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Figure 1.1.  A schematic representation depicting the formation of a threaded 1:1 complex (a

[2]pseudorotaxane) between two complementary species wherein the cavity of a suitably-sized

macrocycle is pierced by a linear thread.

Figure 1.2. One of the two distinct superstructures adopted in the solid state by the

[2]pseudorotaxane [DB24C8·DBA]+.

Figure 1.3. π–π Stacking of the benzyl rings of the [2]pseudorotaxane [DB24C8·DBA]+

produces an infinite linear pseudopolyrotaxane.

Figure 1.4. The solid-state superstructure of a [3]pseudorotaxane [(DB24C8)2·1]2+ formed

between a thread-like molecule—containing two ammonium centers (1·2PF6)—and two DB24C8

macrocycles.

Figure 1.5. The solid-state superstructure of a [4]pseudorotaxane [(DB24C8)3·2]3+ formed

between a thread-like molecule—containing three ammonium centers (2·3PF6)—and three

DB24C8 macrocycles.

Figure 1.6. The influence of both directionality and steric crowding upon solid-state

superstructures assembled via the carboxylic acid dimer are highlighted.  The para disposition of

carboxylic acid groups in terephthalic acid (a) results in the formation of infinite linear tapes,

whereas the meta disposition—as in isophthalic acid (b)—produces a crinkled tape.  The sterically

congested 5-decyloxyisophthalic acid (c) is precluded from forming an extended tape

superstructure, assembling instead into discrete hexameric supramacrocycles.

Figure 1.7. The solid-state superstructure of the [2]pseudorotaxane [DB24C8·4]+ formed

between the para-carboxylic acid-substituted DBA+ cation 4+ and DB24C8.

Figure 1.8. An infinite linear daisy-chain-like array of [DB24C8·4]+ is formed as a result of

hydrogen bonding between the carboxylic acid of one thread and the crown ether component of a

neighboring [2]pseudorotaxane.

Figure 1.9. The solid-state superstructure of the [2]pseudorotaxane [DB24C8·5]+ formed

between the bis-para-carboxylic acid-substituted DBA+ cation 5+ and DB24C8.

Figure 1.10. Despite the formation of a carboxylic acid dimer between individual [2]pseudo-

rotaxanes, the possibility of an infinite hydrogen bonded polymer is negated by the formation of

hydrogen bonds from the terminal carboxylic acid protons to included acetone molecules in the

solid-state superstructure of [DB24C8·5]+.

Figure 1.11. The solid-state superstructure of the [2]pseudorotaxane [DB24C8·6]+ formed

between the bis-meta-carboxylic acid-substituted DBA+ cation 6+ and DB24C8.

Figure 1.12. The X-ray crystallographic analysis of [DB24C8·6][PF6] reveals the formation—in

the solid state—of a carboxyl-dimer-linked main chain pseudopolyrotaxane.
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Figure 1.13. The solid-state superstructure of the [2]pseudorotaxane [DB24C8·7]+ formed

between the isophthalic acid-substituted DBA+ cation 7+ and DB24C8.

Figure 1.14. The side-chain pseudopolyrotaxane formed as a result of carboxylic acid

dimerization in the extended superstructure of [DB24C8·7]+.

Figure 1.15. When grown from a MeCN/Et2O solution, crystals of TB24C8 can be seen to

contain enclathrated acetonitrile molecules.
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Figure 1.17. One of the four crystallographically independent superstructures with a

[2]pseudorotaxane geometry observed in the X-ray analysis of [TB24C8·DBA][PF6].

Figure 1.18. The extensively C–H···F hydrogen bond-stabilized extended superstructure of the

complex [TB24C8·DBA][PF6].

Figure 1.19. The solid-state superstructure of the [2]pseudorotaxane [BMP25C8·DBA]+ formed

between the DBA+ cation and BMP25C8.

Figure 1.20. Discrete [BMP25C8·DBA]+ supermolecules are linked in the solid state to form

extended sheets.

Figure 1.21. The solid-state structure of BMP25C8.

