Last Name	First Name	MI
Student ID Number:		Total Score
Circle the name of your TA: HEATHER / KAUSHIK / CARI / RYAN		
Discussion Section – Day:	Time:	/ 25

Chem 30A Fall 2005

MIDTERM #2 SUPPLEMENT

(15 Min)

Wed Nov 30th

INTERPRETATION OF THE QUESTIONS IS PART OF THE EXAM –
DO NOT ASK FOR THE QUESTIONS TO BE EXPLAINED TO YOU

ONLY ANSWERS WRITTEN IN THE BOXES PROVIDED WILL BE GRADED

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

Total / 25

"We didn't lose the game; we just ran out of time."

- Vince Lombardi

"All truth passes through three stages. First, it is ridiculed. Second, it is violently opposed.

Third, it is accepted as being self-evident."

- Arthur Schopenhauer

Q1. Four different cycloalkenes (**A–D**), each with the molecular formula C_5H_8 , will yield methyl-cyclobutane when subjected to catalytic hydrogenation (H_2/Pt catalyst) – as shown below.

A, B, C, and D
$$\begin{array}{c}
H_2 \text{ (3 atm)} \\
\hline
Pt / C \text{ (cat.)}
\end{array}$$

(a) Two of these cycloalkenes constitute a pair of enantiomers; the absolute configuration of the stereogenic center in compound \mathbf{A} is (R) and in \mathbf{B} it is (S). Draw these compounds below. (6 pt)

- (b) When cycloalkenes C & D are reacted with Br₂ in CCl₄, different results are observed:
- (i) Cycloalkene C reacts to form a single achiral product (E) draw these compounds in the appropriate boxes below: (4 pt)

(ii) Cycloalkene D reacts to form a pair of enantiomers (F & G) – draw these compounds in the appropriate boxes below (note – the labels F & G are arbitrary): (6 pt)

This question is continued on the next page...

(c) Cycloalkene A reacts with Br_2 in CCl_4 to form two different CHIRAL products (H & I) – draw these compounds in the appropriate boxes below (note – the labels H & I are arbitrary): (6 pt)

Two different CHIRAL compounds

(d) Circle ONE of the following words/phrases that best describes the relationship between compounds H & I: (3 pt)

CONSTITUTIONAL THE CONFORMATIONAL ISOMERS SAME ISOMERS

ENANTIOMERS DIASTEREOISOMERS