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Abstract - A very straightforward synthesis of 4'-deuteriothymidine (I) from inex- 

pensive thymidine (2) is described. The key step involvesdriple deprotonation of 

the ester prepared by selective oxidation of unprotected thymidine (and esterific- 

ation) and deuteration from the a-face to produce the desired 4'-deuterio derivative 

(5) which is then taken on to 1. Thus one can prepare the 4'-deuteriothymidine (1) 

in only five steps from thymidine (2) in an overall yield of 16%. 

Chemical nucleases, synthetic or naturally occurring, usually cleave DNA by oxidizing the sugar unit.3 

The first step generally involves the abstraction of a hydrogen atom from the 2'-deoxyribose unit, although 

the site of the attack varies. Specifically isotopically-labelled nucleotides are valuable tools for studying the 

mechanism of cleavage by a chemical nuclease. In pa~ticular, 4'-labelled nuclwtides have been used in the 

study of the chemical nucleases that first abstract the hydrogen atom from the 4'-position. Neocarzinostatin 

exhibited kinetic isotope effects of 2 to 5 when reacted with 4'-labelled nucleotides4 while the deuterium 

atom on C4' was transferred to reduced ~alicheamycin.~ For a project aimed at determining the mechanism 

of the cleavage of nucleic acids by the system ortho-phenanthroline, copper, hydrogen peroxide? we 

needed to prepare a small DNA fragment that incorporated specifically deuterated nucleosides. For this 

reason, we required a sample of thymidine which was specifically deuterated at the 4'-position, 1. This 

compound is known in the literature but the reported preparation which uses an enzyme based method 

seemed inappropriate for our purpose.7 Also the best chemical method among several developed8 for the 

production of specifically deuterium-labelled nucleosides, the work of Townsend and coworkers?b did not 

appear to be particularly applicable for the synthesis of 1. Therefore we developed a new route to 1 which 

begins with thymidine (2) itself. We described herein this approach, which should also be applicable to the 

preparation of other normal and 2'-deoxynucleosides. 



350 HETEROCYCLES, Vol. 47, No. 1,1998 

Of the several possible syntheses of 4'-deuteriothymidine (I), we chose to investigate the simple 

deprotonation-deuteration of the 5'-carboxylic ester, which could be easily prepared by selective oxidation 

of the nucleoside at the 5'-position, namely the primary alcohol in the presence of the secondary one. If the 

introduction of deuterium could be cmied out with high chemo- and stereoselectivity, then this route would 

be quite short and would probably represent one of the most efficient ways of preparing 4'-deuterated 

nucleosides. It was our expectation that, after the first two deprotonations on the acidic imide and hydroxyl 

groups, the third deprotonation would occur at the proton a to the carboxylic ester to give the trianion. 

This anion a to the ester should not eliminate the 3'-alkoxy group since the dianions of other simpler P- 
hydroxy esters had proven stable to P-elimination.9.'0 Steric hindrance from the pyrimidine hase oriented 

on the P-face at the anomeric 1'-carbon would be expected to favor reprotonation (or deuteration) from the 

a-face although the 3'-alkoxide on the a-face might well hinder that process. After deuteration, hydride 

reduction of the ester would regenerate the primary alcohol (after a final exchange of the deuterium atoms 

on the heteroatoms for hydrogen). This approach of selective oxidation, deprotonation, deuteration, and 

final ester reduction was accomplished in a straightforward manner as shown in Scheme 1. 

Selective oxidation of thymidine (2) into the 5'-carboxylic acid (3) in 62% yield and its conversion to the 

methyl ester (4) in 85% yield was already known.ll The key step involved the triple deprotonation of this 

ester (4) and stereoselective deuteration of the resulting trianion. We found that a large excess of base and 

a very polar aprotic solvent were necessary in order to guarantee deprotonation a to the ester. After consid- 

erable experimentation, it was found that a mixture of LDA and n-butyllithium in THF containing some 