Figure 1.22. Constricted nanotubes—stabilized by intermolecular C–H···O hydrogen bonds—are

formed by the stacking of BMP25C8 molecules in the solid state.

Figure 1.23. The solid-state superstructure of the [2]pseudorotaxane [TB27C9·(p-CO2Me)2-

DBA]+ formed between the p-CO2Me-disubstituted DBA+ cation and TB27C9.

Figure 1.24. The extended superstructure of [TB27C9·(p-CO2Me)2-DBA][PF6] consists of
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Figure 1.25. The solid-state superstructure of a double-stranded [3]pseudorotaxane

[BPP34C10·(DBA)2]2+ formed between BPP34C10 and DBA·PF6.

Figure 1.26. Conceivably, there are four possible distinct superstructures that may form upon co-
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(b) a double-threaded, double-encircled [4]pseudorotaxane, (c) a face-to-face complex, and (d) a

polymer.

Figure 1.27. The solid-state superstructure of the double-threaded, double-encircled

[4]pseudorotaxane [(BPP34-C10)2·(1)2]4+ formed between BPP34C10 and 12+.

Figure 1.28. Individual [2 + 2] superbundles form columns in the solid state.  The interstitial

PF6
– anions may play some role in the assembly of this infinite one-dimensional array.

Figure 1.29. The solid-state superstructure of the five-component superbundle

[(BPP34C10)3·(8)2]6+ formed between the trifurcated tris-ammonium cation 83+ and the ditopic

crown ether BPP34C10.

Figure 1.30. Interleaved one-dimensional arrays of the five-component superbundle

[(BPP34C10)3·(8)2]6+ are formed in the solid state.
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Figure 1.31. Co-crystallization of BPP34C10 and 9·4PF6 affords a six-component superbundle

that is a supramolecular analogue of the photosynthetic special pair.

Figure 1.32. The solid-state superstructure of a triple-threaded 1:1 complex formed between a

trifurcated trisammonium thread and a complementary triphenylene-based tris-DB24C8 derivative.

Figure 1.33. In a manner analogous to DBA·PF6, 4·PF6 forms a double-threaded

[3]pseudorotaxane when co-crystallized with BPP34C10.

Figure 1.34. Individual [BPP34C10·(4)2][2PF6] [3]pseudorotaxanes dimerize in the solid state

via the formation of carboxylic acid dimers.

Figure 1.35. Similarly to 4·PF6, its meta-substituted cousin 10·PF6 forms a 1:2 complex when

co-crystallized with BPP34C10.

Figure 1.36. Discrete [BPP34C10·(10)2][2PF6] supermolecules dimerize—in the solid state—as

a result of carboxyl dimer formation.

Figure 1.37. Two 7+ cations thread through the cavity of BPP34C10 in a centrosymmetric

fashion, resulting in the formation of a [3]pseudorotaxane [BPP34C10·(7)2]2+ in the solid state.

Figure 1.38. Analysis of the extended solid-state superstructure adopted by [BPP34C10·(7)2]2+

reveals the existence of an interwoven cross-linked supramolecular polymer.

Figure 1.39. The extended crown ether TPP51C15 co-crystallizes with three equivalents of

DBA·PF6 to give a triple-threaded [4]pseudorotaxane [TPP51C15· (DBA)3]3+.  Note how a PF6
–

anion occupies a cleft in the superstructure.

Figure 1.40. The extended crown ether TPP68C20 co-crystallizes with four equivalents of

DBA·PF6 to give a quadruple-threaded [5]pseudorotaxane [TPP68C20·(DBA)4]4+.  One PF6
–

anion is encapsulated completely within the superstructure.

Chapter 2:  The Influence of Macrocyclic Polyether Constitution upon
Ammonium Ion Binding

Figure 2.1. The face-to-face interaction between DB18C6 and a primary ammonium ion.

Figure 2.2. Top: A schematic representation depicting the formation of a threaded 1:1 complex

(a Pseudorotaxane) formed between two complementary species, whereupon the cavity of a

suitably-sized Ring-shaped component is skewered by a linear Thread-like one.  Bottom: A

specific example of this concept showing how the dibenzylammonium cation 7+ threads through

DB24C8 (3).

