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Abstract

The use of a lactol methyl ether 23 in place of the simple tetrahydrofuran 11 allows for the high yielding
non-aldol aldol process to occur without concomitant tetrahydropyran formation (cf. 13) to give the
desired product 24 in good yield. © 2000 Elsevier Science Ltd. All rights reserved.
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Tedanolide (1, R=OH) was isolated by Schmitz and co-workers in 1984 from the Caribbean
sponge Tedania ignis.1 The macrolide demonstrates its high cytotoxicity by displaying ED50’s of
250 pg/mL against human nasopharynx carcinoma and 16 pg/mL against in vitro lymphocytic
leukemia. Seven years after tedanolide’s discovery, Fusetani and co-workers isolated 13-deoxy-
tedanolide (2, R=H) from the Japanese sponge Mycale adhaerens.2 This macrolide is also
extremely cytotoxic, exhibiting an IC50 of 94 pg/mL against P388 murine leukemia. Due to its
powerful antitumor activity and complex structure, tedanolide has garnered considerable
synthetic interest,3 including that of our group which uses the non-aldol aldol process.4

Disconnecting the tedanolide backbone retrosynthetically is quite straightforward, beginning
with cleavage at the lactone moiety and at the C12�C13 bond, which could be formed in the
forward sense by an aldol reaction for 1 or an alkylation for 2, either prior to a macrolactoniza-
tion or after simple ester formation. Thus in this analysis both tedanolide and 13-deoxytedano-
lide have common intermediates in fragments 3 and 4. Recently we published an approach to
the C1–C11 fragment 4 which used several non-aldol aldol processes.4i However that route had
a serious drawback in one of the key non-aldol aldol steps. We report herein a solution to this
problem which utilizes a lactol ether rather than a tetrahydrofuran.
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Although the simple non-aldol aldol reaction can be easily accomplished, the presence of an
ethereal oxygen (including a silyl ether) five atoms away from the electrophilic tertiary site of the
epoxide allows for attack of the oxygen atom before the internal hydride shift takes place. Thus
when the tertiary epoxy silyl ether 5 was subjected to standard non-aldol aldol conditions, the
silyl ether oxygen opened the epoxide to give the bis-tetrahydrofuran 6 and not the aldehyde 7.
We had already recognized this problem and had developed methods to overcome it,4e namely
the use of a mesylate protecting group. Thus while treatment of the simple epoxy bis-silyl ether
8a under normal conditions gave a high yield of the tetrahydrofuran 9, treatment of the mesylate
silyl ether 8b under very similar conditions gave a high yield of the desired non-aldol aldol
product 10. However, application of this technique to avoid participation of the oxygen five
atoms away to the desired substrate analogous to 5, e.g. 11, resulted in a problem of a different
sort, namely undesired nucleophilicity of the tetrahydrofuran oxygen to afford, after Stille–
Wittig reaction and separation, an 80% yield of a 1:1 mixture of the desired non-aldol aldol
product 12 and the tetrahydropyran 13. Thus the ethereal oxygen six atoms away now partici-
pated in the formation of the tetrahydropyran at the same rate as the internal hydride trans-
fer. What was needed was a ‘protecting group’ for the tetrahydrofuran which would decrease
the nucleophilicity of the ring oxygen but still allow for conversion of the bromotetrahydro-
furan system into a trisubstituted alkene at the end of the synthesis.4d We report the successful
use of a lactol ether in this regard.
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The first protected tetrahydrofuran examined was the lactone, since clearly the nucleophilicity
of the ring oxygen would be expected to be quite low with the lone pair being tied up in
resonance with the lactone carbonyl. Treatment of the tetrahydrofuran 15 (prepared in a few
steps from the commercially available hydroxy ester 14) with RuCl3 and NaIO4 gave the lactone
16 in 70% yield.4g,5 However, the lactone moiety acidified the adjacent hydrogen atom so that
b-elimination became a problem either during removal of the TBS group with TBAF (to give 17,
although the silyl protecting group could be liberated under acidic HF conditions) or the
subsequent Swern oxidation to give a similar furan-2-one.

The solution lay in the expectation that the inductive electron-withdrawing effect of an alkoxy
group a to the ring oxygen, as in a lactol ether, would decrease the nucleophilicity enough to
allow the internal hydride transfer to occur selectively. One could argue, a priori, that an a
alkoxy group might increase the nucleophilicity of the ring oxygen due to a resonance effect.
However, a search of the Cambridge Structure Database indicated that the length of the O1�C2
bond in tetrahydrofuran systems decreased from an average of 1.449 A, in the tetrahydrofuran
to 1.417 A, in the lactol methyl ether to 1.347 A, in the lactone.6 Therefore we reduced the lactone
16 with DIBAL to give in 84% yield a 1:1 ratio of the lactols 17ab which were converted into
a 1:1 mixture of the mixed cyclic methyl acetals 18ab in 95% yield. The acidic methanol
conditions not only protected the lactol but also deprotected the TBS ether and allowed for the
chromatographic separation of diastereomers. The 11R diastereomer 18a7 was taken on through
the steps shown in Scheme 1 to test the key non-aldol aldol reaction. Swern oxidation,
olefination, and reduction gave the allylic alcohol 19 in 81% overall yield. Epoxidation of this
allylic alcohol by the method of Sharpless,8 followed by silyl ether protection afforded the first
rearrangement substrate 20 in 90% yield over two steps in an 8:1 diastereomeric ratio favoring
the isomer shown. The first non-aldol aldol reaction was accomplished with TMSOTf and
Hünig’s base at −78°C, yielding the desired aldehyde as the only diastereomer observed.
Immediate Wittig olefination and deprotection of the silyl ether furnished the syn aldol product
21 in 86% yield over three steps. This compound was shown to be a 3:1 mixture of the original
diastereomer at C11 along with its epimer. The isomerization occurs during the first step,
presumably due to reversible TMSOTf-catalyzed loss of the methoxy group. A longer reaction
time for this rearrangement step causes increased epimerization and affords diastereomeric
ratios as high as 1:1.
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Scheme 1.

Protection of the C7 hydroxyl group with an electron-withdrawing mesylate functionality was
carried out in 98% yield using recrystallized methanesulfonic anhydride and subsequent DIBAL
-H reduction to give the protected allylic alcohol 22 quantitatively. This intermediate was
epoxidized with tBuOOH and VO(acac)2 and protected with TBSCl to furnish the second
rearrangement substrate 239 in 87% yield over three steps as a 3:1 ratio of epoxide diastereomers.

The key non-aldol aldol reaction of the lactol ether 23 was accomplished as before with
TMSOTf and Hünig’s base but required a somewhat higher temperature (−42°C) to afford the
desired syn aldol product 24 in 84% yield and a 6:1 Z :E ratio after a Stille–Wittig olefination10

and deprotection of the silyl ether. Thus the lactol ether decreased the nucleophilicity of the ring
oxygen enough to allow for complete internal hydride transfer without any competing tetra-
hydropyran formation.

In conclusion, we have shown that the inductive effect of the methoxy group in lactol methyl
ethers is enough to reduce the nucleophilicity of the ring oxygen atom so that it does not participate
via anchimeric assistance in the opening of a tertiary epoxide six atoms away, and therefore the
internal hydride transfer necessary for the non-aldol aldol process occurs in excellent yield, e.g.
23 gives 24 in high yield. We are currently attempting to convert these intermediates, e.g. 24, into
the final protected materials for coupling to give tedanolide and 13-deoxytedanolide.11
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