HMPA proved to be best. Thus treatment of a solution of 4 in 88: 12 THRHMPA cooled to -78 'C with 5 

equiv of LDA followed by warming to 25 "C, recooling to -78 OC and addition of 4 equiv of n-butyllithium 

afforded a red solution.~2 After allowing the solution to stir for 1 hat -78 "C to ensure deprotonation, 

excess D20IAcOD were added. It proved impossible to isolate the desired product (5) cleanly after this 

step due to the presence of the HMPA and solubility problems. Therefore the entire mixture was treated 
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with acetic anhydride and pyridine to produce the acetate (6). Again although crude spectroscopic data 

indicated the presence of 6, there were problems in isolating the compound from the HMPA in a pure state 

so it was taken on directly. Hydride reduction13 of 6 followed by heating in acidic methanol to remove the 

boric acid and borate salts, afforded, after an extended purification process (see Experimental Section), the 

desired 4'-deuteriothymidine (1) in an overall yield of 30% from the starting ester (4). No attempts have 

been made to optimize this yield. Thus 4'-deuteriothymidine (1) is available from thymidine (2) in five 

steps in 16% overall yield. The efficiency of the deuterium incorporation was determined to be very high in 

the crude products (5) and (6) and in the final product (1) by both proton and carbon NMR. Thus the 

proton and carbon NMR spectra indicated the near-total disappearance of the signals due to the 4'-hydrogen 

and the 4'-carbon atom (due to reduced intensity caused by coupling with D, reduced nuclear Overhauser 

effects, and presumably long relaxation times), implying that the extent of deuteration was >95%. 

aq NaHC03 
62% n-C4HgLi; w 

2) CH& 
CH JOH AcOD 

HO 85% HO 2) Ac20 RO 

2 3 : R = H  5' 5 : R = H  

CH30H 3) TCA 
I I 

HO 50% AcO 

1 30% from 4 7 
Scheme 1 

We believe that the stereoselectivity seen in this alkylation can be explained by the following hypothesis. 

The enolate would preferentially exist in the C3'-endo conformation which would place the 3'-hydrogen in 

a pseudoaxial arrangement (see structure 8). Attack of the enolate on the electrophile would occur in the 

staggered axial orientation due to torsional strain, e.g., on the bottom face as shown.14 In this confonna- 

tion, the steric hindrance due to the pyrimidine base at the anomeric carbon is also probably larger than that 

of the alkoxide at C3'. So for these two reasons, only the a-substituted product is observed. 
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In order to prepare the required 5'-triphosphate15 of (1) for use in the enzymatic synthesis of the required 

DNA segment, we converted (1) into the ?-acetate by the usual three-step process, namely 5'-dimethoxy- 

E+ 
8 

tritylation, 3'-acetylation, and final acidic detritylation. This sequence furnished the acetate (7) in 50% 

unoptimized yield. This compound was then used to prepare the triphosphate and from it the DNA. The 

results of the biochemical experiments, namely the elucidation of the mechanism of the nuclease activity, 

will be described in due conrse.16 

Finally it is important to point out that a minor by-product in our early attempts at effecting 4-deuteration 

was the 4',6-dideuteriothymidine (9) which indicates that the 6-proton is also acidic enough to be removed 

under these conditions. We are currently examining the synthesis of other labelled nucleosides for use in 

determining the mechanism of chemical nucleases. We are also investigating the use of this process for the 

production of other 4'-substituted nucleosides, e.g., 4'a-azido, hydroxyalkyl and acylated systems.lO 

ACO 

9 

EXPERIMENTAL 

Melting points were recorded on a Biichi micro capillary melting point apparatus and are uncorrected. 'H 

NMR were recorded on a Bmker AC-200 spectrometer, operating at 200.132 MHz, and '3C NMR spectra 

were also recorded on the AC-200 operating at 50.323 MHz. Chemical shifts are reported as 6 values 

(ppm) relative to either internal TMS or the solvent peak, coupling constants are reported in Hertz (Hz), and 

the normal abbreviations are used. IR spectra were recorded on a Nicolet 5 10 FTIR with the data reported 

in wave numbers (cm-I). Flash column chromatography was performed on Fluka or EM Science silica gel 

60 (40-63 um). Solvent systems are reported as either volume:volume mixtures or volume percent 

mixtures. Thin layer chromatography was performed using Merck silica gel 60 F254 0.2 mm plates. 
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Concentration in vacuo or at reduced pressure refers to removal of solvent by use of a Biichi rotary 

evaporator with a heated water bath under water aspirator pressure. All reagents and solvents were 

purchased commercially and used without further purification except for the following: HMPA was stored 

over 3A molecular sieves and tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. 

Thymidine-5'-carboxylic Acid (3). Platinum metal (6 g, 5% on activated carbon) was suspended in a 

solution of 1.5 g of NaHCO3 in 300 mL of water in a round bottomed flask. The suspension was stirred 

under a hydrogen atmosphere at 70 "C for 15 min. The hydrogen was then removed and 3 g of solid 

thymidine (2) was added. After the system was purged with pure oxygen, the flask was equipped with an 

oxygen balloon, and the suspension was stirred vigorously at 70 'C overnight. The reaction was cooled to 

25 "C, the solution was filtered, and the platinum on carbon was recovered on a piece of fine filter paper. 