Figure 2.3. The LSI-mass spectrum of a 1:1 mixture of DB24C8 (3) and 9·PF6.

Figure 2.4. Partial 1H NMR spectrum (400 MHz, CD3CN, 300  K), of an equimolar solution

of DB24C8 (3) and 9·PF6 (both 10 mM), demonstrating that complexed (c) and uncomplexed (uc)

species are equilibrating with one another slowly on the 1H NMR timescale.
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Figure 2.5. Partial 1H NMR spectra (the AA'BB' region) of a 1:1 mixture of BMP25C8 (5) and

9·PF6 in CD3CN solution over the temperature range 243-300 K.

Figure 2.6. The van’t Hoff plot obtained upon plotting ln Ka vs 1/T for the Ka values

determined—using the single point method—over the temperature range 243-288 K.

Figure 2.7. The X-ray crystal superstructure of [3·7]PF6.

Figure 2.8. Ball-and-stick representations of the four crystallographically-independent

[2]pseudorotaxanes present in the crystals of [4·7]PF6 showing the N+–H···O and C–H···O

hydrogen bonding.  The hydrogen bonding geometries and inter-ring separations are given in

Table 2.3.

Figure 2.9. (a) Ball-and-stick and (b) space-filling representations (hydrogen atoms omitted for

clarity) showing the layer structure of [4·7]PF6.

Figure 2.10. A space-filling representation (hydrogen atoms omitted for clarity) of [4·7]PF6

showing the embedding of the PF6
– anions into the egg-box-like clefts formed in the layer

structure of [2]pseudorotaxane supermolecules.

Figure 2.11. The solid-state superstructure of TB24C8·2MeCN.

Figure 2.12. The C–H··· -linked supramolecular chain formed by TB24C8·2MeCN in the solid

state.

Figure 2.13. The solid-state structure of TB24C8.

Figure 2.14. (a) Part of one of the C–H···  (aryl-methine) linked sheets of molecules present in

the solid-state superstructure of TB24C8, and (b) the linking of the adjacent sheets by means of

C–H···  (O–methylene) interactions.

Figure 2.15. The systematic approaches of the aryl-methine and O-methylene protons to the

opposite faces of all four catechol rings (A, A', B and B') in the solid-state superstructure of

TB24C8.

Figure 2.16. The X-ray crystal superstructure of the [2]pseudorotaxane [5·7-H]+ formed between

BMP25C8 (5) and the dibenzylammonium cation 7+.  Hydrogen bonding distances and angles

{[N+···O], [H···O] distances (Å), [N–H···O] angles (°)}: (a) 2.91, 2.06, 156; (b) 2.94, 2.31, 127;

(c) 3.08, 2.21, 162.

Figure 2.17. The sheet-like superstructure formed by the [2]pseudorotaxanes [5·7]+.  The

geometries of the -  stacking interactions are (a) centroid-centroid distance 4.02 Å, rings inclined

by 12°; (b) centroid-centroid distance 4.52 Å, mean interplanar separation 3.68 Å; (c) centroid-

centroid distance 3.99 Å, mean interplanar separation 3.71 Å.  The C–H···  interaction (d) is

characterized by an H–  distance of 2.84 Å and a C–H···  angle of 140°.

Figure 2.18. (a) The crystal structure of BMP25C8 5. (b) Adjacent molecules are stacked by

virtue of pairs of C–H···  interactions, (a) H···  distance 2.85 Å, C–H···  angle 140°; (b) H···

distance 2.79 Å, C–H···  angle 137°, supplemented by -  stacking interactions between the

resorcinol and catechol moieties, interactions c and d, respectively.  (c) End-on view of the

constricted nanotube formed by the stacking of BMP25C8 macrocycles.
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Chapter 3:  Supramolecular Daisy Chains

Figure 3.1. Top: A schematic representation of the covalent polymerization of monomer M1.

