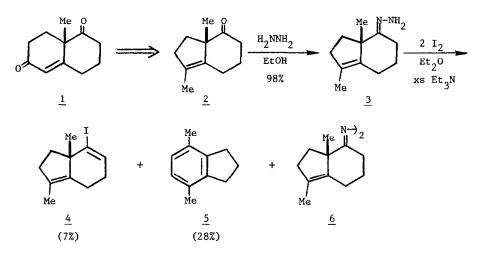
NOVEL OXIDATIVE REARRANGEMENT OF β, γ-UNSATURATED KETONE HYDRAZONES ON IODINATION IN BASE

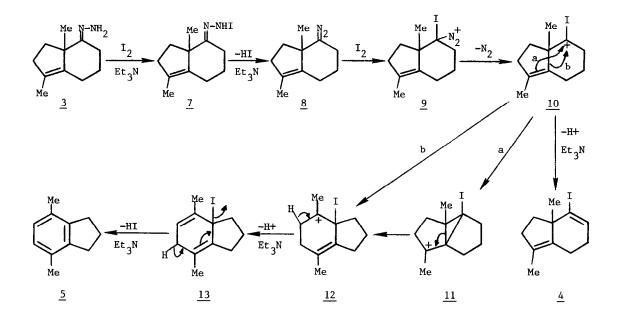

Michael E. Jung^{*1} and Gregory L. Hatfield² Department of Chemistry, University of California, Los Angeles, California 90024

<u>Abstract</u>: Iodination of the bicyclic enone hydrazone $\underline{3}$ in excess triethylamine gave, in addition to the expected vinyl iodide $\underline{4}$, the rearranged aromatic product $\underline{5}$.

A general method for the preparation of vinyl iodides from ketones involves the treatment of the hydrazone of the ketone with 2 equivalents of iodine in diethyl ether in the presence of excess triethylamine.³ In addition to the vinyl iodide, one often also obtains varying amounts of the geminal diiodide which can frequently be converted into the desired vinyl iodide upon treatment with strong base.³ We now wish to report a novel rearrangement of the hydrazone of a bicyclic enone which produces an aromatic product.

For a planned synthesis of optically active steroids via an anionic oxy-Cope rearrangement sequence, 4 we required an optically active nucleophilic AB-ring synthon and chose to investigate the specific indenyl iodide 4. The ketone necessary for the hydrazone to vinyl iodide transformation was then the enone 2. This optically active enone 2 was prepared in 7 steps from optically active Wieland-Miescher ketone $1.^{5,6}$ The hydrazone 3 was prepared by treatment of racemic 2 with hydrazine hydrochloride in ethanol in 98% yield. When the hydrazone 3 was treated in diethyl ether with two equivalents of iodine and 12 equivalents of triethylamine at 25°C, a mixture of the desired vinyl iodide 4 and a new nonpolar compound were obtained in 35% yield in addition to starting material and the azine 6. The new compound (28% yield from 3) could be separated from the iodide 4 by silica gel chromatography followed by distillation. Its structure was determined to be 4,7-dimethylindane 5 by

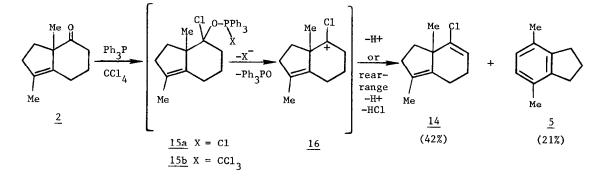
3991



examination of the spectral data shown in Table 1. The infrared spectrum matches that reported for 5 in literature.⁷

Table 1. Spectral Data for 5

MS	\$: 146(M ⁺)	¹ H NMR:	6.85, 1H,	S	¹³ C NMR	142.6(d)	IR:	3015(w)
			2.82, 2H,	t, J=7Hz		130.9(s)		2900(s)
			2.21, 3H,	S		127.0(s)		2830(w)
			2.18, 1H,	quintet, J=	7Hz	31.7(t)		1495(m)
						24.2(t)		1440(m)
						18,9(q)		$805(m) cm^{-1}$