The solution was neutralized by passing it through an acidic ion exchange column (Amberlite IR-120 in H+ 

form). After concentration in vacuo and refrigeration overnight, the product crystallized and was collected 

by filtration to yield 1.86 g of 3,62% yield. mp 263-264 "C (lit. mp 263-265 "C)." 1H NMR (DMSO-d6): 

11.36 (s, IH, H3), 8.09 (br d, IH, J = 0.6 Hz, H6), 6.35 (dd, lH, J = 9.0, 5.4 Hz, HI'), 5.81 (br s, 

IH, OH), 4.46 (br d, IH, J = 4.7 Hz, H3'), 4.33 (s, IH, He), 2.15 (dd, IH, J = 13.2, 5.5 Hz, H2',), 

1.97 (ddd, IH, J = 13.3, 9.0, 4.7 Hz, H2'b), 1.79 (s, 3H, CH3). 13C NMR (DMSO-d6): 172.80, 

163.98, 150.73, 136.53, 109.61, 85.68, 84.68, 73.97, 12.64 (one high field carbon not resolved due to 

overlap with DMSO). IR (KBr): 3422, 3387, 1692, 1651 cm-1. 

Methyl thymidine-5'-carhoxylate (4). To a vigorously stirred solution of 1.4 g (5.47 mmol) of 3 in 

150 mL of methanol was added slowly an ethereal solution of diazomethane prepared from 8.03 g (54.7 

mmol) of I-methyl-3-nitrc-I-nitrosoguanidine (MNNG, Aldrich) at 50 OC. The product started crystallizing 

as the ethereal solution of diazomethane was added. After concentrating the solution, additional product 

crystallized and was filtered to give 1.2 g of the ester 4, 85% yield. mp 255-257 "C (lit., mp 247 OC).16 1H 

NMR (DMSO-d6): 11.38 (br s, IH, H3), 7.96 (br s, IH, H6), 6.37 (dd, IH, J = 8.8, 5.7 Hz, HI'), 5.87 

(d, IH, J = 3.7 Hz, OH), 4.49 (br s, IH, H3'), 4.42 (s, IH, H4'), 3.74 (s, 3H, COOCH3), 1.90-2.25 

(m, 2H, H29, 1.81 (s, 3H, CH3). I3C NMR (DMSO-d6): 171.65, 163.80, 150.69, 136.23, 109.73, 

85.69, 84.50, 73.81, 52.43, 38.14, 12.57. IR (KBr): 3410, 1713, 1662 cm-1. 

Methyl 4'-deuteriothymidine-5'-carboxylate (5). The ester (4) (300 mg, 1.1 1 mmol) was 

dissolved in 35 mL of dry 12% HMPA in THF. The solution was stirred at -78 "C under argon, and lithium 

diisopropylamide (3.7 mL, 1.5 M, 5.55 mmol) was added slowly. The mixture was allowed to warm to 25 
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"C and cooled back to -78 OC within 1 h. n-Butyllithium (2.6 mL, 1.7 M, 4.42 mmol) was added slowly 

with the solution turning red during the addition. After the mixture was stirred for 1 hat  -78 OC, 0.5 mL of 

40  and 1 mL of AcOD were added to quench the reaction and to make the pH of the solution between 5 

and 6. The insolubility of 5 in most organic solvents and the high boiling point of HMPA made it difficult 

to purify the product. After removing the volatile solvents in vacuo, the remaining mixture was coevapor- 

ated with dry pyridine and was used directly in the next reaction. When pure THF was used as the solvent 

in earlier attempts at this deprotonation-deuteration, a large amount of THF was required to dissolve 4. 

However, 5 was isolated, albeit in low yield. 'H NMR (DMSO-d6): 11.38 (br s, lH, H3), 7.96 (br s, IH, 

H6), 6.37 (dd, IH, J = 8.8, 5.7 Hz, HI'), 5.87 (d, IH, J =  3.7 Hz, OH), 4.49 (br s, IH, H3'), 4.42 (s, 

< 0.05H, H4'), 3.74 (s, 3H, COOCH3), 1.9-2.25 (m, 2H, HZ'), 1.81 (s, 3H, CH3). 13C NMR (DMSO- 

ds): 171.65, 163.80, 150.69, 136.23, 109.73, 85.69, 73.81, 52.43, 38.14, 12.57. (The carbon signal 

due to C4' pprn was not observed.) IR (KBr): 341 1, 1713, 1680, 1663 cm-I. 