Bottom: A schematic representation of the noncovalent polymerization of a different monomer,

M2.

Figure 3.2. The hydrogen-bond-mediated dimerization of 2-butylureido-6-methyl pyrimidone.

Figure 3.3. Reversible formation of a hydrogen-bonded linear supramolecular polymer formed

from a monomer bearing two 2-ureido-4-pyrimidone end groups.

Figure 3.4. A schematic representation depicting the formation of a threaded 1:1 complex (a

Pseudorotaxane) between two complementary species wherein the cavity of a suitably-sized Ring

is skewered by a linear Rod.

Figure 3.5. Conceptually,  when two mutually-recognizing species are merged together, a single

self-complementary entity is formed.

Figure 3.6. A schematic representation depicting how a daisy chain monomer can self assemble

to form both cyclic and acyclic interwoven superstructures.

Figure 3.7. A schematic representation depicting the post-assembly kinetic capture—achieved

by ‘stoppering’ of the threaded portions of each monomer with a bulky end group over which the

macrocyclic portions cannot pass—of an interwoven acyclic daisy chain.

Figure 3.8. Combining the features of both DB24C8 (2) and dibenzylammonium

hexafluorophosphate (3-H·PF6) into one and the same molecule results in the design a self-

complementary daisy chain monomer 1-H·PF6.

Figure 3.9. The LSI-mass spectrum of 1-H·PF6.

Figure 3.10. (a) Ball-and-stick and (b) space-filling representations of the C2 symmetric head-to-

tail dimer formed by 1-H+.

Figure 3.11. The mosaic-like sheet of dimer pairs formed by 1-H+.

Figure 3.12. The packing of dimers of 1-H+, in one direction, via face-to-face -  stacking
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Figure 3.13. The stacking of adjacent rows of dimers of 1-H+, via C–H···π interactions.
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of 1-H·PF6.

Figure 3.15. The 1H NMR spectra of 1-H·PF6 dissolved in (a) CD3SOCD3 (300 MHz, 298 K),
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Figure 3.16. An expansion of the two upfield-shifted aromatic doublets that appear in the 1H

NMR spectrum (400 MHz, CD3CN, 273 K) of 1-H·PF6.

Figure 3.17. 1H NMR Spectra of (a) the amine 1, followed by sequential addition of (b)

CF3CO2D (10 mol equiv) and (c) Et3N (20 mol equiv).

Figure 3.18. The temperature-dependent (273-358 K) partial 1H NMR spectra of a CD3CN/D2O

(98:2) solution of 1-H·PF6.
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Figure 3.19. The concentration-dependent partial 1H NMR spectra obtained from CD3CN

solutions of 1-H·PF6.

Figure 3.20. A schematic representation of the dynamic assembly of both acyclic and cyclic daisy

chain superstructures (up to, and including, trimers) from a self-complementary monomer.

Figure 3.21. Concentration profiles—plotted using an Excel spreadsheet—that demonstrate how,

based upon assumed Ka values, the concentration of daisy chain species in solution (expressed as

a % of the total concentration of all species in solution) varies with the initial concentration of

dissolved monomer (M).

Figure 3.22. The partial 1H NMR spectrum (400 MHz, CDCl3) of 13, showing the residual

peaks arising from the remaining H-resonances of the ‘catechol’ rings that were not 100 %

deuterated.

Figure 3.23. The partial 1H NMR spectrum (400 MHz, 300 K) of a CD3CN solution of the

deuterium-labeled daisy chain monomer 11-H·PF6.  Two sets (‡ and †) of signals are observed for

the resonances of the protons (H1, H2, and H3) of the central aromatic ring.

Figure 3.24. The chiral and achiral (meso) [c2]daisy chain superstructures that can be formed

upon dimerization of a [24]crown-8 based monomer such as 11-H·PF6.

Figure 3.25. The partial 1H NMR spectrum (400 MHz, 300 K) of a CD3CN solution containing

a 1:1 mixture of DB24C8 (2) and the p-F-substituted dibenzylammonium salt 14-H·PF6.

