captures the essential quantum nature of the system.

9.19.6. Second Quantization of a Hamiltonian with Coulomb Interaction. In
second quantization, a Hamiltonian including a two-body interaction, such as the Coulomb
interaction, can be expressed using quantum field operators. This approach is fundamental
in many-body quantum mechanics.

Consider field operators Ψ̂(r) and Ψ̂†(r) which annihilate and create a particle at position
r, respectively.

The Coulomb interaction between two charged particles is given by:

V (r, r′) =
e2

4πϵ0|r− r′|
where e is the elementary charge and ϵ0 is the vacuum permittivity.

The Hamiltonian for a system of particles including the Coulomb interaction can be written
as:

Ĥ = Ĥkinetic + ĤCoulomb

where Ĥkinetic is the kinetic energy term.

The kinetic energy term in second quantization is:

Ĥkinetic =

∫
d3r Ψ̂†(r)

(
− ℏ2

2m
∇2

)
Ψ̂(r).
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The Coulomb interaction term in second quantization is:

ĤCoulomb =
1

2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)V (r, r′)Ψ̂(r′)Ψ̂(r).

Expanding the field operators in terms of creation and annihilation operators:

Ψ̂(r) =
∑
k

ϕk(r)âk, Ψ̂†(r) =
∑
l

ϕ∗l (r)â
†
l

where ϕk(r) are the mode functions.

Substituting into the Coulomb term and simplifying:

ĤCoulomb =
1

2

∑
k,l,m,n

∫
d3r

∫
d3r′ ϕ∗k(r)ϕ

∗
l (r

′)V (r, r′)ϕm(r
′)ϕn(r)â

†
kâ

†
l âmân

=
1

2

∑
k,l,m,n

Vklmnâ
†
kâ

†
l âmân

where Vklmn represents the matrix elements of the Coulomb interaction.

This derivation shows the second quantization form of a Hamiltonian including a two-body
Coulomb interaction term. The final expression involves sums over creation and annihila-
tion operators for each mode, representing the quantized nature of particle interactions in
the system.

9.19.7. Coulomb Interaction Matrix Elements in Plane Wave Basis. In a plane
wave basis, particles are described by wavefunctions that are plane waves. This allows for
a more tractable calculation of the Coulomb interaction matrix elements Vklmn.

In a plane wave basis, the wavefunctions are of the form:

ϕk(r) =
1√
V
eik·r

where k is the wavevector and V is the normalization volume.

The Coulomb interaction matrix elements are defined as:

Vklmn =

∫
d3r

∫
d3r′ ϕ∗k(r)ϕ

∗
l (r

′)
e2

4πϵ0|r− r′|
ϕm(r

′)ϕn(r).

Expanding the plane wave states and performing the integration, we have:

Vklmn =
e2

4πϵ0V 2

∫
d3r

∫
d3r′ e−ik·re−il·r

′ 1

|r− r′|
eim·r′ein·r

=
e2

4πϵ0V 2

∫
d3r

∫
d3r′

ei(m−l)·r′ei(n−k)·r

|r− r′|
This integral can be further simplified using Fourier transform techniques.
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The Coulomb potential’s Fourier transform is:

1

|r− r′|
→ 4π

q2

where q = |m− l| = |n− k| is the magnitude of the momentum transfer.

Substituting this back into the expression for Vklmn, we obtain:

Vklmn =
e2

V 2

(2π)6δ(k+ l−m− n)

|m− l|2

This expression represents the Coulomb interaction matrix elements in the plane wave basis,
revealing the momentum conservation (through the delta function) and the dependence on
the momentum transfer.

The calculation of the Coulomb interaction matrix elements in the plane wave basis il-
lustrates the use of Fourier transform techniques in simplifying the interaction term. It
highlights the importance of conservation laws and momentum transfer in quantum inter-
actions.