Methyl 3'-0-acetyl-4'-deuteriothymidine-5'-carhoxyate (6). To the mixture obtained from last 

reaction containing 5 was added excess pyridine and acetic anhydride. The reaction was kept in a refrigera- 

tor overnight and then quenched with water and methanol. Evaporation of the solvents gave a residue to 

which ethanol and toluene were added and the solution reevaporated. This was repeated several times. The 

residue was taken up in 200 mL of chloroform. The organic layer was washed successively with water, 0.1 

M sulfuric acid, water, saturated sodium bicarbonate, and brine. Final evaporation of the solvents in vacuo 

gave a mixture whose 1H NMR showed the presence of the product (6), along with HMPA and some 

minor impurities. The HMPA was hard to remove either by aqueous extraction or silica gel column 

chromato-graphy. Therefore the mixture was used directly in the next reaction. However, an NMR of crude 

6 could be obtained. IH NMR (CDC13): 8.55 (br s, IH, NH), 8.05 (d, IH, J = 1.2 Hz, H6), 6.52 (dd, 

IH, J = 9.4, 5.2 Hz, Hl'), 5.44 (d, IH, J = 5.1 Hz, H3'), 4.60 (s, IH, H4'). 3.85 (s, 3H, COOCH3). 

2.50 (dd, IH, J = 9.8, 5.2 Hz, HZ',), 2.02 - 2.25 (m, lH, H2'b), 2.15 (s, 3H, CH3COO). 1.98 (s, 3H, 

CH3). '3C NMR (CDC13): 170.79, 169.86, 163.81, 150.68, 135.67, 111.68, 86.07, 81.81, 75.90, 

52.88, 36.32, 20.83, 12.61. 

4'-Deuteriothymidine (1). After coevaporating the mixture from the previous reaction containing 6 

with benzene several times to remove any moisture, 2 mL of dry THF and 2.5 mL of 2 M LiBH4 in THF 

were added. The reaction was heated at 65 "C for 2 hand then methanol and water were added. Solvents 

were evaporated in vacuo, and the residue was taken up in methanol and passed through an acidic ion 
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exchange column (Amberlite R-R-1 in its H+ form). The solution was repeatedly coevaporated with 

methanol to remove the boric acid. The residue then contained mainly the desired product and HMPA. 

Flash column chromatography on silica gel separated these with HMPA being eluted first with 10% MeOH 

in chloroform. The product was then eluted with 20% MeOH in chlorofom to yield 90 mg of 1,30% from 

4. 'HNMR (CD30D): 7.81 (d, IH, J =  l.OHz, H6),6.28(t, IH, J = 6 . 8 H z ,  HlS),4.40(dd, J=5.3,  

4.2 Hz, H3'), 3.91 (m, < 0.05H, H4'), 3.81 (d, IH, J = 12.0 Hz, H5',), 3.72 (d, lH, J = 12.0 Hz, 

H5'b), 2.20 - 2.27 (m, 2H, HZ'), 1.88 (s, 3H, CH3). 13C NMR (CD30D): 166.36, 152.32, 138.13, 

11 1.49, 86.23, 72.11, 62.73, 41.12, 12.43 (the carbon signal due to C4' was not observed). IR (KBr): 

3316, 1707, 1700, 1667 cm-'. 

3'-0-Acetyl-4'-deuteriothyrnidine (7). A solution of 6 (100 mg, 0.41 mmol) and dimethoxytrityl 

chloride (280 mg ,0.82 mmol) were stirred in 2 mL of dry pyridine for 8 h at 25 OC. Excess acetic 

anhydride was then added, and the reaction was stirred overnight at 25 OC. Ethanol and water was added. 