Figure 3.26. The partial 19F NMR spectrum (376 MHz, 300 K) of a CD3CN solution containing

a 1:1 mixture of DB24C8 (2) and the p-F-substituted dibenzylammonium salt 14-H·PF6.

Figure 3.27. The partial 19F NMR spectra (376 MHz, 300 K) of a 10 mM solution of 17-H·PF6

dissolved in varying mixtures of CD3CN/CD3SOCD3.

Figure 3.28. The partial 1H NMR spectra (400 MHz, 300 K) of a 10 mM solution of 17-H·PF6

dissolved in varying mixtures of CD3CN/CD3SOCD3.

Figure 3.29. Partial 1H NMR spectra (400 MHz, 300 K) recorded over time of a CDCl3/CD3CN

(3:1) solution containing a 1:1 mixture of DB24C8 (2) and the bis(3,5-difluoro)-substituted

dibenzylammonium ion salt 18-H·PF6 in a sealed NMR tube.
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(3:1) solution containing a 1:1 mixture of DB24C8 (2) and the bis(3,5-difluoro)-substituted
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Figure 3.31. Surprisingly, the 1H NMR spectrum (400 MHz, 300 K) of 21-H·PF6, obtained
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Figure 3.32. Partial 19F NMR spectra (376 MHz, 300 K) recorded over time of a CD3SOCD3

solution of 21-H·PF6.

Figure 3.33. The FAB-mas spectra of 21-H·PF6 (i) prior to dissolution in CD3SOCD3, and (ii)
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Figure 3.34. A schematic representation depicting the pathway via which a [c2]daisy chain

superstructure is expected to disassemble to give, initially, the [a2]daisy chain, and then,

ultimately, the monomeric species ([a1]daisy chain).

Figure 3.35. The FAB mass spectra of (i) an equimolar mixture of 1-H·PF6 {H} and 17-H·PF6

{F}, and (ii) an equimolar mixture of 17-H·PF6 {F} and 21-H·PF6 {F2}.

Figure 3.36. The inherent symmetry of a [25]crown-8-based daisy chain monomer means that

only one unique [c2]daisy chain can be formed upon aggregation.  Similarly, only one [c3]-, one

[c4]-, and one [c5]daisy chain, etc... can be formed.

Figure 3.37. The concentration-dependent partial 1H NMR spectra (400 MHz, 300 K) of CD2Cl2
solutions of the parent [25]crown-8 daisy chain monomer (22-H·PF6).

Figure 3.38. The partial 1H NMR spectrum (400 MHz, 300 K) of a CD3CN solution containing

a 1:1 mixture of BMP25C8 (28) and the 3,5-difluorophenyl-substituted dibenzylammonium salt

18-H·PF6.

Figure 3.39. The partial 19F NMR spectrum (376 MHz, 300 K) of a 1:1 mixture of BMP25C8

(28) and 18-H·PF6 reveals the presence of two aromatic F signals, one corresponding to free 18-

H·PF6, and the other to the [2]pseudorotaxane [28·18-H]PF6.

Figure 3.40. The concentration-dependent partial 19F NMR spectra (376 MHz, 298 K, CD3CN)

of 29-H·PF6.

Figure 3.41. A schematic representation depicting the ‘free’ and bound ammonium ion-

containing arms of aggregated (up to, and including, trimeric) daisy chain superstructures.

Figure 3.42. The expressions used to calculate the association constants for the aggregation of

29-H·PF6 in CD3CN solution at 298 K.

Figure 3.43. A concentration profile can be constructed for 29-H·PF6 based upon the Ka values
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Figure 3.44. Expressions for the overall cyclic dimerization and trimerization constants in a self-

complementary daisy chain system.

Figure 3.45. The temperature-dependent partial 19F NMR spectra (376 MHz, CD3CN) of 29-

H·PF6.

Figure 3.46. The van’t Hoff plot obtained upon plotting ln Ka vs 1/T for the Ka values

determined from the partial 19F NMR spectra illustrated in Figure 3.45.