9.20. Quantization of the Radiation Field

9.20.1. Lagrangian for Electromagnetic Field in SI Units. In SI units, the La-
grangian density for the electromagnetic field is given by the difference between the electric
and magnetic field energy densities:

ℓ =
ε0
2
E2 +

1

2µ0
B2

where E and B are the electric and magnetic fields, respectively, ε0 is the vacuum permit-
tivity, and µ0 is the vacuum permeability. Integrating this density over a volume V gives
the total Lagrangian:

L =

∫
V

(
ε0
2
E2 +

1

2µ0
B2

)
dV

Expressing E and B in terms of Potentials: In SI units, the electric and magnetic
fields can be expressed in terms of the vector potential A and the scalar potential ϕ as
follows:

E = −∇ϕ− ∂A

∂t
, B = ∇×A

These expressions allow us to rewrite the fields in the Lagrangian in terms of the potentials.
Substituting these into the Lagrangian yields:

L =

∫
V

(
ε0
2

(
−∇ϕ− ∂A

∂t

)2

− 1

2µ0
(∇×A)2

)
dV
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9.20.2. Applying the Coulomb Gauge. The Coulomb gauge is a specific choice of
gauge in electromagnetism that simplifies the mathematical treatment of the electromag-
netic fields. This gauge is defined by the condition:

∇ ·A = 0

where A is the vector potential. This condition has significant implications when applied
to Maxwell’s equations.

Gauss’s Law in the Absence of Charges: Gauss’s law for electricity, one of Maxwell’s
equations, in the absence of charges is given by:

∇ ·E = 0

In terms of the scalar potential ϕ and the vector potentialA, the electric field E is expressed
as E = −∇ϕ− ∂A

∂t . Substituting this expression for E into Gauss’s law gives:

∇ ·
(
−∇ϕ− ∂A

∂t

)
= 0

Expanding the divergence, we have:

−∇2ϕ−∇ · ∂A
∂t

= 0

Applying the Coulomb gauge condition ∇ ·A = 0 leads to

∇2ϕ = 0.

This is Laplace’s equation, which governs the behavior of the scalar potential ϕ in the
absence of charges.

Implications for the Scalar Potential: In many practical electromagnetic problems,
especially those involving fields in free space or in a perfect cavity, the scalar potential
ϕ can be taken as zero or a constant. This is because the general solution to Laplace’s
equation in a region without sources (charges) is a constant. Therefore, the scalar potential
ϕ effectively drops out of the electromagnetic field expressions, simplifying the analysis and
leaving the vector potential A as the primary contributor to the fields.

In the absence of charges and currents (as in free space or in a perfect cavity), the scalar
potential ϕ satisfies the Laplace equation ∇2ϕ = 0. The solution to this equation in
a source-free region is a constant, which can be set to zero without loss of generality.
Therefore, the scalar potential ϕ effectively drops out of the Lagrangian, leaving us with:

L =

∫ {
ε0
2

(
−∂A
∂t

)2

+
1

2µ0
(∇×A)2

}
dV

Here, ε0 is the vacuum permittivity and µ0 is the vacuum permeability. The Lagrangian
now depends only on the vector potential A and its time derivative.
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9.20.3. Legendre Transformation to Hamiltonian. The process of obtaining the
Hamiltonian from the Lagrangian involves defining the conjugate momentum and then
performing the Legendre transformation.

Definition of Conjugate Momentum: The conjugate momentum Π corresponding to
the vector potential A is defined as the derivative of the Lagrangian with respect to the
time derivative of A. Given the Lagrangian density for the electromagnetic field is:

ℓ =
ε0
2

(
∂A

∂t

)2

− 1

2µ0
(∇×A)2

where ε0 is the vacuum permittivity, and µ0 is the vacuum permeability. The conjugate
momentum is then defined as:

Π =
∂ℓ

∂(∂A∂t )
= ε0

∂A

∂t

Construction of the Hamiltonian: The Hamiltonian H is constructed using the Le-
gendre transformation:

H =

∫
Π · ∂A

∂t
dV − L

Substituting the expression for Π into the Hamiltonian, we get:

H =

∫ (
ε0
∂A

∂t

)
· ∂A
∂t

dV −
∫
ℓ dV =

∫ (
ε0
2

(
∂A

∂t

)2

+
1

2µ0
(∇×A)2

)
dV.

