| Last <br> Name | First <br> Name |  |
| :--- | :--- | :--- |
| Student ID Number: | Total Score |  |
| Circle the name of your TA: HEATHER / KAUSHIK / CARI / RYAN |  |  |
| Discussion Section - Day: | Time: |  |

## Chem 30A Fall 2005

MIDTERM \#2
SUPPLEMENT
(15 Min)

## Wed Nov 30th

INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

ONLY ANSWERS WRITTEN IN THE BOXES PROVIDED WILL BE GRADED
***DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO***

"We didn't lose the game; we just ran out of time."

- Vince Lombardi
"All truth passes through three stages. First, it is ridiculed. Second, it is violently opposed.
Third, it is accepted as being self-evident."
- Arthur Schopenhauer

Q1. Four different cycloalkenes (A-D), each with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{8}$, will yield methylcyclobutane when subjected to catalytic hydrogenation ( $\mathrm{H}_{2} / \mathrm{Pt}$ catalyst) - as shown below.

(a) Two of these cycloalkenes constitute a pair of enantiomers; the absolute configuration of the stereogenic center in compound $\mathbf{A}$ is $(R)$ and in $\mathbf{B}$ it is (S). Draw these compounds below. (6 pt)


B
(S)-Isomer
(b) When cycloalkenes $\mathbf{C} \& \mathbf{D}$ are reacted with $\mathrm{Br}_{2}$ in $\mathrm{CCl}_{4}$, different results are observed:
(i) Cycloalkene $\mathbf{C}$ reacts to form a single achiral product (E) - draw these compounds in the appropriate boxes below: ( 4 pt )

(ii) Cycloalkene $\mathbf{D}$ reacts to form a pair of enantiomers ( $\mathbf{F} \& \mathbf{G}$ ) - draw these compounds in the appropriate boxes below (note - the labels $\mathbf{F} \& \mathbf{G}$ are arbitrary): ( 6 pt )


This question is continued on the next page...
(c) Cycloalkene $\mathbf{A}$ reacts with $\mathrm{Br}_{2}$ in $\mathrm{CCl}_{4}$ to form two different CHIRAL products ( $\mathbf{H} \& \mathbf{I}$ ) - draw these compounds in the appropriate boxes below (note - the labels $\mathbf{H} \& \mathbf{I}$ are arbitrary): ( 6 pt )

(d) Circle ONE of the following words/phrases that best describes the relationship between compounds H\&I: (3 pt)

CONSTITUTIONAL
ISOMERS

THE
SAME

CONFORMATIONAL ISOMERS