Figure 3.47. A schematic representation depicting the possible ways in which a bidirectional

quadratopic daisy chain monomer may self-assemble to form aggregated superstructures.

Figure 3.48. A schematic representation depicting the covalent polymerization of a discrete
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Chapter 4:  Kinetic and Thermodynamic Approaches for the Synthesis of
Ammonium Ion/Crown Ether-Based Interlocked Molecules

Figure 4.1. A schematic representation of the generic structures of the two most widely studied

classes of interlocked molecules.

Figure 4.2. A schematic representation depicting the kinetic synthesis of a [2]catenane from the

appropriate [2]pseudorotaxane.

Figure 4.3. Both (a) stoppering, and (b) clipping approaches can be utilized for the

synthesis—performed under kinetic control—of a [2]rotaxane.

Figure 4.4. The slippage synthesis of a ‘rotaxane-like’ complex relies upon the precise matching

of the end groups of the dumbbell and the size of the cavity of the macroring through which the

dumbbell has to pass.

Figure 4.5. A schematic representation depicting the thermodynamically-controlled synthesis of

a [2]rotaxane using the ‘stoppering’ methodology.  Note: the thinner lines represent the reversibly-

formed covalent bonds; a convention that will be used throughout the remainder of this Chapter.

Figure 4.6. A schematic representation depicting the thermodynamically-controlled synthesis of

a dynamic [2]rotaxane utilizing ‘clipping’ methodology.

Figure 4.7. Schematic representations of dynamic interlocked structures (catenanes I-II and

rotaxanes III-V) which differ in the location of the reversible covalent bonds.  For example,

whereas the dumbbell of III can be formed and broken reversibily, it is the ring component of IV

that contains the reversible covalent bonds.  Consequently, dynamic rotaxane III would be formed

by a ‘stoppering’ approach, whereas IV would required a clipping strategy.  Rotaxane V, in which

both components contain reversibly-formed linkages, could be assembled via either pathway.

Figure 4.8. Schematic representations of ‘magic’ interlocked molecules!

Figure 4.9. Conceptually, the assembly of an amino-functionalized [2]semirotaxane and

subsequent reaction with a bulky isocyanate leads to the formation of a ureido-[2]rotaxane.

Figure 4.10. The structure of the [2]rotaxane 1-H·O2CCF3, showing the labeling scheme for both

(i) the dumbbell and (ii) the crown ether components, used in describing its NMR spectroscopic

properties.  The schematic representation (ii) highlights the unsymmetrical nature of the dumbbell.

The protons (α1, β1, γ1) on one face of the DB24C8 macrocycle are oriented toward the 3,5-di-

tert-butylphenyl stopper, whereas those protons (α2, β2, γ2) on the opposite face of the

macrocycle are directed toward the 2,6-diisopropylphenyl stopper, i.e., the protons located on

opposite faces of the crown ether are diastereotopic.

Figure 4.11. The partial 1H NMR spectrum (400 MHz, CD2Cl2) of 1-H·O2CCF3.

Figure 4.12. The partial T-ROESY spectrum (400 MHz, CD2Cl2) of 1-H·O2CCF3.  The most

significant probe protons are H-2 and H-3, which each show a correlation to only one set of

protons on only one face of the crown ether.
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Figure 4.13 The molecular structures of the two crystallographically-independent [2]rotaxanes

present in the crystals of 1-H·O2CCF3.  Hydrogen bonding distances and angles {[X···O], [H···O]

distances (Å), [X–H···O] angles (°)}: for molecule (i); (a) 2.85, 2.01, 156; (b) 2.89, 2.16, 137; (c)

3.31, 2.36, 171; (e) 2.89, 2.03, 159; (f) 2.86, 1.98, 164; for molecule (ii); (a) 2.91, 2.11, 147;

(b) 3.01, 2.23, 145; (c) 3.41, 2.51, 157; (d) 3.25, 2.41, 147; (e) 2.76, 1.92, 163; (f) 2.91, 2.02,

168.  The centroid-centroid distances (g) for molecules (i) and (ii) are 4.48 and 4.54 Å,

respectively.