This Hamiltonian represents the total energy of the electromagnetic field in terms of the
vector potential A and its partial time derivative.

9.20.4. Fourier Expansion of A and Π. In quantum field theory, the vector potential
A and its conjugate momentum Π are expanded in terms of Fourier series using complex
exponential functions. This method is particularly useful as it simplifies the analysis and
is more suitable for describing wave-like phenomena.

Expansion using Exponential Functions: The Fourier expansion of A and Π in terms
of complex exponential functions is given as follows:

The vector potential A is expanded as:

A(x, t) =
∑
k,λ

[
ak,λ(t) e

ik·xϵk,λ + a†k,λ(t) e
−ik·xϵ∗k,λ

]
where k is the wave vector, λ denotes the polarization, and ϵk,λ are polarization vectors.

Similarly, the conjugate momentum Π, in SI units, is expanded as:

Π(x, t) = ε0
∑
k,λ

[
ȧk,λ(t) e

ik·xϵk,λ + ȧ†k,λ(t) e
−ik·xϵ∗k,λ

]
Here, ȧk,λ(t) and ȧ

†
k,λ(t) represent the time derivatives of the expansion coefficients.
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Derivatives Ȧ and ∇×A: The time derivative of A is given by:

Ȧ(x, t) =
∑
k,λ

[
ȧk,λ(t) e

ik·xϵk,λ + ȧ†k,λ(t) e
−ik·xϵ∗k,λ

]
And the curl of A is:

∇×A(x, t) =
∑
k,λ

ik×
[
ak,λ(t) e

ik·xϵk,λ − a†k,λ(t) e
−ik·xϵ∗k,λ

]
Substitution and Simplification: Substituting Ȧ and ∇×A into the Hamiltonian, we
get:

H =
ε0
2

∫ ∑
k,λ

[
ȧk,λ(t) e

ik·xϵk,λ + ȧ†k,λ(t) e
−ik·xϵ∗k,λ

]2

dV

+
1

2µ0

∫ ∑
k,λ

ik×
[
ak,λ(t) e

ik·xϵk,λ − a†k,λ(t) e
−ik·xϵ∗k,λ

]2

dV

The integrals in the Hamiltonian can be simplified using the properties of Fourier series and
the orthogonality of the complex exponential functions. After simplification, the Hamil-

tonian will be expressed in terms of the coefficients ak,λ and a†k,λ.

Evaluating the Integrals: The simplification involves evaluating the integrals over the
volume V . The key property used here is the orthogonality of the complex exponential
functions, which states that for different wave vectors k and k′:∫

ei(k−k′)·x dV = 0 if k ̸= k′

This property ensures that when we square the sums in the Hamiltonian, only terms with
the same k and λ will contribute to the integral, as all other cross terms will cancel out.

Squaring the Sums: The Hamiltonian contains squared sums of the Fourier expansions
of Ȧ and ∇×A. We need to square these sums and then simplify. For the time derivative
of A, we have: (

∂A

∂t

)2

=

∑
k,λ

[
ȧk,λ(t) e

ik·xϵk,λ + ȧ†k,λ(t) e
−ik·xϵ∗k,λ

]2

=
∑
k,λ

∑
k′,λ′

[
ȧk,λȧk′,λ′e

i(k+k′)·xϵk,λϵk′,λ′ + · · ·
]
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Similarly, for the curl of A, we have:

(∇×A)2 =

∑
k,λ

ik×
[
ak,λ(t) e

ik·xϵk,λ − a†k,λ(t) e
−ik·xϵ∗k,λ

]2

=
∑
k,λ

∑
k′,λ′

[
(ik× ak,λe

ik·xϵk,λ) · (ik′ × ak′,λ′e
ik′·xϵk′,λ′) + · · ·

]
Applying Orthogonality: The simplification of these expressions uses the orthogonality
of the complex exponential functions. This orthogonality leads to the cancellation of terms
where k ̸= k′, simplifying the sums significantly. We are left with terms where k = k′ and
λ = λ′.