The mechanism proposed for the formation of vinyl iodides and geminal dilodides³ from hydrazones, which involves the formation of an intermediate iododiazonium salt, could be modified to account for the formation of $\underline{4}$ and $\underline{5}$ (Scheme). Thus, treatment of $\underline{3}$ with iodine and triethylamine should produce as an intermediate the N-iodohydrazone $\underline{7}$ which would give the aliphatic diazo compound $\underline{8}$. Iodination of $\underline{8}$ on carbon produces the iododiazonium salt $\underline{9}$, which loses nitrogen to give the iodocarbonium ion $\underline{10}$. Proton removal from $\underline{10}$ by triethylamine would then produce the vinyl iodide $\underline{4}$. However, Wagner-Meerwein type rearrangement of $\underline{10}$ can also occur to give the tertiary carbonium ion $\underline{12}$ either directly (path b) or with double bond participation via the cyclopropylcarbinyl cation $\underline{11}$ (path a). Removal of a proton from $\underline{12}$ with triethylamine would afford the

Scheme

cyclohexadienyl iodide <u>13</u>, which would be expected to undergo base-catalyzed elimination of HI to give the observed product <u>5</u>. The production of the rearranged product is further evidence for the intermediacy of the iodocarbonium ion <u>12</u> in the mechanism of iodination of hydrazones in base.³

The rearrangement of halocarbonium ions such as <u>10</u> to indanes is a general process. Thus, when the enone <u>2</u> is treated with triphenylphosphine in carbon tetrachloride⁸ one obtains, in addition to the expected vinyl chloride <u>14</u> (42%), a 21% yield of 4,7-dimethylindane <u>5</u>. Presumably, an intermediate such as <u>15a</u> or <u>15b</u> is formed which can lose triphenylphosphine and either chloride ion or trichloromethyl anion to generate the chlorocarbonium ion <u>16</u>. This can then lose a proton to give

<u>14</u> or undergo the rearrangement described above to give <u>5</u>. Wagner-Meerwein rearrangements of chloro- and bromocarbonium ions such as <u>16</u> have been described in other systems.⁹

<u>Acknowledgement</u>. We thank the Air Force Office of Scientific Research (Grant 81-0185) and the National Institutes of Health for partial support of this research.

References and Notes

- 1. Camille and Henry Dreyfus Teacher-Scholar, 1978-83; Fellow of the Alfred P. Sloan Foundation, 1979-81.
- 2. Fellow of the Chevron Oil Co., Inc., at UCLA.
- 3. a) D. H. R. Barton, R. E. O'Brien, and S. Sternhell, <u>J. Chem. Soc.</u>, 470 (1960); b) A. Pross and S. Sternhell, <u>Aust. J. Chem.</u>, 23, 989 (1970); c) J. R. Campbell, A. Pross, and S. Sternhell, <u>ibid.</u>, 24, 1425 (1971).
- 4. M. E. Jung and J. P. Hudspeth, <u>J. Am. Chem. Soc.</u>, <u>100</u>, 4309 (1978).
- 5. J. Gutzwiller, P. Ruchschacher, and A. Furst, Synthesis, 167 (1977).
- 6. The conversion of $\underline{1}$ into $\underline{2}$ in 7 steps and 14% overall yield will be described in detail elsewhere.
- 7. a) R. D. H. Murray, W. Parker, R. A. Raphael, and D. B. Jhaveri, <u>Tetrahedron</u>, <u>18</u>, 55 (1962);
 b) J. Entel, <u>Analyt. Chem.</u>, <u>26</u>, 612 (1954).
- 8. N. S. Isaacs and D. Kirkpatrick, J. Chem. Soc. Chem. Commun., 443 (1972).
- 9. A. Pross and S. Sternhell, Aust. J. Chem., 24, 1437 (1971).

(Received in USA 21 June 1982)