Figure 4.14. The partial 1H NMR spectrum (400 MHz, CD2Cl2) of 7-H·O2CCF3.  Note (*) that

the broad peak at δ = 9.4 ppm is a background signal arising from the NMR probe.

Figure 4.15. The structure of the [2]rotaxane 7-H·O2CCF3, showing the labeling scheme for the

protons on both (i) the dumbbell and (ii) the crown ether components, used in describing its

NMR spectroscopic parameters.  The through-space correlations determined by T-ROESY

measurements are also highlighted in (i) by double-headed arrows.  The schematic representation

(ii) highlights the unsymmetrical nature of the dumbbell.  The protons (α1, β1, γ1, δ1, ε1, φ1) on

one face of the BMP25C8 macrocycle are oriented toward the 3,5-di-tert-butylphenyl stopper,

whereas those protons (α2, β2, γ2, δ2, ε2, φ2) on the opposite face of the macrocycle are directed

toward the 2,6-diisopropylphenyl stopper.

Figure 4.16. Partial 13C NMR spectra (125 MHz, CD3CN:CD3SOCD3 3:1), recorded at various

temperatures, showing the coalescence of the signal arising from the carbon atom of the methyl

groups that constitute the isopropyl groups.

Figure 4.17. A Ramachandran-like plot depicting the energy profile of bond rotations associated

with the 2,6-diisopropylphenyl stopper moiety.

Figure 4.18. The molecular structures of the two crystallographically-independent [2]rotaxanes

present in the crystals of 7-H·O2CCF3. Hydrogen bonding distances and angles {[X···O], [H···O]

distances (Å), [X–H···O] angles (°)}: for molecule (i); (a) 2.90, 2.07, 152; (b) 2.92, 2.17, 140; (c)

3.06, 2.26, 149; (d) 3.34, 2.48, 149; (e) 2.83, 1.95, 163; (f) 2.88, 2.00, 166; for molecule (ii);

(a) 2.83, 1.94, 170; (b) 2.95, 2.34, 125; (c) 3.13, 2.26, 163; (d*) 3.30, 2.43, 150; (e) 2.93, 2.04,

170; (f) 2.89, 2.00, 172; (g) 3.22, 2.42, 141.  The centroid-centroid distances (h) for molecules (i)

and (ii) are 4.22 and 4.29 Å, respectively.

Figure 4.19. Signals for the resonances corresponding to (i) free crown ether 5 (ii) uncomplexed

thread 9-H·PF6 and (iii) the 1:1 pseudorotaxane complex [5·9-H]PF6 formed between the two

individual components can be observed in the 1H NMR spectrum.  This phenomenon indicates

that the free and complexed species are equilibrating slowly on the NMR timescale and therefore

allows for the simple calculation of Ka by utilizing the so-called single-point method.

Figure 4.20. Left: Partial 1H NMR spectra (400 MHz, CD3CN, 300 K), recorded over time, of

an initial mixture of dialdehyde 9-H·PF6 (20 mM) and 3,5-di-tert-butylaniline 12 (40 mM).

Right: The dynamic equilibrium established in solution, and the corresponding percentages of
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each of the three species at equilibrium.  The probe protons of, and the associated resonances for,

the dialdehyde are labeled ‘9’ (i.e., corresponding to compound 9-H·PF6), those of the

monoaldehyde (monoimine) ‘13’, and those of the diimine dumbbell ‘14’.

Figure 4.21. Top: A schematic representation of the dynamic process under spectroscopic

investigation.  Bottom: The partial 1H NMR spectrum (400 MHz, CD3CN, 300 K), recorded over

time, of an initial mixture of 9-H·PF6 (20 mM), 3,5-di-tert-butyl-aniline 12 (40 mM), which was

allowed to reach equilibrium (spectrum at t = 0 min) prior to the addition of DB24C8 (5) (20

mM).  Peaks corresponding to species containing an NH2
+ center not bound/occupied by a

DB24C8 ring are colored black, while those which correspond to species that are bound/occupied

are shaded grey and, furthermore, the numerical labels attached to these peaks are suffixed with an

asterisk. The signals associated with the dialdehyde {9}, monoaldehyde {13} and diimine {14}

probe protons are highlighted as described in Figure 4.20.