Final Hamiltonian: After applying the orthogonality conditions and performing the
necessary integrations, the Hamiltonian becomes:

H =
∑
k,λ

[
ε0
2
|ȧk,λ(t)|2 +

1

2µ0
|k× ϵk,λ|2|ak,λ(t)|2

]
This expression represents the total energy of the electromagnetic field, summed over all
modes indexed by wave vector k and polarization λ. The terms involving ȧk,λ and ak,λ
correspond to the contributions of the electric and magnetic fields, respectively.

After obtaining the classical Hamiltonian for the electromagnetic field, the next step is
to transform it into its second-quantized form. This involves promoting the classical field
amplitudes to quantum operators.

Quantization: In the second quantization, the classical field amplitudes ak,λ and a†k,λ are

replaced by quantum field operators âk,λ and â
†
k,λ. These operators satisfy the commutation

relations:

[âk,λ, â
†
k′,λ′ ] = δk,k′δλ,λ′ ,

[âk,λ, âk′,λ′ ] = [â†k,λ, â
†
k′,λ′ ] = 0.

Time-Harmonic Assumption: In the classical Hamiltonian, the amplitudes ak,λ(t) are
assumed to have a time-harmonic form, i.e., they vary as e−iωk,λt. This assumption sim-
plifies the time derivatives:

ȧk,λ(t) = −iωk,λak,λ(t)

Thus, the kinetic energy term |ȧk,λ(t)|2 in the classical Hamiltonian becomes proportional
to ω2

k,λ|ak,λ(t)|2.
Energy of Each Mode: The energy of each mode of the electromagnetic field is related to
its frequency. For a mode with wave vector k and polarization λ, the energy is proportional
to the frequency ωk,λ, which is related to the magnitude of k.
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Second-Quantized Form: The second-quantized form of the Hamiltonian is obtained by
substituting these operators into the classical Hamiltonian expression. The final second-
quantized Hamiltonian for the electromagnetic field is:

Ĥ =
∑
k,λ

[
ε0
2
ˆ̇a†k,λ

ˆ̇ak,λ +
1

2µ0
|k× ϵk,λ|2â†k,λâk,λ

]
where ˆ̇ak,λ and ˆ̇a†k,λ are the time derivatives of the quantum field operators.

In this form, the Hamiltonian describes the energy of the quantized electromagnetic field in
terms of photons. Each term in the sum corresponds to the energy contribution of a photon

with wave vector k and polarization λ. The operators â†k,λ and âk,λ can be interpreted

as creating and annihilating photons, respectively. This Hamiltonian forms the basis for
studying quantum electromagnetic phenomena and the interaction of light and matter at
the quantum level.

Final Form: It can be shown that the final form in second quantization is given by:

(9.21) Ĥ =
∑
k,λ

ℏωk,λâ
†
k,λâk,λ

This Hamiltonian represents the total energy of the quantized electromagnetic field. Each
term in the sum corresponds to the energy of a photon mode with wave vector k and

polarization λ, where â†k,λ and âk,λ are the creation and annihilation operators for the

photons in that mode. This can be seen by noting that |k × ϵk,λ|2 is proportional to
ω2
k,λ. This final form of the Hamiltonian represents the total energy of the quantized

electromagnetic field, with each term corresponding to the energy of a photon mode. We
recall that the speed of light in vacuum is related to ε0 (vacuum permittivity) and µ0
(vacuum permeability) by:

c =
1

√
ε0µ0

.

This relationship implies that ε0µ0 =
1
c2
.
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Index

P − V work, 219

absolute zero, 236
activity, 248
adiabatic, 231, 274
affinity, 317, 318

binary solution, 327
boiling point elevation, 266
Boltzmann entropy, 328

Ca2+ sensing, 270
Carnot-Clausius, 319
chemical potential, 248

ideal gas, 246
Clausius, 325
Clausius inequality, 233
Clausius theorem, 320
compression work, 217
conservation of energy, 323
conservation of mass, 322
cytoplasm, 269

diathermal wall, 228
diffusion, 326, 328
diffusion equation, 328, 330
dissipated energy, 275
Dulong-Petit, 215