Solvents were evaporated in vacuo, and pyridine was carefully removed by repeated coevaporation with 

ethanol and toluene. The residue was dissolved in a few drops of dichloromethane, and 1 mL of 5% 

trichloroacetic acid in dichloromethane was added. The solution instantly turned red and was quickly loaded 

onto a silica gel column. Elution with a gradient of 5% to 10% methanol in chloroform afforded 60 mg of 

7, 50% yield. 'H NMR (CD30D): 7.84 (d, IH, J = 0.9 Hz, H6), 6.27 (t, IH, J = 7.2 Hz, HI), 5.30 (dd, 

IH, J = 4.9, 3.1 Hz, H30, 4.08 (m, < 0.05H, He), 3.80 (s, 2H, H5'), 2.29 - 2.39 (m, 2H, HZ'), 2.09 

(s ,  3H. CH3COO), 1.88 (s, 3H. CH3). I3C NMR (CD30D): 172.20, 166.22, 152.56, 137.88, 111.84, 

86.17, 76.34, 62.88, 38.38, 20.86, 12.42 (the carbon signal due to C4' was not observed). IR (KBr): 

3416, 1686 cm-1. 

ACKNOWLEDGEMENT 

We thank the National Institutes of Health (GM47228 and GM21199) for financial support 

REFERENCES AND NOTES 

1. Dedicated to one of my chemical heroes, the magician, Koji Nakanishi on his 75th birthday. 

2. American Chemical Society Arthur C. Cope Scholar, 1995. 

3. G. Pratviel, J. Bernadou, and B. Meunier, Angew. Chem., Int. Ed. Engl., 1995, 34, 746. 

4.  (a) L. S. Kappen, I. H. Goldberg, B. L. Frank, L. Worth, Jr., D. F. Christner, J. W. Kozarich, and 



356 HETEROCYCLES, Vol. 47, No. 1,1998 

J. Stubbe, Biochemistry, 1991, 30, 2034. (b) B. L. Frank, L. Worth, Jr., D. F. Christner, J. W. 

Kozarich, J. Stubbe, L. S. Kappen, and I. H. Goldberg, J. Am. Chem. Soc., 1991, 113, 2271. 

5. A. Mazumder, J. A. Gerlt, M. J. Absalon, J. Stubbe, R. P. Cummingham, J. Withka, and P. H. 

Bolton, Biochemistry, 1991, 30, 11 19. 

6.  M. M. Meijler, 0. Zelenko, and D. S. Sigman, J. Am. Chem. Soc., 1997,119, 1135 and references 

therein. 

7. J.  C. Wu, J. W. Kozarich, and J. Stubbe, Biochemistry, 1985, 24, 7562, and references therein. 

8. (a) S. Ajmera, S. Massof, and J. W. Kozarich, J. Label. Comp. & Radiopharm., 1986,23, 963. (b) 

J. J. De Voss, J. J. Hangeland, and C. A. Townsend, J. Org. Chem., 1994,59, 2715. 

9. D. Seebach, J. Aebi, and D. Wasmuth, Org. Synth., 1984, 63, 109. 

10. Other reactions via anionic species at C4', e.g., aldol-Cannizzaro reaction of the 5'-carboxaldehyde, 

proceed without elimination of the protected 3'-hydroxyl function. (a) C. 0-Yang, W. Kurz, E. M. 

Eugui, M. J. McRoberts, J. P. H. Verheyden, L. J. Kurz, and K. A. M. Walker, Tetrahedron Lett., 

1992, 33,41; (b) C. 0-Yang, H. Y. Wu, E. B. Fraser-Smith, and K. A. M. Walker, Tetrahedron 

Lett., 1992,33, 37; (c) A. Marx, P. Erdrnann, M. Senn, S. Komer, T. Jungo, M. Petretta, P. 

Imwinkelried, A. Dussy, K. J. Kulicke, L. Macko, M. Zehnder, and B. Giese, Helv. Chim. Acta, 

1996, 79, 1980. 

11. G. P. Moss, C. B. Reese, K. Schofield, R. Shapiro, and L. Todd, J. Chem. Soc., 1963, 1149. 

12. Use of fewer equivalents of base followed by deuteration afforded (after washing with HZO) only 

recovered starting material. We have no good rationale for this necessity for excess base. 

13. (a) R. W. Jeanloz and E. Walker, Carbohyd. Res., 1967,4, 504. (b) H. C. Brown, S. Narasimhan, 

and Y. M. Choi, J.  Org. Chem., 1982,47,4702. 

14. M. J. Lucero and K. N. Houk, J.  Am. Chem. Soc., 1997, 119, 826 and references therein. 

15. J. Ludwig and F. Eckstein, J. Org. Chem., 1989,54, 631 and references therein. 

16. 0. Zelenko, J. Gallagher, Y. Xu, and D. S. Sigman, manuscript in preparation. 

17. J. P. Neenan and W. Rohde, J. Med. Chem., 1973,16, 580. 

Received, 22nd April ,  1997 