Figure 4.22. Top: A schematic representation of the dynamic process under spectroscopic

investigation.  Bottom: The partial 1H NMR spectrum (400 MHz, CD3CN, 300 K) recorded over

time, of an initial mixture of 9-H·PF6 (20 mM), 3,5-di-t-butylaniline 12 (40 mM) and DB24C8

(5) (20 mM).  Peaks are annotated in the same fashion as in Figure 4.21.

Figure 4.23. A schematic representation demonstrating the principle of thermodynamically-driven

rotaxane synthesis via an imine exchange (rather than imine formation/hydrolysis) pathway.

Figure 4.24. The reaction of the dialdehyde compound (9-H·PF6) with a difunctional aniline

(e.g., m-phenylenediamine 17) can yield two types of product.  At lower concentrations, the

formation of catenanes is anticipated, however, upon increasing the concentration, linear

pseudopolyrotaxanes may be formed.
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24C8 [24]Crown-8

Å Ångstroms

B24C8 Benzo[24]crown-8

BMP25C8 Benzometaphenylene[25]crown-8

BPP34C10 Bisparaphenylene[34]crown-10

COSY Correlation Spectroscopy

DBA Dibenzylammonium

DMAP 4-Dimethylaminopyridine
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LSIMS Liquid Secondary Ion Mass Spectrometry
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NMR Nuclear Magnetic Resonance
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ppm Parts per million

TB24C8 Tetrabenzo[24]crown-8
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chemical elements and not functional group abbreviations) is used to describe a compound in
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A range of secondary ammonium (R2NH2
+) ions have been shown to thread through the

cavities of appropriately-sized crown ethers to afford interwoven complexes.  X-Ray

crystallographic investigations to probe the solid-state properties of these supermolecules

have revealed (Chapter 1) that many subtle factors—e.g., solvents of crystallization,

crown ether conformations and anion interactions—can influence the nature of the overall

three-dimensional superstructures.  Furthermore, a comparison of differently-substituted

crown ethers—possessing either [24]crown-8 or [25]crown-8 constitutions—has revealed

(Chapter 2) that relatively small mutations in the structure of the macrocyclic polyether
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can have profound consequences upon its ability to bind R2NH2
+ ions.  Substitution of

the [24]crown-8 framework with increasing numbers of benzo rings is observed to lower

the stability constants (Ka’s) from >103 to ~0 M–1 in acetonitrile, and a pronounced

decrease in Ka values also occurs when the [24]crown-8 constitution is expanded to give a

macroring containing 25 atoms.  Building upon the results obtained for these simple

binary systems, self-complementary daisy chain monomers—in which a secondary

ammonium ion-containing arm is grafted onto a macrocycle with either a [24]- or

[25]crown-8 constitution—were synthesized, and shown (Chapter 3) to form small

aggregates in the ‘gas’, solution, and solid phases.  Finally, both kinetic and

thermodynamic approaches have been employed (Chapter 4) in the synthesis of

rotaxanes based upon the secondary ammonium ion/crown ether recognition site.  The

reaction between amino and isocyanate groups has been exploited for the

synthesis—under kinetic control—of both DB24C8- and BMP25C8-containing ureido-

[2]rotaxanes, the latter of which represents the first example of an interlocked structure

incorporating this particular crown ether.  Conversely, a thermodynamically-control

synthesis is achieved when DB24C8 is added to a solution containing a diimine dumbbell-

like component, wherein the dynamic nature of the system (i.e., imine

hydrolysis/reformation) offers the ring component access to the NH2
+ center, allowing

the self-assembly of the corresponding ‘dynamic’ [2]rotaxane to occur.  Furthermore, the

'fixing' of this [2]rotaxane can be achieved upon reduction of the imine bonds, affording a

kinetically-inert [2]rotaxane.