Einstein diffusion, 328
electrical current, 326
energy conservation, 258, 329
enthalpy, 237, 255, 280

enthalpy of matter transfer , 325
entropy, 230, 280, 316, 319

Boltzmann, 328
Gibbs-Shannon, 328

entropy balance, 324
entropy maximization, 241
entropy of fusion, 256
entropy of the universe, 257
entropy of vaporization, 256
entropy production, 316, 318, 320, 322, 325, 326,

330, 332
entropy representation, 240, 260, 273, 321, 326
equivalence relation, 227
Euler relation, 244
Euler’s test, 231
exact differential, 228, 230
exothermic, 213
expansion work, 219
extensive property, 257, 274
external variable, 274, 319
extracellular matrix, 270

Fe, 223
Fick’s law, 326, 331
first law, 226, 228, 273
first-order reaction, 317
flux, 273, 320
force, 273, 320
Fourier’s law, 326, 332
free energy

Gibbs, 238
Helmholtz, 237
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Landau potential, 238
meaning, 239
standard Gibbs, 249

Free Energy in Statistical Thermodynamics, 242
free expansion, 220
freezing point depression, 267
fundamental equation, 234, 258, 273, 316, 321,

326

Gaussian distribution, 329
Gibbs energy, 263
Gibbs energy of mixing, 262
Gibbs equation, 318
Gibbs free energy, 238, 248, 278

standard, 249
Gibbs-Duhem, 245
Gibbs-Shannon entropy, 328
grand potential, 238

heat, 211
heat capacity, 214–216

Debye model, 216
Dulong-Petit, 215
Einstein model, 216

heat conduction, 326, 329
heat content, 272
heat flux, 321, 325
heat of fusion, 255
heat of vaporization, 255
heat transfer, 217, 317

constant pressure, 254
constant volume, 254
isothermal, 259
reversible, 258

Helmholtz free energy, 237
heterogeneous equilibrium, 266
hydrochloric acid, 222
hydrostatic pressure work, 217

ideal gas
chemical potential, 246

ideal solution, 265
infinitesimal, 223, 234
infinitesimal heat transfer, 217
infinitesimal work, 217
infinitesimally, 220
internal energy, 217, 236
internal variable, 319
ion, 222
ion transport, 269
irreversible process, 316, 317, 328

isentropic, 231
isolated system, 232, 258
isothermal diffusion, 326
isothermal heat transfer, 259

Landau potential, 238
latent heat, 255
Law of Dulong and Petit, 215
lost work, 317

melting, 255

Ohm’s law, 326
Onsager, 330
Onsager coefficient, 320, 321, 329
Onsager reciprocal relations, 330

P-V work, 223
particle flux, 321
phase transition, 255
piston, 217
potassium pump, 269
potential difference, 326
pressure, 217
process

adiabatic, 231
isentropic, 231
reversible, 231

Raoult’s law, 265
reaction affinity, 270
reaction constant, 249
reaction enthalpy, 270
reversible compression, 221, 222
reversible heat transfer, 258
reversible process, 220, 316, 319, 325

second law, 226, 230, 259, 261, 330
sodium chloride, 327
solubility, 268
specific heat, 254
specific heat capacity, 214
spontaneity, 241
spontaneous process, 325
standard Gibbs free energy, 249
standard state, 253
state function, 228

Taylor expansion, 220, 321
thermally conductive wall, 257
thermodynamics

enthalpy, 237



Index 541

first law, 226, 228
fundamental equation, 234
Gibbs free energy, 238
Gibbs-Duhem, 245
Helmholtz free energy, 237
internal energy, 217, 236
laws, 226
second law, 226, 230
standard Gibbs free energy, 249
state function, 228
surrounding, 211
system, 211
third law, 226, 235
universe, 211
zeroth law, 226, 227

third law, 226, 235

vaporization, 255
voltage sensing, 270

work, 211
P − V , 219
chemical, 224
electric, 224
electrostatic, 224
expansion, 219
gravitational, 223
magnetic, 224
spring, 224

zeroth law, 226, 227


